Bioassay-Guided Different Extraction Techniques of Carica papaya (Linn.) Leaves on In Vitro Wound-Healing Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Percentage Yield and Secondary Metabolites Screening of C. papaya Extracts
2.2. Antioxidant Activity by DPPH
2.3. Wound-Healing Activities
2.3.1. Cytotoxicity and Proliferation Activities
2.3.2. Migration Effects of C. papaya Extract on HSF1184 Cell Lines
2.3.3. Collagen Synthesis by C. papaya Extracts
2.4. Metabolite Profiling of C. papaya Extract from Reflux Technique
3. Materials and Methods
3.1. Materials
3.2. Plant Material Collection
3.3. Extraction
3.3.1. Ultrasonic-Assisted Extraction (UAE)
3.3.2. Reflux
3.4. Agitation
3.5. Recovery Yield
3.6. Qualitative Secondary Metabolites Analysis
3.7. Test for Saponins
3.8. Test for Flavonoids
3.9. Test for Terpenoids
3.10. Test for Steroids
3.11. Test for Coumarins
3.12. Test for Alkaloids
3.13. Test for Phenolics and Tannins
3.14. Determination of 1,1-diphenyl-2-picrylhydrazy (DPPH) Scavenging Activity
3.15. Cell Culture and Maintenance
3.16. Cytotoxicity Assay via Sulforhodamine B (SRB) Assay
3.17. Scratch Assay
3.18. Collagen Synthesis Assay
3.19. HPLC-MS/MS-QTOF Analysis
3.20. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gadgoli, C. Research in Phyto-Constituents for Treatment of Wounds; IntechOpen: London, UK, 2016. [Google Scholar]
- Juárez-Rojop, I.E.; Tovilla-Zárate, C.A.; Aguilar-Domínguez, D.E.; Fuente, L.F.R.-d.l.; Lobato-García, C.E.; Blé-Castillo, J.L.; López-Meraz, L.; Díaz-Zagoya, J.C.; Bermúdez-Ocaña, D.Y. Phytochemical screening and hypoglycemic activity of Carica papaya leaf in streptozotocin-induced diabetic rats. Revista Brasileira de Farmacognosia 2014, 24, 341–347. [Google Scholar]
- Nwaehujor, C.O.; Ode, J.O.; Ekwere, M.R.; Udegbunam, R.I. Anti-fertility effects of fractions from Carica papaya (Pawpaw) Linn. Methanol root extract in male Wistar rats. Arab. J. Chem. 2019, 12, 1563–1568. [Google Scholar] [CrossRef] [Green Version]
- Chavez-Quintal, P.; Gonzalez-Flores, T.; Rodriguez-Buenfil, I.; Gallegos-Tintore, S. Antifungal Activity in Ethanolic Extracts of Carica papaya L. cv. Maradol Leaves and Seeds. Indian J. Microbiol. 2011, 51, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Tay, Z.; Chong, K. The potential of papaya leaf extract in controlling ganoderma boninense. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Sabah, Malaysia, 9–12 December 2015; Volume 36, p. 012027. [Google Scholar]
- Kumarasamy, S.; Deepa, P.; Harisaranraj, R.; Achudhan, V. Antimicrobial and Phytochemical Investigation of the Leaves of Carica papaya L., Cynodon dactylon (L.) Pers., Euphorbia hirta L., Melia azedarach L. and Psidium guajava L. Ethnobot. Leafl. 2008, 12, 1184–1191. [Google Scholar]
- Baskaran, C.; Velu, S.; Kumaran, K. The efficacy of carica papaya leaf extract on some bacterial and a fungal strain by well diffusion method. Asian Pac. J. Trop. Dis. 2012, 2, S658–S662. [Google Scholar] [CrossRef]
- Zuhrotun Nisa, F.; Astuti, M.; Murdiati, A.; Mubarika Haryana, S. Anti-proliferation and apoptosis induction of aqueous leaf extract of carica papaya l. on human breast cancer cells mcf-7. Pak. J. Biol. Sci. 2017, 20, 36–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imaga, N.; Gbenle, G.; Okochi, V.; Adenekan, S.; Duro-Emmanuel, T.; Oyeniyi, B.; Dokai, P.; Oyenuga, M.; Otumara, A.; Ekeh, F. Phytochemical and antioxidant nutrient constituents of Carica papaya and Parquetina nigrescens extracts. Sci. Res. Essays 2010, 5, 2201–2205. [Google Scholar]
- Kala, C.P. Leaf juice of Carica papaya L.: A remedy of dengue fever. Med. Aromat. Plants 2012, 1, 109. [Google Scholar]
