Hepatotoxicity Modeling Using Counter-Propagation Artificial Neural Networks: Handling an Imbalanced Classification Problem
Abstract
:1. Introduction
2. Results and Discussion
2.1. Dataset
2.2. Models
2.3. Descriptors
3. Materials and Methods
3.1. Dataset
3.2. Selection of Descriptors and Datasets
3.3. Models
3.4. Optimization of Models Using Genetic Algorithm
3.5. Kohonen and Counter-Propagation Artificial Neural Networks
3.6. Genetic Algorithm
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Waring, M.J.; Arrowsmith, J.; Leach, A.R.; Leeson, P.D.; Mandrell, S.; Owen, R.M.; Pairaudeau, G.; Pennie, W.D.; Pickett, S.D.; Wang, J.; et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies. Nat. Rev. Drug Discov. 2015, 14, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Watkins, P.B. Drug Safety Sciences and the Bottleneck in Drug Development. Clin. Pharmacol. Ther. 2011, 89, 788–790. [Google Scholar] [CrossRef] [PubMed]
- Onakpoya, I.J.; Heneghan, C.J.; Aronson, J.K. Post-marketing withdrawal of 462 medicinal products because of adverse drug reactions: A systematic review of the world literature. BMC Med. 2016, 14, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, M.; Steger-Hartmann, T. A big data approach to the concordance of the toxicity of pharmaceuticals in animals and humans. Regul. Toxicol. Pharmacol. 2018, 96, 94–105. [Google Scholar] [CrossRef]
- Fenwick, N.; Griffin, G.; Gauthier, C. The welfare of animals used in science: How the “Three Rs” ethic guides improvements. Can. Vet. J. 2009, 50, 523–530. [Google Scholar]
- Soldatow, V.Y.; Lecluyse, E.L.; Griffith, L.G.; Rusyn, I. In vitro models for liver toxicity testing. Toxicol. Res. (Camb). 2013, 2, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Grimm, F.A.; Iwata, Y.; Sirenko, O.; Bittner, M.; Rusyn, I. High-content assay multiplexing for toxicity screening in induced pluripotent stem cell-derived cardiomyocytes and hepatocytes. Assay Drug Dev. Technol. 2015, 13, 529–546. [Google Scholar] [CrossRef]
- Pettinato, G.; Lehoux, S.; Ramanathan, R.; Salem, M.M.; He, L.X.; Muse, O.; Flaumenhaft, R.; Thompson, M.T.; Rouse, E.A.; Cummings, R.D.; et al. Generation of fully functional hepatocyte-like organoids from human induced pluripotent stem cells mixed with Endothelial Cells. Sci. Rep. 2019, 9, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Vernetti, L.A.; Senutovitch, N.; Boltz, R.; DeBiasio, R.; Ying Shun, T.; Gough, A.; Taylor, D.L. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp. Biol. Med. 2016, 241, 101–114. [Google Scholar] [CrossRef]
- Liew, C.Y.; Lim, Y.C.; Yap, C.W. Mixed learning algorithms and features ensemble in hepatotoxicity prediction. J. Comput. Aided. Mol. Des. 2011, 25, 855–871. [Google Scholar] [CrossRef]
- Przybylak, K.R.; Cronin, M.T.D. In silico models for drug-induced liver injury - Current status. Expert Opin. Drug Metab. Toxicol. 2012, 8, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Monteagudo, M.; Cordeiro, M.N.D.S.; Borges, F. Computational chemistry approach for the early detection of drug-induced idiosyncratic liver toxicity. J. Comput. Chem. 2008, 29, 533–549. [Google Scholar] [CrossRef] [PubMed]
- Ekins, S.; Williams, A.J.; Xu, J.J. A predictive ligand-based Bayesian model for human drug-induced liver injury. Drug Metab. Dispos. 2010, 38, 2302–2308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fourches, D.; Barnes, J.C.; Day, N.C.; Bradley, P.; Reed, J.Z.; Tropsha, A. Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chem. Res. Toxicol. 2010, 23, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Kotsampasakou, E.; Montanari, F.; Ecker, G.F. Predicting drug-induced liver injury: The importance of data curation. Toxicology 2017, 389, 139–145. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, Q.; Chen, P.; Wang, B. In silico prediction of drug-induced liver injury based on ensemble classifier method. Int. J. Mol. Sci. 2019, 20, 4106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.-W.; Li, S.-J. In Silico Prediction of Drug-Induced Liver Injury Based on Adverse Drug Reaction Reports. Toxicol. Sci. 2017, 158, 391–400. [Google Scholar] [CrossRef]
- Minovski, N.; Župerl, Š.; Drgan, V.; Novič, M. Assessment of applicability domain for multivariate counter-propagation artificial neural network predictive models by minimum Euclidean distance space analysis: A case study. Anal. Chim. Acta 2013, 759, 28–42. [Google Scholar] [CrossRef]
- Zupan, J.; Novič, M.; Gasteiger, J. Neural networks with counter-propagation learning strategy used for modelling. Chemom. Intell. Lab. Syst. 1995, 27, 175–187. [Google Scholar] [CrossRef]
- Zupan, J.; Novič, M.; Ruisánchez, I. Kohonen and counterpropagation artificial neural networks in analytical chemistry. Chemom. Intell. Lab. Syst. 1997, 38, 1–23. [Google Scholar] [CrossRef]
- Chen, M.; Suzuki, A.; Thakkar, S.; Yu, K.; Hu, C.; Tong, W. DILIrank: The largest reference drug list ranked by the risk for developing drug-induced liver injury in humans. Drug Discov. Today 2016, 21, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Kruhlak, N.L. Construction and analysis of a human hepatotoxicity database suitable for QSAR modeling using post-market safety data. Toxicology 2014, 321, 62–72. [Google Scholar] [CrossRef]
- Zhang, J.; Doshi, U.; Suzuki, A.; Chang, C.W.; Borlak, J.; Li, A.P.; Tong, W. Evaluation of multiple mechanism-based toxicity endpoints in primary cultured human hepatocytes for the identification of drugs with clinical hepatotoxicity: Results from 152 marketed drugs with known liver injury profiles. Chem. Biol. Interact. 2016, 255, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Hoofnagle, J.H.; Serrano, J.; Knoben, J.E.; Navarro, V.J. LiverTox: A website on drug-induced liver injury. Hepatology 2013, 57, 873–874. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, D1102–D1109. [Google Scholar] [CrossRef] [Green Version]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef]
- BIOVIA Pipeline Pilot (Release 2014); Dassault Systèmes: San Diego, CA, USA, 2016.
