Modulation of the Activity of Gold Clusters Immobilized on Functionalized Mesoporous Materials in the Oxidation of Cyclohexene via the Functional Group. The Case of Aminopropyl Moiety
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Supports
2.2. Gold-Containing Samples
2.2.1. Rosemary Oil Phase
2.2.2. Au-Containing SBA-15 Materials
2.2.3. Catalytic Activity
3. Materials and Methods
3.1. Synthesis of Amino-Containing SBA-15 Materials
3.2. Synthesis of the Gold Clusters
3.3. Immobilization of the Gold Clusters on SBA-15
3.4. Characterization Techniques
3.5. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature Far Below 0 °C. Chem. Lett. 1987, 16, 405–408. [Google Scholar] [CrossRef]
- Corma, A.; Garcia, H. Supported Gold Nanoparticles As Catalysts for Organic Reactions. Chem. Soc. Rev. 2008, 37, 2096–2126. [Google Scholar] [CrossRef]
- Takei, T.; Akita, T.; Nakamura, I.; Fujitani, T.; Okumura, M.; Okazaki, K.; Huang, J.; Ishida, T.; Haruta, M. Heterogeneous Catalysis by Gold. Adv. Catal. 2012, 55, 1–126. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C. Supported Gold Nanoparticles As Catalysts for the Oxidation of Alcohols and Alkanes. Front. Chem. 2019, 7, 702. [Google Scholar] [CrossRef] [Green Version]
- Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Louis, C.; Pluchery, O. (Eds.) Gold Nanoparticles for Physics, Chemistry and Biology, 2nd ed.; World Scientific: Hackensack, NJ, USA, 2017. [Google Scholar]
- Zhu, Y.; Jin, R.; Sun, Y. Atomically Monodisperse Gold Nanoclusters Catalysts With Precise Core-Shell Structure. Catalysts 2011, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Boronat, M.; Corma, A. Molecular Approaches to Catalysis. J. Catal. 2011, 284, 138–147. [Google Scholar] [CrossRef]
- Qin, Q.; Heil, T.; Antonietti, M.; Oschatz, M. Single-Site Gold Catalysts on Hierarchical N-Doped Porous Noble Carbon for Enhanced Electrochemical Reduction of Nitrogen. Small Methods 2018, 2, 1800202. [Google Scholar] [CrossRef]
- Qiao, B.; Liang, J.-X.; Wang, A.; Xu, C.-Q.; Li, J.; Zhang, T.; Liu, J. Ultrastable Single-Atom Gold Catalysts With Strong Covalent Metal-Support Interaction (CMSI). Nano Res. 2015, 8, 2913–2924. [Google Scholar] [CrossRef]
- Gutiérrez, L.-F.; Hamoudi, S.; Belkacemi, K. Synthesis of Gold Catalysts Supported on Mesoporous Silica Materials: Recent Developments. Catalysts 2011, 1, 97–154. [Google Scholar] [CrossRef]
- Lemery, N. Cours De Chymie; Laurent Charles d’Houry: Paris, France, 1757. [Google Scholar]
- Mayoral, A.; Agundez, J.; Pascual-Valderrama, I.M.; Pérez-Pariente, J. Generation of Gold Nanoparticles According to Procedures Described in the Eighteenth Century. Gold Bull. 2014, 47, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Agundez, J.; Martin, L.; Mayoral, A.; Pérez-Pariente, J. Gold Nanoclusters Prepared from an Eighteenth Century Two-Phases Procedure Supported on Thiol-Containing SBA-15 for Liquid Phase Oxidation of Cyclohexene With Molecular Oxygen. Catal. Today 2018, 304, 172–180. [Google Scholar] [CrossRef]
- Valdés, R.D.L.S.; Agúndez, J.; Márquez-Álvarez, C.; Pérez-Pariente, J. Immobilization of Gold on Short-Channel Mesoporous SBA-15 Functionalized with Thiol and Hydrophobic Groups for Oxidation Reactions. Catal. Today 2020, 354, 77–89. [Google Scholar] [CrossRef]
- Agúndez, J.; Ares, C.; Márquez-Álvarez, C.; Pérez-Pariente, J. Catalytic Oxidation of Cyclohexene by Supported Gold Nanoclusters Synthesized in a Two-Liquid Phases System Containing Eucalyptus Essential Oil. Mol. Catal. 2020, 488, 110922. [Google Scholar] [CrossRef]
- Xue, Y.; Li, X.; Li, H.; Zhang, W. Quantifying thiol–gold Interactions towards the Efficient Strength Control. Nat. Commun. 2014, 5, 4348. [Google Scholar] [CrossRef] [Green Version]
