Antiproliferative Phenanthrenes from Juncus tenuis: Isolation and Diversity-Oriented Semisynthetic Modification
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation, Semisynthetic Derivatization, and Structure Determination of the Compounds
2.2. Antiproliferative Activity of the Isolated Phenanthrenes
3. Materials and Methods
3.1. General
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Synthesis and Purification Process
3.4.1. Compound ent-1a
3.4.2. Compound ent-1b
3.4.3. Compound ent-2a
3.4.4. Compound ent-2b
3.4.5. Compound 3
3.4.6. Compound ent-4a
3.4.7. Compound ent-4b
3.5. Antiproliferative Assay
3.5.1. Cell Lines
3.5.2. Antiproliferative Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kovács, A.; Vasas, A.; Hohmann, J. Natural phenanthrenes and their biological activity. Phytochemistry 2008, 69, 1084–1110. [Google Scholar] [CrossRef] [PubMed]
- Tóth, B.; Hohmann, J.; Vasas, A. Phenanthrenes: A promising group of plant secondary metabolites. J. Nat. Prod. 2018, 81, 661–678. [Google Scholar]
- Snogerup, S. A revision of Juncus subgen. Juncus (Juncaceae). Willdenowia 1993, 23, 23–73. [Google Scholar]
- El-Shamy, A.S.I.; Abdel-Razek, A.F.; Nassar, M.I. Phytochemical review of Juncus, L. genus (Fam. Juncaceae). Arab. J. Chem. 2015, 8, 614–623. [Google Scholar] [CrossRef] [Green Version]
- Bús, C.; Tóth, B.; Stefkó, D.; Hohmann, J.; Vasas, A. Family Juncaceae: Promising source of biologically active natural phenanthrenes. Phytochem. Rev. 2018, 17, 833–851. [Google Scholar] [CrossRef] [Green Version]
- Stefkó, D.; Kúsz, N.; Csorba, A.; Jakab, G.; Bérdi, P.; Zupkó, I.; Hohmann, J.; Vasas, A. Phenanthrenes from Juncus atratus with antiproliferative activity. Tetrahedron 2019, 75, 116–120. [Google Scholar] [CrossRef]
- Bús, C.; Kúsz, N.; Jakab, G.; Tahei, S.A.S.; Zupkó, I.; Endrész, V.; Bogdanov, A.; Burián, K.; Csupor-Löffler, B.; Hohmann, J.; et al. Phenanthrenes from Juncus compressus Jacq. with promising antiproliferative and anti-HSV-2 activities. Molecules 2018, 23, 2085. [Google Scholar] [CrossRef] [Green Version]
- Stefkó, D.; Kúsz, N.; Barta, A.; Kele, Z.; Bakacsy, L.; Szepesi, A.; Fazakas, C.; Wilhelm, I.; Krizbai, I.A.; Hohmann, J.; et al. Gerardiins A–L and structurally related phenanthrenes from the halophyte plant Juncus gerardii and their cytotoxicity against triple-negative breast cancer cells. J. Nat. Prod. 2020, 83, 3058–3068. [Google Scholar] [CrossRef]
- Tóth, B.; Liktor-Busa, E.; Kúsz, N.; Szappanos, Á.; Mándi, A.; Kurtán, T.; Urbán, E.; Hohmann, J.; Chang, F.R.; Vasas, A. Phenanthrenes from Juncus inflexus with antimicrobial activity against methicillin-resistant Staphylococcus aureus. J. Nat. Prod. 2016, 79, 2814–2823. [Google Scholar] [CrossRef]