- Mauri, A.; Consonni, V.; Pavan, M.; Todeschini, R. DRAGON software: An easy approach to molecular descriptor calculations. MATCH Commun. Math. Comput. Chem. 2006, 56, 237–248. [Google Scholar]
- Topliss, J.G.; Edward, R.P. Chance Factors in Studies of Quantitative Structure-Activity Relationship. J. Med. Chem. 1979, 22, 1238–1244. [Google Scholar] [CrossRef]
- Golbraikh, A.; Tropsha, A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J. Comput. Aided. Mol. Des. 2002, 16, 357–369. [Google Scholar] [CrossRef]
- Leardi, R. Nature-Inspired Methods in Chemometrics: Genetic Algorithms and Artificial Neural Networks; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 9780444513502. [Google Scholar]
TR | TE1 | TE2 | VA | ||||||
---|---|---|---|---|---|---|---|---|---|
Ninit | Hepat. | Non-H. | Hepat. | Non-H. | Hepat. | Non-H. | Hepat. | Non-H. | |
182 | a | 108 | 296 | 20 | 20 | 20 | 20 | 20 | 20 |
b | 108 | 108 | 20 | 83 | 20 | 83 | 20 | 82 | |
98 | a | 108 | 296 | 20 | 20 | 20 | 20 | 20 | 20 |
b | 108 | 108 | 20 | 83 | 20 | 83 | 20 | 82 | |
50 | a | 108 | 296 | 20 | 20 | 20 | 20 | 20 | 20 |
b | 108 | 108 | 20 | 83 | 20 | 83 | 20 | 82 |
OC1 | TR | TE1 | TE2 | VA | |||||
---|---|---|---|---|---|---|---|---|---|
Nin. | model | Sens. | Spec. | Sens. | Spec. | Sens. | Spec. | Sens. | Spec. |
182 | 1 a | 0.81 ± 0.02 | 0.87 ± 0.02 | 0.82 ± 0.07 | 0.84 ± 0.03 | 0.74 ± 0.07 | 0.70 ± 0.04 | 0.56 ± 0.06 | 0.68 ± 0.04 |
2 b | 0.92 ± 0.02 | 0.79 ± 0.02 | 0.90 ± 0.06 | 0.92 ± 0.05 | 0.76 ± 0.08 | 0.78 ± 0.09 | 0.64 ± 0.08 | 0.72 ± 0.08 | |
3 b | 0.91 ± 0.02 | 0.79 ± 0.02 | 0.86 ± 0.06 | 0.90 ± 0.06 | 0.72 ± 0.09 | 0.78 ± 0.09 | 0.63 ± 0.08 | 0.73 ± 0.09 | |
4 b | 0.92 ± 0.02 | 0.78 ± 0.02 | 0.88 ± 0.07 | 0.90 ± 0.07 | 0.71 ± 0.07 | 0.77 ± 0.08 | 0.65 ± 0.07 | 0.75 ± 0.08 | |
5 b | 0.86 ± 0.03 | 0.76 ± 0.03 | 0.85 ± 0.07 | 0.86 ± 0.07 | 0.72 ± 0.08 | 0.71 ± 0.08 | 0.57 ± 0.08 | 0.78 ± 0.08 | |
6 b | 0.92 ± 0.02 | 0.81 ± 0.02 | 0.91 ± 0.06 | 0.92 ± 0.06 | 0.72 ± 0.07 | 0.74 ± 0.09 | 0.70 ± 0.07 | 0.66 ± 0.07 | |
7 b | 0.88 ± 0.03 | 0.77 ± 0.03 | 0.77 ± 0.08 | 0.83 ± 0.08 | 0.71 ± 0.07 | 0.71 ± 0.07 | 0.73 ± 0.07 | 0.77 ± 0.09 | |
8 b | 0.88 ± 0.02 | 0.77 ± 0.03 | 0.90 ± 0.04 | 0.88 ± 0.06 | 0.77 ± 0.08 | 0.70 ± 0.08 | 0.64 ± 0.07 | 0.68 ± 0.09 | |
98 | 1 b | 0.89 ± 0.02 | 0.76 ± 0.02 | 0.91 ± 0.06 | 0.90 ± 0.05 | 0.72 ± 0.08 | 0.70 ± 0.09 | 0.74 ± 0.08 | 0.48 ± 0.10 |
2 b | 0.89 ± 0.02 | 0.77 ± 0.02 | 0.87 ± 0.05 | 0.92 ± 0.04 | 0.77 ± 0.05 | 0.70 ± 0.06 | 0.60 ± 0.06 | 0.57 ± 0.08 | |
3 b | 0.89 ± 0.02 | 0.77 ± 0.02 | 0.86 ± 0.05 | 0.91 ± 0.04 | 0.75 ± 0.06 | 0.71 ± 0.07 | 0.60 ± 0.06 | 0.58 ± 0.09 | |
4 b | 0.90 ± 0.02 | 0.77 ± 0.02 | 0.86 ± 0.05 | 0.91 ± 0.06 | 0.76 ± 0.07 | 0.71 ± 0.06 | 0.68 ± 0.07 | 0.63 ± 0.08 | |
5 b | 0.94 ± 0.02 | 0.82 ± 0.02 | 0.84 ± 0.07 | 0.92 ± 0.05 | 0.70 ± 0.06 | 0.71 ± 0.07 | 0.69 ± 0.06 | 0.65 ± 0.07 | |
6 b | 0.85 ± 0.02 | 0.71 ± 0.02 | 0.88 ± 0.07 | 0.83 ± 0.07 | 0.73 ± 0.07 | 0.73 ± 0.07 | 0.69 ± 0.06 | 0.49 ± 0.09 | |
7 b | 0.95 ± 0.02 | 0.80 ± 0.02 | 0.88 ± 0.05 | 0.89 ± 0.07 | 0.75 ± 0.07 | 0.77 ± 0.08 | 0.54 ± 0.08 | 0.68 ± 0.07 | |
8 b | 0.96 ± 0.02 | 0.79 ± 0.02 | 0.87 ± 0.06 | 0.88 ± 0.06 | 0.75 ± 0.08 | 0.74 ± 0.08 | 0.53 ± 0.07 | 0.67 ± 0.07 | |
9 b | 0.95 ± 0.02 | 0.81 ± 0.02 | 0.87 ± 0.05 | 0.90 ± 0.06 | 0.76 ± 0.07 | 0.79 ± 0.07 | 0.53 ± 0.08 | 0.70 ± 0.07 | |