- Dubois, L.H.; Nuzzo, R.G. Synthesis, Structure, and Properties of Model Organic Surfaces. Annu. Rev. Phys. Chem. 1992, 43, 437–463. [Google Scholar] [CrossRef]
- Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996, 96, 1533–1554. [Google Scholar] [CrossRef]
- Donoeva, B.G.; Ovoshchnikov, D.S.; Golovko, V.B. Establishing a Au Nanoparticle Size Effect in the Oxidation of Cyclohexene Using Gradually Changing Au Catalysts. ACS Catal. 2013, 3, 2986–2991. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. Effect of Anchoring Groups on Single-Molecule Conductance: Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules. J. Am. Chem. Soc. 2006, 128, 15874–15881. [Google Scholar] [CrossRef]
- Tang, Q.; Jiang, D.-E. Comprehensive View of the Ligand–Gold Interface from First Principles. Chem. Mater. 2017, 29, 6908–6915. [Google Scholar] [CrossRef]
- Chong, A.S.M.; Zhao, X.S. Functionalization of SBA-15 With APTES and Characterization of Functionalized Materials. J. Phys. Chem. B 2003, 107, 12650–12657. [Google Scholar] [CrossRef]
- Kallury, K.M.R.; Macdonald, P.M.; Thompson, M. Effect of Surface Water and Base Catalysis on the Silanization of Silica by (Aminopropyl)alkoxysilanes Studied by X-Ray Photoelectron Spectroscopy and 13C Cross-Polarization/Magic Angle Spinning Nuclear Magnetic Resonance. Langmuir 1994, 10, 492–499. [Google Scholar] [CrossRef]
- Woehrle, G.H.; Warner, M.G.; Hutchison, J.E. Ligand Exchange Reactions Yield Subnanometer, Thiol-Stabilized Gold Particles with Defined Optical Transitions. J. Phys. Chem. B 2002, 106, 9979–9981. [Google Scholar] [CrossRef]
- Blanco, M.C.; Lourido, R.; Vazquez-Vazquez, C.; Pastor, E.; Planes, G.A.; Rivas, J.; López-Quintela, M.A. Synthesis of Atomic Gold Clusters with Strong Electrocatalytic Activities. Langmuir 2008, 24, 12690–12694. [Google Scholar] [CrossRef] [PubMed]
- Lugo, G.; Schwanen, V.; Fresch, B.; Remacle, F. Charge Redistribution Effects on the UV–Vis Spectra of Small Ligated Gold Clusters: A Computational Study. J. Phys. Chem. C 2015, 119, 10969–10980. [Google Scholar] [CrossRef]
- Bogdanchikova, N.; Pestryakov, A.; Tuzovskaya, I.; Zepeda, T.; Farias, M.; Tiznado, H.; Martynyuk, O. Effect of Redox Treatments on Activation and Deactivation of Gold Nanospecies Supported on Mesoporous Silica in CO Oxidation. Fuel 2013, 110, 40–47. [Google Scholar] [CrossRef]
- Villa, A.; Dimitratos, N.; Chan-Thaw, C.E.; Hammond, C.; Veith, G.M.; Wang, D.; Manzoli, M.; Prati, L.; Hutchings, G.J. Characterisation of Gold Catalysts. Chem. Soc. Rev. 2016, 45, 4953–4994. [Google Scholar] [CrossRef] [Green Version]
- Naya, S.-I.; Teranishi, M.; Aoki, R.; Tada, H. Fermi Level Control of Gold Nanoparticle by the Support: Activation of the Catalysis for Selective Aerobic Oxidation of Alcohols. J. Phys. Chem. C 2016, 120, 12440–12445. [Google Scholar] [CrossRef]
- Kotolevich, Y.; Martynyuk, O.; Ramos, J.G.; Ortega, J.C.; Vélez, R.; Rojas, V.M.; Tapia, A.A.; Martinez-Gonzalez, S.; Vazquez, H.T.; Farías, M.; et al. Nanostructured Silica-Supported Gold: Effect of Nanoparticle Size Distribution and Electronic State on Its Catalytic Properties in Oxidation Reactions. Catal. Today 2020. [Google Scholar] [CrossRef]
- Radnik, J.; Mohr, C.; Claus, P. On the Origin of Binding Energy Shifts of Core Levels of Supported Gold Nanoparticles and Dependence of Pretreatment and Material Synthesis. Phys. Chem. Chem. Phys. 2003, 5, 172–177. [Google Scholar] [CrossRef]
- Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. Effect of Electronic Structures of Au Clusters Stabilized by Poly(N-Vinyl-2-Pyrrolidone) on Aerobic Oxidation Catalysis. J. Am. Chem. Soc. 2009, 131, 7086–7093. [Google Scholar] [CrossRef] [PubMed]