- Ma, W.; Liu, F.; Ding, Y.Y.; Zhang, Y.; Li, N. Four new phenanthrenoid dimers from Juncus effusus L. with cytotoxic and anti-inflammatory activities. Fitoterapia 2015, 105, 83–88. [Google Scholar] [CrossRef]
- Sánchez-Duffhues, G.; Calzado, M.A.; de Vinuesa, A.G.; Appendino, G.; Fiebich, B.L.; Loock, U.; Lefarth-Risse, A.; Krohn, K.; Muñoz, E. Denbinobin inhibits nuclear factor-κB and induces apoptosis via reactive oxygen species generation in human leukemic cells. Biochem. Pharmacol. 2009, 77, 1401–1409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powis, G. The Toxicity of Anticancer Drugs; Pergamon Press: Oxford, UK, 1991; p. 106. [Google Scholar]
- Gant, T.W.; Rao, D.N.R.; Mason, R.P.; Cohen, G.M. Redox cycling and sulphydryl arylation; their relative importance in the mechanism of quinone cytotoxicity to isolated hepatocytes. Chem. Biol. Interact. 1988, 65, 157. [Google Scholar] [CrossRef]
- Bolton, J.L.; Dunlap, T. Formation and biological targets of quinones: Cytotoxic versus cytoprotective effects. Chem. Res. Toxicol. 2017, 30, 13–37. [Google Scholar] [CrossRef] [PubMed]
- Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, G.; Patel, S. Molecular complexity from aromatics: Recent advances in the chemistry of para-quinol and masked para-quinone monoketal. Chem. Sel. 2020, 5, 12885–12909. [Google Scholar] [CrossRef]
- Baillie, T.A. Targeted covalent inhibitors for drug design. Angew. Chem. Int. Ed. 2016, 55, 2–17. [Google Scholar] [CrossRef]
- Boström, J.; Brown, D.G.; Young, R.J.; Keserü, G.M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 2018, 17, 709–727. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, Y.; Ding, Y.Y.; Feng, L.; Ning, L. Cytotoxic and anti-inflammatory activities of phenanthrenes from the medullae of Juncus effusus L. Arch. Pharm. Res. 2016, 39, 154–160. [Google Scholar] [CrossRef]
- Yang, K.C.; Uen, Y.H.; Suk, F.M.; Liang, Y.C.; Wang, Y.J.; Ho, Y.S.; Li, I.H.; Lin, S.Y. Molecular mechanisms of denbinobin-induced anti-tumorigenesis effect in colon cancer cells. World, J. Gastroenterol. 2005, 11, 3040–3045. [Google Scholar] [CrossRef]
- Kuo, C.T.; Hsu, M.J.; Chen, B.C.; Chen, C.C.; Teng, C.M.; Pan, S.L.; Lin, C.H. Denbinobin induces apoptosis in human lung adenocarcinoma cells via Akt inactivation, Bad activation, and mitochondrial dysfunction. Toxicol. Lett. 2008, 177, 48–58. [Google Scholar] [CrossRef]
- Song, J.I.; Kang, Y.J.; Yong, H.Y.; Kim, Y.C.; Moon, A. Denbinobin, a phenanthrene from Dendrobium nobile, inhibits invasion and induces apoptosis in SNU-484 human gastric cancer cells. Oncol. Rep. 2012, 27, 813–818. [Google Scholar] [PubMed] [Green Version]