10 b | 0.78 ± 0.03 | 0.73 ± 0.03 | 0.81 ± 0.08 | 0.80 ± 0.06 | 0.71 ± 0.07 | 0.75 ± 0.06 | 0.63 ± 0.06 | 0.62 ± 0.07 | |
11 b | 0.87 ± 0.03 | 0.71 ± 0.03 | 0.80 ± 0.08 | 0.84 ± 0.07 | 0.72 ± 0.09 | 0.76 ± 0.08 | 0.64 ± 0.08 | 0.58 ± 0.09 | |
12 b | 0.93 ± 0.02 | 0.80 ± 0.02 | 0.93 ± 0.07 | 0.93 ± 0.05 | 0.71 ± 0.06 | 0.77 ± 0.08 | 0.66 ± 0.07 | 0.66 ± 0.08 | |
13 b | 0.82 ± 0.03 | 0.75 ± 0.02 | 0.84 ± 0.06 | 0.86 ± 0.08 | 0.72 ± 0.08 | 0.74 ± 0.07 | 0.72 ± 0.08 | 0.64 ± 0.06 | |
14 b | 0.85 ± 0.02 | 0.76 ± 0.02 | 0.86 ± 0.07 | 0.90 ± 0.07 | 0.70 ± 0.08 | 0.72 ± 0.08 | 0.70 ± 0.07 | 0.64 ± 0.07 | |
15 b | 0.79 ± 0.03 | 0.73 ± 0.02 | 0.90 ± 0.05 | 0.92 ± 0.06 | 0.77 ± 0.05 | 0.72 ± 0.07 | 0.64 ± 0.05 | 0.77 ± 0.07 | |
16 b | 0.79 ± 0.03 | 0.72 ± 0.02 | 0.89 ± 0.07 | 0.93 ± 0.05 | 0.80 ± 0.06 | 0.71 ± 0.06 | 0.64 ± 0.06 | 0.78 ± 0.07 | |
50 | 1 a | 0.77 ± 0.02 | 0.71 ± 0.02 | 0.88 ± 0.04 | 0.83 ± 0.04 | 0.77 ± 0.04 | 0.73 ± 0.04 | 0.64 ± 0.03 | 0.68 ± 0.04 |
2 a | 0.77 ± 0.02 | 0.72 ± 0.02 | 0.86 ± 0.04 | 0.84 ± 0.02 | 0.76 ± 0.04 | 0.75 ± 0.03 | 0.63 ± 0.04 | 0.71 ± 0.04 | |
3 a | 0.77 ± 0.02 | 0.71 ± 0.02 | 0.89 ± 0.04 | 0.82 ± 0.04 | 0.77 ± 0.03 | 0.73 ± 0.05 | 0.64 ± 0.03 | 0.68 ± 0.04 | |
4 a | 0.81 ± 0.02 | 0.79 ± 0.02 | 0.85 ± 0.08 | 0.83 ± 0.03 | 0.72 ± 0.06 | 0.71 ± 0.03 | 0.59 ± 0.07 | 0.73 ± 0.04 | |
5 a | 0.86 ± 0.03 | 0.86 ± 0.02 | 0.84 ± 0.06 | 0.81 ± 0.03 | 0.73 ± 0.08 | 0.71 ± 0.04 | 0.58 ± 0.08 | 0.70 ± 0.04 | |
6 b | 0.84 ± 0.03 | 0.72 ± 0.03 | 0.80 ± 0.07 | 0.84 ± 0.06 | 0.70 ± 0.07 | 0.71 ± 0.07 | 0.61 ± 0.08 | 0.64 ± 0.09 |
OC2 | TR | TE1 | TE2 | VA | |||||
---|---|---|---|---|---|---|---|---|---|
Nin. | model | Sens. | Spec. | Sens. | Spec. | Sens. | Spec. | Sens. | Spec. |
182 | 1 a | 0.92 ± 0.02 | 0.92 ± 0.02 | 0.93 ± 0.05 | 0.85 ± 0.03 | 0.76 ± 0.07 | 0.72 ± 0.04 | 0.39 ± 0.09 | 0.69 ± 0.04 |
2 a | 0.93 ± 0.02 | 0.92 ± 0.02 | 0.94 ± 0.05 | 0.85 ± 0.04 | 0.76 ± 0.07 | 0.72 ± 0.04 | 0.39 ± 0.08 | 0.67 ± 0.04 | |
3 a | 0.90 ± 0.03 | 0.90 ± 0.03 | 0.83 ± 0.07 | 0.86 ± 0.04 | 0.72 ± 0.08 | 0.71 ± 0.04 | 0.50 ± 0.08 | 0.76 ± 0.04 | |
4 a | 0.89 ± 0.03 | 0.89 ± 0.03 | 0.84 ± 0.07 | 0.85 ± 0.04 | 0.74 ± 0.07 | 0.73 ± 0.04 | 0.50 ± 0.10 | 0.76 ± 0.04 | |
5 a | 0.77 ± 0.02 | 0.79 ± 0.03 | 0.82 ± 0.06 | 0.86 ± 0.04 | 0.70 ± 0.09 | 0.74 ± 0.04 | 0.61 ± 0.08 | 0.77 ± 0.04 | |
6 a | 0.80 ± 0.02 | 0.84 ± 0.02 | 0.91 ± 0.05 | 0.90 ± 0.04 | 0.73 ± 0.08 | 0.72 ± 0.04 | 0.58 ± 0.06 | 0.73 ± 0.03 | |
7 a | 0.81 ± 0.03 | 0.84 ± 0.02 | 0.93 ± 0.04 | 0.88 ± 0.04 | 0.71 ± 0.06 | 0.74 ± 0.04 | 0.56 ± 0.07 | 0.72 ± 0.03 | |
8 a | 0.82 ± 0.03 | 0.86 ± 0.02 | 0.84 ± 0.08 | 0.79 ± 0.04 | 0.73 ± 0.08 | 0.72 ± 0.04 | 0.57 ± 0.08 | 0.73 ± 0.04 | |
9 a | 0.82 ± 0.03 | 0.87 ± 0.02 | 0.86 ± 0.08 | 0.78 ± 0.04 | 0.74 ± 0.09 | 0.71 ± 0.04 | 0.59 ± 0.09 | 0.70 ± 0.04 | |
10 b | 0.92 ± 0.02 | 0.79 ± 0.02 | 0.85 ± 0.06 | 0.95 ± 0.05 | 0.72 ± 0.08 | 0.72 ± 0.08 | 0.65 ± 0.07 | 0.76 ± 0.08 | |
11 b | 0.92 ± 0.02 | 0.79 ± 0.02 | 0.86 ± 0.06 | 0.94 ± 0.05 | 0.71 ± 0.07 | 0.76 ± 0.07 | 0.68 ± 0.06 | 0.69 ± 0.10 | |
12 b | 0.92 ± 0.02 | 0.79 ± 0.02 | 0.85 ± 0.06 | 0.95 ± 0.05 | 0.72 ± 0.07 | 0.76 ± 0.07 | 0.67 ± 0.07 | 0.68 ± 0.07 | |
13 b | 0.91 ± 0.02 | 0.78 ± 0.02 | 0.83 ± 0.08 | 0.91 ± 0.06 | 0.76 ± 0.07 | 0.75 ± 0.08 | 0.63 ± 0.07 | 0.69 ± 0.08 | |
14 b | 0.92 ± 0.02 | 0.77 ± 0.02 | 0.84 ± 0.08 | 0.89 ± 0.06 | 0.73 ± 0.07 | 0.76 ± 0.09 | 0.62 ± 0.07 | 0.71 ± 0.08 | |