- Herreros, B.; He, H.; Barr, T.L.; Klinowski, J. ESCA Studies of Framework Silicates With the Sodalite Structure: 1. Comparison of Purely Siliceous Sodalite and Aluminosilicate Sodalite. J. Phys. Chem. 1994, 98, 1302–1305. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data; Chastain, J., Ed.; Perkin-Elmer Corporation, Physical Electronics Division: Eden Prairie, MN, USA, 1995. [Google Scholar]
- Hughes, M.D.; Xu, Y.-J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D.I.; Carley, A.F.; Attard, G.A.; Hutchings, G.J.; King, F.; et al. Tunable Gold Catalysts for Selective Hydrocarbon Oxidation under Mild Conditions. Nat. Cell Biol. 2005, 437, 1132–1135. [Google Scholar] [CrossRef] [PubMed]
Sample | Unit Cell Parameter a0 (nm) | SBET (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) |
---|---|---|---|---|
0.06-E | 11.8 | 491 | 0.96 | 8.8 |
0.11-E | 11.8 | 624 | 0.94 | 8.4 |
0.20-E | 11.7 | 455 | 0.60 | 7.3 |
0.06-Au-8d | 11.8 | 395 | 0.80 | 9.0 |
0.11-Au-8d | 11.8 | 496 | 0.82 | 8.5 |
0.11-Au-17d | 12.0 | - | - | - |
0.20-Au-1d | 11.6 | 397 | 0.62 | 7.4 |
0.20-Au-8d | 11.6 | 362 | 0.61 | 7.2 |
0.20-ox-Au-8d | 11.6 | 459 | 0.71 | 7.3 |
Sample | C | H | N | Au | Weight Loss (%) T > 140 °C |
---|---|---|---|---|---|
0.06-E | 14.9 | 3.3 | 0.9 | - | 9.7 |
0.11-E | 5.5 | 2.3 | 1.1 | - | 12.1 |
0.20-E | 5.9 | 2.7 | 1.8 | - | 15.7 |
0.20-ox-E | 5.8 | 2.6 | 1.8 | - | 16.0 |
0.06-Au-8d | 13.2 | 2.9 | 1.9 | 0.07 | 18.7 |
0.11-Au-8d | 11.8 | 2.8 | 1.9 | 0.20 | 18.4 |
0.11-Au-17d | - | - | - | 0.70 | 12.9 |
0.20-Au-1d | 6.6 | 2.6 | 2.6 | 0.40 | 18.2 |
0.20-Au-8d | 11.2 | 3.0 | 2.9 | 0.20 | 21.6 |
0.20-ox-Au-8d | 7.5 | 2.6 | 2.5 | 0.59 | 17.2 |
Sample | Q4 | Q3 | Q2 | T3 |
---|---|---|---|---|
0.11-E | 56.4 | 31.5 | 6.3 | 5.8 |
0.11-Au-17d | 54.4 | 37.7 | 2.7 | 5.2 |
0.20-ox-Au-8d | 56.0 | 27.2 | 6.8 | 10.0 |
Sample | BE (eV) | Atomic Ratio | ||||||
---|---|---|---|---|---|---|---|---|
Si 2p | N 1s | Au 4f7/2 | Au 4f5/2 | N/Si | Au/Si | Au/N | Nh/N a | |
0.20-E | 103.5 | 399.9 402.1 | - | - | 0.099 | - | - | 0.52 |
0.20-Au-1d | 103.5 | 399.9 402.0 | 83.1 | 86.2 | 0.064 | 0.8 × 10−3 | 0.013 | 0.29 |
0.20-Au-8d | 103.4 | 399.9 402.0 | 82.5 | 85.7 | 0.072 | 1.0 × 10−3 | 0.014 | 0.21 |
Sample Availability: Available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mato, A.; Agúndez, J.; Márquez-Álvarez, C.; Mayoral, Á.; Pérez-Pariente, J. Modulation of the Activity of Gold Clusters Immobilized on Functionalized Mesoporous Materials in the Oxidation of Cyclohexene via the Functional Group. The Case of Aminopropyl Moiety. Molecules 2020, 25, 5756. https://doi.org/10.3390/molecules25235756
Mato A, Agúndez J, Márquez-Álvarez C, Mayoral Á, Pérez-Pariente J. Modulation of the Activity of Gold Clusters Immobilized on Functionalized Mesoporous Materials in the Oxidation of Cyclohexene via the Functional Group. The Case of Aminopropyl Moiety. Molecules. 2020; 25(23):5756. https://doi.org/10.3390/molecules25235756
Chicago/Turabian StyleMato, Ana, Javier Agúndez, Carlos Márquez-Álvarez, Álvaro Mayoral, and Joaquín Pérez-Pariente. 2020. "Modulation of the Activity of Gold Clusters Immobilized on Functionalized Mesoporous Materials in the Oxidation of Cyclohexene via the Functional Group. The Case of Aminopropyl Moiety" Molecules 25, no. 23: 5756. https://doi.org/10.3390/molecules25235756
APA StyleMato, A., Agúndez, J., Márquez-Álvarez, C., Mayoral, Á., & Pérez-Pariente, J. (2020). Modulation of the Activity of Gold Clusters Immobilized on Functionalized Mesoporous Materials in the Oxidation of Cyclohexene via the Functional Group. The Case of Aminopropyl Moiety. Molecules, 25(23), 5756. https://doi.org/10.3390/molecules25235756