- Kuo, C.T.; Chen, B.C.; Yu, C.C.; Weng, C.M.; Hsu, M.J.; Chen, C.C.; Chen, M.C.; Teng, C.M.; Pan, S.L.; Bien, M.Y.; et al. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells. J. Biomed. Sci. 2009, 16, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.L.; Lin, Y.T.; Chang, F.R.; Chen, G.Y.; Backlund, A.; Yang, J.C.; Chen, S.L.; Wu, Y.C. Synthesis and biological evaluatio of phenanthrenes as cytotoxic agents with pharmacophore modeling and ChemGPS-NP prediction as topo II inhibitors. PLoS ONE 2012, 7, e37897. [Google Scholar]
- Masuda, Y.; Suzuki, R.; Sakagami, H.; Umemura, N.; Shirataki, Y. Novel cytotoxic phenanthrenequinone from Odontioda Marie Noel ‘Velano’. Chem. Pharm. Bull. 2012, 60, 1216–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.L.; Chang, F.R.; Yen, M.H.; Yu, D.; Liu, Y.N.; Bastow, K.F.; Morris-Natschke, S.L.; Wu, Y.C.; Lee, K.H. Cytotoxic phenanthrenequinones and 9,10-dihydrophenanthrenes from Calanthe arisanensis. J. Nat. Prod. 2009, 72, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Bús, C.; Kulmány, Á.; Kúsz, N.; Gonda, T.; Zupkó, I.; Mándi, A.; Kurtán, T.; Tóth, B.; Hohmann, J.; Hunyadi, A.; et al. Oxidized juncuenin B analogues with increased antiproliferative activity on human adherent cell lines: Semisynthesis and biological evaluation. J. Nat. Prod. 2020, 83, 3250–3261. [Google Scholar] [CrossRef]
- DellaGreca, M.; Fiorentino, A.; Isidori, M.; Lavorgna, M.; Monaco, P.; Previtera, L.; Zarrelli, A. Phenanthrenoids from the wetland Juncus acutus. Phytochemistry 2002, 60, 633–638. [Google Scholar] [CrossRef]
- DellaGreca, M.; Fiorentino, A.; Mangoni, L.; Molinaro, A.; Monaco, P.; Previtera, L. 9,10-dihydrophenanthrene metabolites from Juncus effusus. L. Tetrahedron Lett. 1992, 33, 5257–5260. [Google Scholar]
- Behery, F.A.A.; Naeem, Z.E.M.; Maatooq, G.T.; Amer, M.M.A.; Wen, Z.H.; Sheu, J.H.; Ahmed, A.F. Phenanthrenoids from Juncus acutus L., new natural lipopolysaccharide-inducible nitric oxide synthase inhibitors. Chem. Pharm. Bull. 2009, 55, 1264–1266. [Google Scholar] [CrossRef] [Green Version]
- DellaGreca, M.; Monaco, P.; Previtera, L.; Zarrelli, A. Minor bioactive dihydrophenanthrenes from Juncus effuses. J. Nat. Prod. 1997, 60, 1265–1268. [Google Scholar] [CrossRef]
- Miles, D.H.; Bhattacharyya, J.; Mody, N.V.; Atwood, J.L.; Black, S.; Hedin, P.A. The structure of juncusol. A novel cytotoxic dihydrophenanthrene from the Estuarine marsh plant Juncus roemerianus. J. Am. Chem. Soc. 1977, 99, 618–620. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Ke, C.Q.; Tang, C.P.; Yuan, D.; Ye, Y. 9,10-Dihydrophenanthrenes and phenanthrenes from Juncus setchuensis. J. Nat. Prod. 2009, 72, 1209–1212. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razik, A.F.; Elshamy, A.S.I.; Nassar, M.I.; El-Kousy, S.M.; Hamdy, H. Chemical constituents and hepatoprotective activity of Juncus subulatus. Rev. Lationoam. Quím. 2009, 37, 70–84. [Google Scholar]