15 b | 0.95 ± 0.02 | 0.85 ± 0.02 | 0.91 ± 0.05 | 0.95 ± 0.05 | 0.70 ± 0.09 | 0.74 ± 0.08 | 0.67 ± 0.06 | 0.81 ± 0.07 | |
16 b | 0.95 ± 0.02 | 0.84 ± 0.02 | 0.92 ± 0.04 | 0.95 ± 0.05 | 0.72 ± 0.07 | 0.73 ± 0.07 | 0.69 ± 0.05 | 0.81 ± 0.07 | |
17 b | 0.95 ± 0.02 | 0.84 ± 0.02 | 0.92 ± 0.04 | 0.95 ± 0.05 | 0.73 ± 0.09 | 0.75 ± 0.08 | 0.68 ± 0.06 | 0.80 ± 0.07 | |
18 b | 0.88 ± 0.02 | 0.75 ± 0.02 | 0.85 ± 0.07 | 0.92 ± 0.06 | 0.72 ± 0.07 | 0.72 ± 0.07 | 0.61 ± 0.10 | 0.66 ± 0.08 | |
19 b | 0.90 ± 0.02 | 0.78 ± 0.02 | 0.84 ± 0.07 | 0.82 ± 0.07 | 0.74 ± 0.08 | 0.71 ± 0.08 | 0.59 ± 0.08 | 0.63 ± 0.09 | |
20 b | 0.90 ± 0.02 | 0.77 ± 0.02 | 0.80 ± 0.09 | 0.81 ± 0.09 | 0.75 ± 0.06 | 0.72 ± 0.09 | 0.71 ± 0.09 | 0.64 ± 0.09 | |
21 b | 0.91 ± 0.02 | 0.79 ± 0.02 | 0.79 ± 0.08 | 0.81 ± 0.07 | 0.73 ± 0.05 | 0.72 ± 0.07 | 0.60 ± 0.06 | 0.60 ± 0.08 | |
98 | 1 b | 0.82 ± 0.03 | 0.75 ± 0.02 | 0.86 ± 0.08 | 0.82 ± 0.08 | 0.73 ± 0.07 | 0.77 ± 0.08 | 0.70 ± 0.07 | 0.64 ± 0.09 |
2 b | 0.91 ± 0.02 | 0.78 ± 0.02 | 0.78 ± 0.08 | 0.91 ± 0.06 | 0.71 ± 0.08 | 0.71 ± 0.08 | 0.61 ± 0.08 | 0.74 ± 0.08 | |
3 b | 0.89 ± 0.02 | 0.76 ± 0.02 | 0.86 ± 0.08 | 0.91 ± 0.06 | 0.70 ± 0.07 | 0.74 ± 0.06 | 0.64 ± 0.07 | 0.59 ± 0.08 | |
4 b | 0.89 ± 0.03 | 0.73 ± 0.02 | 0.89 ± 0.07 | 0.92 ± 0.05 | 0.73 ± 0.07 | 0.72 ± 0.08 | 0.67 ± 0.08 | 0.56 ± 0.09 | |
5 b | 0.85 ± 0.02 | 0.78 ± 0.02 | 0.84 ± 0.06 | 0.93 ± 0.06 | 0.77 ± 0.06 | 0.79 ± 0.10 | 0.63 ± 0.08 | 0.74 ± 0.06 | |
6 b | 0.88 ± 0.03 | 0.77 ± 0.03 | 0.78 ± 0.08 | 0.81 ± 0.09 | 0.75 ± 0.07 | 0.79 ± 0.07 | 0.70 ± 0.09 | 0.71 ± 0.06 | |
7 b | 0.87 ± 0.02 | 0.78 ± 0.02 | 0.78 ± 0.07 | 0.90 ± 0.08 | 0.76 ± 0.06 | 0.84 ± 0.07 | 0.62 ± 0.07 | 0.73 ± 0.07 | |
8 b | 0.93 ± 0.02 | 0.76 ± 0.02 | 0.86 ± 0.07 | 0.93 ± 0.05 | 0.81 ± 0.07 | 0.72 ± 0.08 | 0.68 ± 0.06 | 0.66 ± 0.06 | |
9 b | 0.91 ± 0.02 | 0.76 ± 0.02 | 0.83 ± 0.08 | 0.91 ± 0.06 | 0.79 ± 0.06 | 0.75 ± 0.07 | 0.60 ± 0.06 | 0.68 ± 0.08 | |
10 b | 0.91 ± 0.02 | 0.76 ± 0.02 | 0.80 ± 0.08 | 0.90 ± 0.06 | 0.78 ± 0.07 | 0.75 ± 0.07 | 0.60 ± 0.08 | 0.68 ± 0.07 | |
11 b | 0.91 ± 0.02 | 0.75 ± 0.02 | 0.81 ± 0.08 | 0.91 ± 0.06 | 0.77 ± 0.07 | 0.75 ± 0.08 | 0.60 ± 0.08 | 0.67 ± 0.09 | |
12 b | 0.82 ± 0.03 | 0.70 ± 0.03 | 0.84 ± 0.08 | 0.85 ± 0.07 | 0.75 ± 0.08 | 0.76 ± 0.08 | 0.68 ± 0.09 | 0.59 ± 0.07 | |
13 b | 0.86 ± 0.03 | 0.74 ± 0.03 | 0.83 ± 0.08 | 0.88 ± 0.06 | 0.70 ± 0.07 | 0.71 ± 0.07 | 0.55 ± 0.08 | 0.71 ± 0.08 | |
14 b | 0.91 ± 0.02 | 0.78 ± 0.02 | 0.80 ± 0.08 | 0.90 ± 0.05 | 0.70 ± 0.08 | 0.82 ± 0.06 | 0.67 ± 0.07 | 0.55 ± 0.08 | |
15 b | 0.91 ± 0.02 | 0.77 ± 0.02 | 0.81 ± 0.08 | 0.89 ± 0.06 | 0.71 ± 0.06 | 0.81 ± 0.06 | 0.68 ± 0.08 | 0.57 ± 0.08 | |
16 b | 0.86 ± 0.02 | 0.78 ± 0.02 | 0.88 ± 0.07 | 0.93 ± 0.06 | 0.73 ± 0.08 | 0.75 ± 0.06 | 0.64 ± 0.06 | 0.73 ± 0.07 | |
17 b | 0.85 ± 0.03 | 0.79 ± 0.02 | 0.85 ± 0.08 | 0.92 ± 0.06 | 0.72 ± 0.08 | 0.79 ± 0.05 | 0.64 ± 0.06 | 0.74 ± 0.07 | |
18 b | 0.81 ± 0.02 | 0.79 ± 0.02 | 0.87 ± 0.06 | 0.92 ± 0.05 | 0.76 ± 0.06 | 0.81 ± 0.06 | 0.65 ± 0.06 | 0.75 ± 0.07 | |
19 b | 0.91 ± 0.02 | 0.77 ± 0.02 | 0.89 ± 0.07 | 0.88 ± 0.07 | 0.73 ± 0.09 | 0.71 ± 0.09 | 0.61 ± 0.08 | 0.51 ± 0.09 | |
20 b | 0.87 ± 0.02 | 0.73 ± 0.02 | 0.78 ± 0.08 | 0.83 ± 0.06 | 0.73 ± 0.08 | 0.73 ± 0.07 | 0.64 ± 0.07 | 0.56 ± 0.08 | |
21 b | 0.90 ± 0.02 | 0.72 ± 0.02 | 0.81 ± 0.07 | 0.88 ± 0.06 | 0.71 ± 0.07 | 0.72 ± 0.08 | 0.53 ± 0.08 | 0.63 ± 0.09 | |