- Melariri, P.; Campbell, W.; Etusim, P.; Smith, P. Antiplasmodial Properties and Bioassay-Guided Fractionation of Ethyl Acetate Extracts from Carica papaya Leaves. J. Parasitol. Res. 2011, 2011, 104954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdullah Sani, M.S.; Bakar, J.; Abdul Rahman, R.; Abas, F. The antibacterial activities and chemical composition of extracts from Carica papaya cv. Sekaki/Hong Kong seed. Int. Food Res. J. 2017, 24, 810. [Google Scholar]
- Asghar, N.; Naqvi, S.A.; Hussain, Z.; Rasool, N.; Khan, Z.A.; Shahzad, S.A.; Sherazi, T.A.; Janjua, M.R.; Nagra, S.A.; Zia-Ul-Haq, M.; et al. Compositional difference in antioxidant and antibacterial activity of all parts of the Carica papaya using different solvents. Chem. Cent. J. 2016, 10, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nugroho, A.; Heryani, H.; Choi, J.S.; Park, H.-J. Identification and quantification of flavonoids in Carica papaya leaf and peroxynitrite-scavenging activity. Asian Pac. J. Trop. Biomed. 2017, 7, 208–213. [Google Scholar] [CrossRef]
- Afzan, A.; Abdullah, N.R.; Halim, S.Z.; Rashid, B.A.; Semail, R.H.; Abdullah, N.; Jantan, I.; Muhammad, H.; Ismail, Z. Repeated dose 28-days oral toxicity study of Carica papaya L. leaf extract in Sprague Dawley rats. Molecules 2012, 17, 4326–4342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, P.; Kumar, K.; Panik, R.; Pandey, A.; Pandey, A.; Sahu, P. Evaluation of aqueous extract of Roots of Carica papaya on wound healing activity in albino Rats. J. Chem. Pharm. Res. 2011, 3, 291–295. [Google Scholar]
- Nafiu, A.B.; Rahman, M.T. Selenium added unripe carica papaya pulp extracts enhance wound repair through TGF-beta1 and VEGF-a signalling pathway. BMC Complement. Altern. Med. 2015, 15, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulrazaq, N.; Abdulaziz, E.; Rahman, M. Carica papaya juice enhanced in-vitro cell proliferation better than freeze-dried PBS extract using scratch assay 1 1 2. Trop. J. Health Sci. 2016, 23, 18–22. [Google Scholar]
- Zunjar, V.; Dash, R.P.; Jivrajani, M.; Trivedi, B.; Nivsarkar, M. Antithrombocytopenic activity of carpaine and alkaloidal extract of Carica papaya Linn. Leaves in busulfan induced thrombocytopenic Wistar rats. J. Ethnopharmacol. 2016, 181, 20–25. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Gaba, A. Phyto-extracts in wound healing. J. Pharm. Pharm. Sci. 2013, 16, 760–820. [Google Scholar] [CrossRef]
- Pandey, M.R.; Guo, H. Evaluation of cytotoxicity, genotoxicity and embryotoxicity of insecticide propoxur using flounder gill (FG) cells and zebrafish embryos. Toxicol. In Vitro 2014, 28, 340–353. [Google Scholar] [CrossRef]
- Ncube, N.S.; Afolayan, A.J.; Okoh, A.I. Assessment techniques of antimicrobial properties of natural compounds of plant origin: Current Methods and Future Trends. Afr. J. Biotechnol. 2008, 7, 1797–1806. [Google Scholar] [CrossRef] [Green Version]
- Medina-Torres, N.; Ayora, T.; Andrews, H.; Sanchez, A.; Pacheco López, N. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Ancheta, M.; Acero, L. Wound healing property of Carica papaya stem in albino rats. Int. J. Biosci. Biochem. Bioinform. 2016, 6, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Nayak, S.B.; Pinto Pereira, L.; Maharaj, D. Wound healing activity of Carica papaya L. in experimentally induced diabetic rats. Indian J. Exp. Biol. 2007, 45, 739–743. [Google Scholar] [PubMed]
- Anuar, N.S.; Zahari, S.S.; Taib, I.A.; Rahman, M.T. Effect of green and ripe Carica papaya epicarp extracts on wound healing and during pregnancy. Food Chem. Toxicol. 2008, 46, 2384–2389. [Google Scholar] [CrossRef] [PubMed]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selvamuthukumaran, M.; Shi, J. Recent advances in extraction of antioxidants from plant by-products processing industries. Food Qual. Saf. 2017, 1, 61–81. [Google Scholar] [CrossRef]