- Wang, Y.G.; Wang, Y.L.; Zhai, H.F.; Liao, Y.J.; Zhang, B.; Huang, J.M. Phenanthrenes from Juncus effusus with anxiolytic and sedative activities. Nat. Prod. Res. 2012, 26, 1234–1239. [Google Scholar] [CrossRef] [PubMed]
- Sahli, R.; Rivière, C.; Siah, A.; Smaoui, A.; Samaillie, J.; Hennebelle, T.; Roumy, V.; Ksouri, R.; Halama, P.; Sahpaz, S. Biocontrol activity of effusol from the extremophile plant, Juncus maritimus, against the wheat pathogen Zymoseptoria tritici. Environ. Sci. Pollut. Res. Int. 2018, 25, 29775–29783. [Google Scholar] [CrossRef] [PubMed]
- Dankó, B.; Tóth, S.; Martins, A.; Vágvölgyi, M.; Kúsz, N.; Molnár, J.; Chang, F.R.; Wu, Y.C.; Szakács, G.; Hunyadi, A. Synthesis and SAR study of anticancer protoflavone derivatives: Investigation of cytotoxicity and interaction with ABCB1 and ABCG2 multidrug efflux transporters. ChemMedChem 2017, 12, 850–859. [Google Scholar] [CrossRef]
- Fási, L.; Di Meo, F.; Kuo, C.Y.; Buric, S.S.; Martins, A.; Kúsz, N.; Béni, Z.; Dékány, M.; Balogh, G.T.; Pesic, M.; et al. Antioxidant-inspired drug discovery: Antitumor metabolite is formed in situ from a hydroxycinnamic acid derivative upon free-radical scavenging. J. Med. Chem. 2019, 62, 657–1668. [Google Scholar] [CrossRef] [Green Version]
- Kürti, L.; Herczegh, P.; Visy, J.; Simonyi, M.; Antus, S.; Pelter, A. New insights into the mechanism of phenolic oxidation with phenyliodonium (III) reagents. J. Chem. Soc. Perkin Trans. 1999, 1, 379–380. [Google Scholar] [CrossRef]
- Kita, Y.; Tohma, H.; Hatanaka, K.; Takada, T.; Fujita, S.; Mitoh, S.; Sakurai, H.; Oka, S. Hypervalent iodine-induced nucleophilic substitution of para-substituted phenol ethers. Generation of cation radicals as reactive intermediates. J. Am. Chem. Soc. 1994, 116, 3684–3691. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Schelz, Z.; Tóth, B.; Vasas, A.; Ocsovszki, I.; Chang, F.R.; Hohmann, J.; Zupkó, I.; Wang, H.C. Investigation of natural phenanthrenes and the antiproliferative potential of juncusol in cervical cancer cell lines. Phytomedicine 2019, 58, 152770. [Google Scholar] [CrossRef]
- Bacher, F.; Wittmann, C.; Nové, M.; Spengler, G.; Marć, M.A.; Enyedy, E.A.; Darvasiová, D.; Rapta, P.; Reinere, T.; Arion, V.B. Novel latonduine derived proligands and their copper(II) complexes show cytotoxicity in the nanomolar range in human colon adenocarcinoma cells and in vitro cancer selectivity. Dalton Trans. 2019, 48, 10464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Position | 1a | 1b | 2a | 2b | 3 | 4a | 4b |
---|---|---|---|---|---|---|---|