50 | 1 a | 0.76 ± 0.03 | 0.74 ± 0.03 | 0.85 ± 0.07 | 0.78 ± 0.04 | 0.71 ± 0.08 | 0.72 ± 0.05 | 0.61 ± 0.08 | 0.70 ± 0.04 |
2 a | 0.77 ± 0.03 | 0.74 ± 0.04 | 0.86 ± 0.07 | 0.78 ± 0.05 | 0.72 ± 0.07 | 0.71 ± 0.04 | 0.61 ± 0.07 | 0.69 ± 0.04 | |
3 a | 0.77 ± 0.04 | 0.74 ± 0.04 | 0.85 ± 0.08 | 0.78 ± 0.04 | 0.71 ± 0.08 | 0.71 ± 0.05 | 0.60 ± 0.07 | 0.69 ± 0.04 | |
4 b | 0.97 ± 0.01 | 0.83 ± 0.02 | 0.88 ± 0.06 | 0.85 ± 0.08 | 0.71 ± 0.08 | 0.72 ± 0.08 | 0.55 ± 0.07 | 0.79 ± 0.08 | |
5 b | 0.96 ± 0.02 | 0.83 ± 0.02 | 0.87 ± 0.07 | 0.85 ± 0.06 | 0.71 ± 0.08 | 0.70 ± 0.08 | 0.59 ± 0.07 | 0.75 ± 0.08 |
OC3 | TR | TE1 | TE2 | VA | |||||
---|---|---|---|---|---|---|---|---|---|
Nin. | model | Sens. | Spec. | Sens. | Spec. | Sens. | Spec. | Sens. | Spec. |
182 | 1 a | 0.91 ± 0.03 | 0.91 ± 0.03 | 0.88 ± 0.06 | 0.81 ± 0.04 | 0.71 ± 0.08 | 0.70 ± 0.04 | 0.47 ± 0.08 | 0.74 ± 0.04 |
2 a | 0.90 ± 0.03 | 0.90 ± 0.03 | 0.83 ± 0.06 | 0.86 ± 0.04 | 0.70 ± 0.09 | 0.71 ± 0.04 | 0.52 ± 0.09 | 0.74 ± 0.04 | |
3 a | 0.86 ± 0.03 | 0.85 ± 0.03 | 0.86 ± 0.06 | 0.83 ± 0.05 | 0.77 ± 0.08 | 0.70 ± 0.04 | 0.50 ± 0.10 | 0.73 ± 0.04 | |
4 b | 0.94 ± 0.02 | 0.82 ± 0.02 | 0.93 ± 0.06 | 0.89 ± 0.06 | 0.74 ± 0.07 | 0.72 ± 0.08 | 0.63 ± 0.08 | 0.65 ± 0.07 | |
5 b | 0.94 ± 0.02 | 0.81 ± 0.02 | 0.94 ± 0.05 | 0.91 ± 0.06 | 0.73 ± 0.08 | 0.71 ± 0.08 | 0.65 ± 0.07 | 0.64 ± 0.07 | |
6 b | 0.93 ± 0.02 | 0.84 ± 0.02 | 0.90 ± 0.04 | 0.96 ± 0.05 | 0.72 ± 0.07 | 0.71 ± 0.09 | 0.69 ± 0.06 | 0.66 ± 0.09 | |
7 b | 0.93 ± 0.02 | 0.83 ± 0.02 | 0.91 ± 0.04 | 0.96 ± 0.05 | 0.73 ± 0.07 | 0.71 ± 0.08 | 0.66 ± 0.07 | 0.66 ± 0.08 | |
8 b | 0.93 ± 0.02 | 0.82 ± 0.02 | 0.90 ± 0.05 | 0.92 ± 0.06 | 0.73 ± 0.08 | 0.71 ± 0.07 | 0.61 ± 0.06 | 0.74 ± 0.07 | |
9 b | 0.93 ± 0.02 | 0.82 ± 0.02 | 0.89 ± 0.05 | 0.92 ± 0.06 | 0.76 ± 0.07 | 0.73 ± 0.07 | 0.63 ± 0.07 | 0.75 ± 0.07 | |
10 b | 0.89 ± 0.03 | 0.77 ± 0.03 | 0.84 ± 0.06 | 0.90 ± 0.07 | 0.75 ± 0.08 | 0.72 ± 0.09 | 0.73 ± 0.07 | 0.64 ± 0.07 | |
11 b | 0.88 ± 0.02 | 0.78 ± 0.02 | 0.89 ± 0.07 | 0.91 ± 0.06 | 0.70 ± 0.08 | 0.72 ± 0.09 | 0.64 ± 0.08 | 0.68 ± 0.08 | |
12 b | 0.86 ± 0.02 | 0.81 ± 0.03 | 0.88 ± 0.08 | 0.96 ± 0.06 | 0.75 ± 0.07 | 0.73 ± 0.08 | 0.65 ± 0.07 | 0.72 ± 0.07 | |
13 b | 0.87 ± 0.02 | 0.81 ± 0.02 | 0.86 ± 0.07 | 0.95 ± 0.05 | 0.73 ± 0.07 | 0.72 ± 0.09 | 0.68 ± 0.06 | 0.72 ± 0.08 | |
14 b | 0.87 ± 0.02 | 0.80 ± 0.02 | 0.87 ± 0.07 | 0.95 ± 0.05 | 0.75 ± 0.08 | 0.72 ± 0.08 | 0.67 ± 0.07 | 0.73 ± 0.07 | |
15 b | 0.92 ± 0.02 | 0.83 ± 0.02 | 0.84 ± 0.06 | 0.92 ± 0.06 | 0.72 ± 0.07 | 0.71 ± 0.08 | 0.63 ± 0.06 | 0.73 ± 0.06 | |
16 b | 0.93 ± 0.02 | 0.83 ± 0.02 | 0.85 ± 0.07 | 0.91 ± 0.06 | 0.72 ± 0.07 | 0.71 ± 0.09 | 0.64 ± 0.06 | 0.78 ± 0.08 | |
17 b | 0.94 ± 0.02 | 0.81 ± 0.02 | 0.93 ± 0.06 | 0.91 ± 0.06 | 0.75 ± 0.07 | 0.77 ± 0.08 | 0.66 ± 0.06 | 0.72 ± 0.08 | |
18 b | 0.94 ± 0.02 | 0.81 ± 0.02 | 0.92 ± 0.06 | 0.91 ± 0.07 | 0.74 ± 0.08 | 0.72 ± 0.08 | 0.65 ± 0.05 | 0.72 ± 0.08 | |
19 b | 0.96 ± 0.01 | 0.86 ± 0.02 | 0.92 ± 0.06 | 0.95 ± 0.05 | 0.70 ± 0.07 | 0.70 ± 0.06 | 0.58 ± 0.06 | 0.72 ± 0.06 | |
98 | 1 a | 0.86 ± 0.03 | 0.89 ± 0.02 | 0.91 ± 0.06 | 0.76 ± 0.04 | 0.71 ± 0.08 | 0.71 ± 0.05 | 0.52 ± 0.10 | 0.65 ± 0.04 |
2 b | 0.95 ± 0.02 | 0.82 ± 0.02 | 0.79 ± 0.07 | 0.93 ± 0.06 | 0.70 ± 0.06 | 0.77 ± 0.06 | 0.57 ± 0.07 | 0.68 ± 0.06 | |
3 b | 0.91 ± 0.02 | 0.78 ± 0.02 | 0.82 ± 0.07 | 0.88 ± 0.06 | 0.70 ± 0.08 | 0.71 ± 0.07 | 0.68 ± 0.08 | 0.61 ± 0.08 | |
4 b | 0.91 ± 0.02 | 0.79 ± 0.02 | 0.80 ± 0.07 | 0.90 ± 0.05 | 0.73 ± 0.07 | 0.71 ± 0.06 | 0.69 ± 0.07 | 0.64 ± 0.07 | |
5 b | 0.92 ± 0.02 | 0.80 ± 0.02 | 0.85 ± 0.07 | 0.95 ± 0.05 | 0.71 ± 0.09 | 0.74 ± 0.07 | 0.63 ± 0.07 | 0.65 ± 0.07 | |
6 b | 0.87 ± 0.02 | 0.77 ± 0.02 | 0.78 ± 0.08 | 0.87 ± 0.07 | 0.73 ± 0.06 | 0.72 ± 0.07 | 0.63 ± 0.07 | 0.63 ± 0.07 | |
7 b | 0.86 ± 0.02 | 0.75 ± 0.02 | 0.79 ± 0.07 | 0.87 ± 0.07 | 0.73 ± 0.07 | 0.71 ± 0.07 | 0.62 ± 0.07 | 0.63 ± 0.08 | |
8 b | 0.87 ± 0.02 | 0.76 ± 0.02 | 0.79 ± 0.08 | 0.85 ± 0.08 | 0.73 ± 0.06 | 0.73 ± 0.08 | 0.60 ± 0.08 | 0.61 ± 0.09 | |
9 b | 0.86 ± 0.03 | 0.75 ± 0.03 | 0.73 ± 0.09 | 0.92 ± 0.06 | 0.72 ± 0.07 | 0.72 ± 0.08 | 0.67 ± 0.09 | 0.64 ± 0.08 | |
10 b | 0.87 ± 0.02 | 0.77 ± 0.02 | 0.74 ± 0.09 | 0.93 ± 0.06 | 0.75 ± 0.06 | 0.75 ± 0.06 | 0.70 ± 0.08 | 0.58 ± 0.09 | |
11 b | 0.92 ± 0.02 | 0.80 ± 0.02 | 0.84 ± 0.07 | 0.91 ± 0.06 | 0.76 ± 0.08 | 0.80 ± 0.06 | 0.71 ± 0.07 | 0.68 ± 0.07 | |
12 b | 0.92 ± 0.02 | 0.80 ± 0.02 | 0.84 ± 0.06 | 0.90 ± 0.06 | 0.71 ± 0.07 | 0.80 ± 0.08 | 0.66 ± 0.08 | 0.68 ± 0.08 | |
13 b | 0.92 ± 0.02 | 0.79 ± 0.02 | 0.86 ± 0.07 | 0.93 ± 0.05 | 0.73 ± 0.08 | 0.80 ± 0.08 | 0.68 ± 0.07 | 0.68 ± 0.07 | |
14 b | 0.86 ± 0.02 | 0.79 ± 0.03 | 0.74 ± 0.06 | 0.92 ± 0.06 | 0.71 ± 0.08 | 0.78 ± 0.08 | 0.58 ± 0.07 | 0.73 ± 0.09 | |
15 b | 0.86 ± 0.03 | 0.79 ± 0.03 | 0.72 ± 0.07 | 0.91 ± 0.05 | 0.72 ± 0.08 | 0.78 ± 0.08 | 0.53 ± 0.07 | 0.68 ± 0.09 | |
16 b | 0.92 ± 0.02 | 0.79 ± 0.02 | 0.88 ± 0.06 | 0.90 ± 0.05 | 0.75 ± 0.05 | 0.72 ± 0.07 | 0.64 ± 0.06 | 0.64 ± 0.08 | |
17 b | 0.93 ± 0.02 | 0.80 ± 0.02 | 0.73 ± 0.09 | 0.96 ± 0.04 | 0.70 ± 0.07 | 0.71 ± 0.08 | 0.64 ± 0.07 | 0.70 ± 0.08 | |
18 b | 0.93 ± 0.02 | 0.80 ± 0.02 | 0.79 ± 0.08 | 0.93 ± 0.05 | 0.72 ± 0.07 | 0.77 ± 0.08 | 0.63 ± 0.07 | 0.68 ± 0.08 | |
19 b | 0.92 ± 0.02 | 0.81 ± 0.02 | 0.74 ± 0.08 | 0.87 ± 0.06 | 0.73 ± 0.08 | 0.79 ± 0.06 | 0.67 ± 0.09 | 0.65 ± 0.08 | |
20 b | 0.91 ± 0.02 | 0.81 ± 0.02 | 0.83 ± 0.07 | 0.91 ± 0.05 | 0.74 ± 0.07 | 0.76 ± 0.07 | 0.56 ± 0.08 | 0.68 ± 0.08 | |
21 b | 0.91 ± 0.02 | 0.81 ± 0.02 | 0.83 ± 0.08 | 0.92 ± 0.06 | 0.74 ± 0.07 | 0.75 ± 0.08 | 0.57 ± 0.09 | 0.66 ± 0.08 | |
22 b | 0.92 ± 0.02 | 0.81 ± 0.02 | 0.85 ± 0.07 | 0.95 ± 0.05 | 0.76 ± 0.07 | 0.81 ± 0.07 | 0.60 ± 0.08 | 0.68 ± 0.09 | |
23 b | 0.91 ± 0.02 | 0.80 ± 0.02 | 0.77 ± 0.08 | 0.87 ± 0.07 | 0.72 ± 0.08 | 0.70 ± 0.07 | 0.63 ± 0.07 | 0.65 ± 0.08 | |
24 b | 0.91 ± 0.02 | 0.80 ± 0.03 | 0.78 ± 0.09 | 0.89 ± 0.05 | 0.72 ± 0.08 | 0.73 ± 0.07 | 0.59 ± 0.07 | 0.64 ± 0.07 | |
25 b | 0.91 ± 0.02 | 0.81 ± 0.02 | 0.84 ± 0.08 | 0.96 ± 0.04 | 0.71 ± 0.07 | 0.74 ± 0.07 | 0.58 ± 0.07 | 0.69 ± 0.09 | |
26 b | 0.94 ± 0.02 | 0.84 ± 0.02 | 0.78 ± 0.08 | 0.92 ± 0.06 | 0.83 ± 0.06 | 0.72 ± 0.08 | 0.62 ± 0.08 | 0.66 ± 0.07 | |
27 b | 0.94 ± 0.02 | 0.84 ± 0.02 | 0.81 ± 0.09 | 0.93 ± 0.06 | 0.83 ± 0.06 | 0.74 ± 0.07 | 0.59 ± 0.08 | 0.66 ± 0.06 | |
28 b | 0.94 ± 0.02 | 0.84 ± 0.02 | 0.81 ± 0.07 | 0.92 ± 0.06 | 0.83 ± 0.05 | 0.72 ± 0.09 | 0.61 ± 0.08 | 0.63 ± 0.06 | |
29 b | 0.96 ± 0.02 | 0.85 ± 0.02 | 0.83 ± 0.08 | 0.95 ± 0.05 | 0.70 ± 0.09 | 0.74 ± 0.08 | 0.63 ± 0.10 | 0.63 ± 0.09 | |
30 b | 0.96 ± 0.01 | 0.85 ± 0.02 | 0.83 ± 0.07 | 0.92 ± 0.06 | 0.72 ± 0.07 | 0.70 ± 0.07 | 0.54 ± 0.07 | 0.66 ± 0.08 | |
31 b | 0.97 ± 0.02 | 0.86 ± 0.02 | 0.82 ± 0.07 | 0.94 ± 0.04 | 0.72 ± 0.07 | 0.72 ± 0.07 | 0.54 ± 0.07 | 0.67 ± 0.07 | |