3 | 5.96 dd (10.3, 1.1) | 5.91 dd (10.3, 1.1) | 5.89 d (10.2) | 5.94 d (10.3) | 6.01 dd (10.3, 0.9) | 5. 93 d (10.3) | 5.98 d (10.3) |
4 | 6.83 d (10.3) | 6.88 d (10.3) | 6.84 d (10.2) | 6. 80 d (10.3) | 6.98 d (10.3) | 6.96 d (10.3) | 6.94 d (10.3) |
8 | 6.29 s | 6.29 br s | 6.24 s | 6.24 s | 6.28 s | 6.23 s | 6.23 s |
9 | 2.89 m, 2.48 m | 2.91 m, 2.58 m | 2.87 m, 2.51, m | 2.87 m, 2.47 m | 2.89 m, 2.55 m | 2.57 m, 2.91 m | 2.87 m, 2.53 m |
10 | 3.00 m, 2.79 ddd (17.4, 8.3, 1.6) | 2.95 m (2H) | 2.99 m, 2.93 m | 2.99 m, 2.82 m | 2.99 m (2H) | 2.99 m, 2.86 m | 2.81 m, 2.47 m |
11 | 1.26 s | 1.14 s | 1.42 s | 1.25, s | 1.27 s | 1.42 s | 1.27 s |
12 | 2.15 s | 2.16 s | 2.14 s | 2.14 s | |||
13 | 6. 89 dd (17.8, 10.7) | 6.91 dd (17.8, 11.9) | 6.90 dd (17.7, 11.9) | 6.88 dd (17.7, 11.8) | 6.64 dd (17.7, 11.3) | 6.64 dd (17.7, 11.3) | 6.64 dd (17.7, 11.3) |
14 | 6.01 dd (17.8, 1.3) 5.96 dd (10.7, 1.1) | 6.02 dd (17.8, 1.3) 5.69 dd (11.9, 1.3) | 6.05 d (17.7) 5.67 d (11.9) | 6.03 d (17.7) 5.67 d (11.8) | 6.08 br d (17.7) 5.63 br d (11.3) | 6.10 d (17.7) 5.62 d (11.3) | 6.09 d (17.7) 5.62 d (11.3) |
9 | 1a | 1b | 2a | 2b | 3a | 4a | 4b |
---|---|---|---|---|---|---|---|
1 | 84.7, C | 82.4, C | 81.7, C | 84.2, C | 84.5, C | 81.8, C | 84.0, C |
1a | 157.6, C | 160.4, C | 160.7, C | 158.1, C | 157.7, C | 160.5, C | 153.6,C |
2 | 202.6, C | 202.9, C | 203.1, C | 202.8, C | 202.3, C | 202.4, C | 202.5,C |
3 | 123.7, CH | 123.1, CH | 123.0, CH | 123.6, CH | 124.4, CH | 123.8, CH | 124.3, CH |
4 | 142.2, CH | 142.2, CH | 142.2, CH | 142.1, CH | 141.1, CH | 141.1, CH | 141.1, CH |
4a | 132.4, C | 132.6, C | 132.1, C | 132.0, C | 131.8, C | 131.3, C | 131.3, C |
5a | 77.5, C | 76.8, C | 76.4, C | 76.8, C | 76.6, C | 75.9, C | 76.4, C |
5 | 146.1, C | 145.9, C | 146.6, C | 146.7, C | 152.7, C | 153.2, C | 153.3, C |
6 | 138.4, C | 138.8, C | 138.1, C | 137.8, C | 130.5, C | 130.3, CH | 130.0, CH |
7 | 184.6, C | 184.8, C | 184.8, C | 184.9, C | 184.9, C | 185.1, C | 202.5, C |
8 | 126.2, CH | 125.9, CH | 125.5, CH | 125.8, CH | 126.8, CH | 126.0, CH | 126.3, CH |
8a | 160.8, C | 160.9, C | 161.6, C | 161.5, C | 161.5, C | 162.3, C | 162.2, C |
9 | 25.9, CH2 | 25.5, CH2 | 25.8, CH2 | 26.2, CH2 | 26.3, CH2 | 26.2, CH2 | 26.5, CH2 |
10 | 24.1, CH2 | 23.2, CH2 | 23.2, CH2 | 24.2, CH2 | 25.0, CH2 | 24.0, CH2 | 24.9, CH2 |
11 | 25.4, CH3 | 26.4, CH3 | 26.4, CH3 | 25.5, CH3 | 25.8, CH3 | 26.5, CH3 | 25.9, CH3 |
12 | 11.9, CH3 | 11.9, CH3 | 11.8, CH3 | 11.8, CH3 | |||
13 | 132.1, CH | 132.1, CH | 132.2, CH | 132.3, CH | 134.4, CH | 134.5, CH | 134.5, CH |
14 | 125.6, CH2 | 125.4, CH2 | 125.3, CH2 | 125.6, CH2 | 123.1, CH2 | 123.1, CH2 | 123.0, CH2 |
Compound | IC50 (µM) ± SD | |||||||