32 b | 0.96 ± 0.02 | 0.85 ± 0.02 | 0.85 ± 0.07 | 0.95 ± 0.04 | 0.71 ± 0.08 | 0.71 ± 0.06 | 0.55 ± 0.07 | 0.62 ± 0.07 | |
33 b | 0.88 ± 0.03 | 0.77 ± 0.03 | 0.82 ± 0.08 | 0.91 ± 0.07 | 0.78 ± 0.07 | 0.73 ± 0.08 | 0.67 ± 0.08 | 0.68 ± 0.08 | |
34 b | 0.88 ± 0.03 | 0.77 ± 0.03 | 0.80 ± 0.08 | 0.91 ± 0.06 | 0.77 ± 0.07 | 0.73 ± 0.07 | 0.66 ± 0.08 | 0.70 ± 0.08 | |
35 b | 0.88 ± 0.03 | 0.77 ± 0.03 | 0.80 ± 0.07 | 0.91 ± 0.06 | 0.75 ± 0.08 | 0.72 ± 0.06 | 0.66 ± 0.09 | 0.68 ± 0.08 | |
36 b | 0.96 ± 0.02 | 0.83 ± 0.02 | 0.74 ± 0.07 | 0.93 ± 0.06 | 0.79 ± 0.06 | 0.71 ± 0.06 | 0.65 ± 0.07 | 0.66 ± 0.07 | |
37 b | 0.95 ± 0.02 | 0.82 ± 0.02 | 0.73 ± 0.07 | 0.94 ± 0.05 | 0.79 ± 0.06 | 0.71 ± 0.06 | 0.65 ± 0.06 | 0.65 ± 0.07 | |
38 b | 0.96 ± 0.02 | 0.82 ± 0.02 | 0.76 ± 0.07 | 0.90 ± 0.06 | 0.78 ± 0.06 | 0.70 ± 0.07 | 0.65 ± 0.08 | 0.65 ± 0.06 | |
39 b | 0.86 ± 0.03 | 0.71 ± 0.03 | 0.85 ± 0.08 | 0.83 ± 0.06 | 0.70 ± 0.09 | 0.72 ± 0.08 | 0.68 ± 0.07 | 0.63 ± 0.09 | |
40 b | 0.87 ± 0.02 | 0.71 ± 0.03 | 0.82 ± 0.08 | 0.82 ± 0.06 | 0.74 ± 0.08 | 0.71 ± 0.08 | 0.66 ± 0.06 | 0.61 ± 0.08 | |
41 b | 0.83 ± 0.02 | 0.77 ± 0.02 | 0.80 ± 0.08 | 0.90 ± 0.06 | 0.71 ± 0.07 | 0.78 ± 0.06 | 0.54 ± 0.07 | 0.59 ± 0.08 | |
42 b | 0.82 ± 0.02 | 0.76 ± 0.03 | 0.80 ± 0.07 | 0.90 ± 0.06 | 0.76 ± 0.08 | 0.73 ± 0.07 | 0.53 ± 0.07 | 0.54 ± 0.06 | |
43 b | 0.83 ± 0.03 | 0.74 ± 0.02 | 0.81 ± 0.08 | 0.91 ± 0.05 | 0.76 ± 0.08 | 0.73 ± 0.06 | 0.56 ± 0.07 | 0.54 ± 0.07 | |
44 b | 0.95 ± 0.02 | 0.79 ± 0.02 | 0.71 ± 0.09 | 0.90 ± 0.04 | 0.74 ± 0.07 | 0.71 ± 0.08 | 0.64 ± 0.07 | 0.69 ± 0.07 | |
45 b | 0.94 ± 0.02 | 0.81 ± 0.02 | 0.84 ± 0.06 | 0.90 ± 0.06 | 0.71 ± 0.07 | 0.79 ± 0.06 | 0.76 ± 0.07 | 0.65 ± 0.07 | |
50 | 1 a | 0.92 ± 0.02 | 0.92 ± 0.02 | 0.82 ± 0.05 | 0.79 ± 0.04 | 0.72 ± 0.07 | 0.70 ± 0.03 | 0.53 ± 0.06 | 0.69 ± 0.04 |
2 a | 0.91 ± 0.02 | 0.93 ± 0.02 | 0.83 ± 0.07 | 0.83 ± 0.04 | 0.72 ± 0.07 | 0.70 ± 0.04 | 0.60 ± 0.07 | 0.66 ± 0.04 | |
3 b | 0.92 ± 0.02 | 0.78 ± 0.02 | 0.82 ± 0.07 | 0.83 ± 0.07 | 0.71 ± 0.09 | 0.71 ± 0.06 | 0.61 ± 0.07 | 0.77 ± 0.08 | |
4 b | 0.87 ± 0.03 | 0.76 ± 0.02 | 0.84 ± 0.09 | 0.85 ± 0.07 | 0.73 ± 0.08 | 0.71 ± 0.07 | 0.66 ± 0.07 | 0.66 ± 0.08 | |
5 b | 0.87 ± 0.03 | 0.75 ± 0.02 | 0.85 ± 0.07 | 0.83 ± 0.09 | 0.72 ± 0.08 | 0.72 ± 0.08 | 0.66 ± 0.07 | 0.66 ± 0.07 | |
6 b | 0.95 ± 0.02 | 0.83 ± 0.02 | 0.80 ± 0.08 | 0.93 ± 0.06 | 0.72 ± 0.07 | 0.73 ± 0.07 | 0.55 ± 0.08 | 0.62 ± 0.07 | |
7 b | 0.96 ± 0.02 | 0.83 ± 0.02 | 0.81 ± 0.07 | 0.93 ± 0.06 | 0.71 ± 0.08 | 0.74 ± 0.07 | 0.58 ± 0.07 | 0.63 ± 0.07 |
Descriptor | Description | Id |
---|---|---|
J_D/Dt | Balaban-like index from distance/detour matrix | 8.945987 |
GATS5v | Geary autocorrelation of lag 5 weighted by van der Waals volume | 8.042931 |
H% | Percentage of H atoms | 7.579833 |
SpMin1_Bh(s) | Smallest eigenvalue n. 1 of Burden matrix weighted by I-state | 6.506972 |
CATS2D_02_AA | CATS2D Acceptor-Acceptor at lag 02 | 5.406386 |
IC2 | Information content index (neighborhood symmetry of 2-order) | 5.3672 |
GATS1v | Geary autocorrelation of lag 1 weighted by van der Waals volume | 4.810587 |
GATS2v | Geary autocorrelation of lag 2 weighted by van der Waals volume | 4.727913 |
BAC | Balaban centric index | 4.58365 |
SpPosA_X | Normalized spectral positive sum from chi matrix | 4.303807 |
P_VSA_LogP_6 | P_VSA-like on LogP, bin 6 | 3.877732 |
C-006 | CH2RX | 3.640303 |
P_VSA_e_3 | P_VSA-like on Sanderson electronegativity, bin 3 | 3.475949 |
P_VSA_MR_2 | P_VSA-like on Molar Refractivity, bin 2 | 3.236547 |
MATS8m | Moran autocorrelation of lag 8 weighted by mass | 3.138591 |
nCsp3 | Number of sp3 hybridized carbon atoms | 2.675997 |
PDI | Packing density index | 2.585321 |
P_VSA_m_4 | P_VSA-like on mass, bin 4 | 2.511289 |
SpAD_EA(dm) | Spectral absolute deviation from edge adjacency mat. weighted by dipole moment | 2.35969 |
CATS2D_04_AA | CATS2D Acceptor-Acceptor at lag 04 | 2.332174 |
X5Av | Average valence connectivity index of order 5 | 2.196837 |
X5A | Average connectivity index of order 5 | 2.100552 |
Descriptor | Description | Id |
---|---|---|
JGI6 | Mean topological charge index of order 6 | 3.502671 |
JGI4 | Mean topological charge index of order 4 | 3.398279 |
SdssC | Sum of dssC E-states | 3.372717 |
H% | Percentage of H atoms | 3.287295 |
Uc | Unsaturation count | 3.071672 |
P_VSA_LogP_6 | P_VSA-like on LogP, bin 6 | 2.985918 |
H-052 | H attached to C0(sp3) with 1X attached to next C | 2.805648 |
MAXDN | Maximal electrotopological negative variation | 2.620215 |
Chi1_EA(dm) | Connectivity-like index of order 1 from edge adjacency mat. Weighted by dipole moment | 2.576782 |
SpMax_B(m) | Leading eigenvalue from Burden matrix weighted by mass | 2.540987 |
GATS5m | Geary autocorrelation of lag 5 weighted by mass | 2.480224 |
SpAD_EA(dm) | Spectral absolute deviation from edge adjacency mat. Weighted by Dipole moment | 2.416726 |
GATS1i | Geary autocorrelation of lag 1 weighted by ionization potential | 2.365205 |
SsssN | Sum of sssN E-states | 2.352358 |
SpMAD_EA(bo) | Spectral mean absolute deviation from edge adjacency mat. Weighted by bond order | 2.344266 |
ChiA_B(s) | Average Randic-like index from Burden matrix weighted by I-State | 2.338868 |
NssO | Number of atoms of type ssO | 2.223777 |
VE2sign_A | Average coefficient of the last eigenvector from adjacency matrix | 2.169277 |
MATS2p | Moran autocorrelation of lag 2 weighted by polarizability | 2.169277 |
MATS1p | Moran autocorrelation of lag 1 weighted by polarizability | 2.103962 |
SpMin1_Bh(v) | Smallest eigenvalue n. 1 of Burden matrix weighted by van der Waals volume | 2.089443 |
ChiA_B(v) | Average Randic-like index from Burden matrix weighted by van der Waals volume | 2.043667 |
Rbrid | Ring bridge count | 2.040469 |
nCsp3 | Number of sp3 hybridized Carbon atoms | 2.038696 |
C-040 | R-C(=X)-X / R-C#X / X=C=X | 2.022 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajželj, B.; Drgan, V. Hepatotoxicity Modeling Using Counter-Propagation Artificial Neural Networks: Handling an Imbalanced Classification Problem. Molecules 2020, 25, 481. https://doi.org/10.3390/molecules25030481
Bajželj B, Drgan V. Hepatotoxicity Modeling Using Counter-Propagation Artificial Neural Networks: Handling an Imbalanced Classification Problem. Molecules. 2020; 25(3):481. https://doi.org/10.3390/molecules25030481
Chicago/Turabian StyleBajželj, Benjamin, and Viktor Drgan. 2020. "Hepatotoxicity Modeling Using Counter-Propagation Artificial Neural Networks: Handling an Imbalanced Classification Problem" Molecules 25, no. 3: 481. https://doi.org/10.3390/molecules25030481
APA StyleBajželj, B., & Drgan, V. (2020). Hepatotoxicity Modeling Using Counter-Propagation Artificial Neural Networks: Handling an Imbalanced Classification Problem. Molecules, 25(3), 481. https://doi.org/10.3390/molecules25030481