---|---|---|---|---|---|---|---|---|
A2780 | A2780cis | KCR | MCF-7 | HeLa | HTB-26 | T47D | MRC-5 | |
2,7-dihydroxy-1,8-dimethyl-5-vinyl-9,10-dihydrophenanthrene | 22.3 ± 2.7 | 16.9 ± 4.7 | 24.2 ± 2.1 | 12.9 ± 0.2 | 24.7 ± 0.3 | 22.8 ± 0.2 | 14.2 ± 1.1 | 18.9 ± 4.0 |
juncusol | 23.8 ± 1.3 | 37.1 ± 2.8 | 35.8 ± 1.7 | 37.1 ± 1.1 | 0.5 ± 0.0 | 41.7 ± 3.5 | 25.0 ± 0.4 | 40.9 ± 2.0 |
effusol | 33.1 ± 3.1 | 30.4 ± 0.4 | 39.3 ± 1.6 | 48.6 ± 3.4 | 2.3 ± 0.7 | 57.0 ± 2.7 | 24.6 ± 1.9 | 60.1 ± 5.1 |
1b | 80.3 ± 3.0 | 88.2 ± 3.1 | >100 | 52.1 ± 4.8 | >100 | 74.3 ± 3.6 | 36.5 ± 1.0 | >100 |
2a | 66.0 ± 4.4 | 62.9 ± 1.7 | >100 | 80.5 ± 3.5 | 94.7 ± 3.4 | 94.3 ± 2.0 | 56.3 ± 3.4 | >100 |
2b | 39.4 ± 3.1 | 38.0 ± 4.6 | 44.2 ± 2.6 | 41.0 ± 0.9 | 61.9 ± 0.3 | 45.8 ± 3.2 | 30.3 ± 2.5 | 57.7 ± 0.3 |
3 | 8.6 ± 0.5 | 10.9 ± 2.2 | 18.9 ± 1.4 | 5.8 ± 0.2 | 12.9 ± 0.4 | 10.9 ± 0.9 | 7.0 ± 1.0 | 12.2 ± 0.2 |
4a | 25.2 ± 1.8 | 22.5 ± 0.2 | 23.5 ± 0.8 | 11.7 ± 0.7 | 24.4 ± 0.8 | 16.1 ± 0.2 | 11.6 ± 0.3 | 14.3 ± 0.5 |
4b | 22.0 ± 2.0 | 22.1 ± 1.6 | 29.4 ± 0.9 | 10.2 ± 0.1 | 35.0 ± 1.5 | 20.1 ± 1.1 | 14.2 ± 0.6 | 23.4 ± 1.3 |
Cisplatin | 3.6 ± 0.3 | 7.3 ± 0.2 | 6.7 ± 0.4 | 1.4 ± 1.1 | 2.3 ± 0.1 | 20.1 ± 2.3 | 5.9 ± 0.1 | 0.6 ± 0.0 |
DMSO | >1 | >1 | >1 | 0.8 ± 0.1 | >1 | >1 | 0.8 ± 0.1 | >1 |
Sample Availability: Samples of the compounds are not available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bús, C.; Kúsz, N.; Kincses, A.; Szemerédi, N.; Spengler, G.; Bakacsy, L.; Purger, D.; Berkecz, R.; Hohmann, J.; Hunyadi, A.; et al. Antiproliferative Phenanthrenes from Juncus tenuis: Isolation and Diversity-Oriented Semisynthetic Modification. Molecules 2020, 25, 5983. https://doi.org/10.3390/molecules25245983
Bús C, Kúsz N, Kincses A, Szemerédi N, Spengler G, Bakacsy L, Purger D, Berkecz R, Hohmann J, Hunyadi A, et al. Antiproliferative Phenanthrenes from Juncus tenuis: Isolation and Diversity-Oriented Semisynthetic Modification. Molecules. 2020; 25(24):5983. https://doi.org/10.3390/molecules25245983
Chicago/Turabian StyleBús, Csaba, Norbert Kúsz, Annamária Kincses, Nikoletta Szemerédi, Gabriella Spengler, László Bakacsy, Dragica Purger, Róbert Berkecz, Judit Hohmann, Attila Hunyadi, and et al. 2020. "Antiproliferative Phenanthrenes from Juncus tenuis: Isolation and Diversity-Oriented Semisynthetic Modification" Molecules 25, no. 24: 5983. https://doi.org/10.3390/molecules25245983
APA StyleBús, C., Kúsz, N., Kincses, A., Szemerédi, N., Spengler, G., Bakacsy, L., Purger, D., Berkecz, R., Hohmann, J., Hunyadi, A., & Vasas, A. (2020). Antiproliferative Phenanthrenes from Juncus tenuis: Isolation and Diversity-Oriented Semisynthetic Modification. Molecules, 25(24), 5983. https://doi.org/10.3390/molecules25245983