- Sultana, B.; Anwar, F.; Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 2009, 14, 2167–2180. [Google Scholar] [CrossRef]
- Kim, Y.S.; Cho, I.-H.; Jeong, M.-J.; Jeong, S.-J.; Nah, S.Y.; Cho, Y.-S.; Kim, S.H.; Go, A.; Kim, S.E.; Kang, S.S.; et al. Therapeutic effect of total ginseng saponin on skin wound healing. J. Ginseng Res. 2011, 35, 360–367. [Google Scholar] [CrossRef] [Green Version]
- Geethalakshmi, R.; Sakravarthi, C.; Kritika, T.; Arul Kirubakaran, M.; Sarada, D.V.L. Evaluation of antioxidant and wound healing potentials of Sphaeranthus amaranthoides Burm. F. BioMed Res. Int. 2013, 2013, 607109. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, D.; Dwivedi, M.; Malviya, S.; Singh, V. Evaluation of wound healing, anti-microbial and antioxidant potential of Pongamia pinnata in wistar rats. J. Tradit. Complement. Med. 2017, 7, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, A.; Tiwari, A.; Sahin, K.; KÜÇÜK, Ö.; Ali, S. Triterpenoid saponin-rich fraction of Centella asiatica decreases IL-1β and NF-κB, and augments tissue regeneration and excision wound repair. Turk. J. Biol. 2016, 40, 399–409. [Google Scholar] [CrossRef]
- Syarina, P.N.A.; Karthivashan, G.; Abas, F.; Arulselvan, P.; Fakurazi, S. Wound healing potential of Spirulina platensis extracts on human dermal fibroblast cells. EXCLI J. 2015, 14, 385–393. [Google Scholar] [PubMed]
- Kurahashi, T.; Fujii, J. Roles of Antioxidative Enzymes in Wound Healing. J. Dev. Biol. 2015, 3, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Cano Sanchez, M.; Lancel, S.; Boulanger, E.; Neviere, R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: A systematic review. Antioxidants 2018, 7, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lodhi, S.; Singhai, A.K. Wound healing effect of flavonoid rich fraction and luteolin isolated from Martynia annua Linn. on streptozotocin induced diabetic rats. Asian Pac. J. Trop. Med. 2013, 6, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Özay, Y.; Güzel, S.; Yumrutaş, Ö.; Pehlivanoğlu, B.; Erdoğdu, İ.H.; Yildirim, Z.; Türk, B.A.; Darcan, S. Wound healing effect of kaempferol in diabetic and nondiabetic rats. J. Surg. Res. 2019, 233, 284–296. [Google Scholar] [CrossRef]
- Bayrami, Z.; Khalighi-Sigaroodi, F.; Rahimi, R.; Farzaei, M.H.; Hodjat, M.; Baeeri, M.; Rahimifard, M.; Navaei-Nigjeh, M.; Abdollahi, M.; Hajiaghaee, R. In vitro wound healing activity of luteolin. Res. J. Pharmacogn. 2017, 4, 7. [Google Scholar]
- Trease, G.E.; Evans, W.C. Pharmacognsy; Brailliar Tiridel Can Macmillian Publishers: London, UK, 1989. [Google Scholar]
- Mutalib, M.; Amira, B.; Asmah, R.; Othman, F. Antioxidant analysis of different parts of Carica papaya. Int. Food Res. J. 2013, 20, 1043–1048. [Google Scholar]
- Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 2006, 1, 1112–1116. [Google Scholar] [CrossRef]
- Ahmad, Z.; Sarmidi, M.R.; Hasham, R. Evaluation of wound closure activity of cocos nucifera oil on scratched monolayer of human dermal fibroblasts. Chem. Eng. Trans. 2017, 56, 1657–1662. [Google Scholar]
Sample Availability: Samples of the compounds (3) are available from the authors. |
Extraction Techniques | Extraction Yields (%) |
---|---|
UAE | 13.57 ± 0.18 a |
Reflux | 17.86 ± 1.61 b |
Agitation | 15.86 ± 0.91 c |
Test | UAE | Reflux | Agitation |
---|---|---|---|
Saponins | + | + | + |
Flavonoids | + | + | + |
Terpenoids | - | - | - |
Steroids | - | - | - |
Coumarins | + | + | + |
Alkaloids | + | + | + |
Phenolics | + | + | + |
Sample | IC50 (mg/mL) |
---|---|
Extracts | |
UAE | 0.377 ± 0.014 a |
Reflux | 0.236 ± 0.009 b |
Agitation | 0.404 ± 0.009 c |
Positive Control | |
Ascorbic acid | 0.014 ± 0.002 d |
Quercetin | 0.00625 ± 0.001 e |
Extracts | 24 h | S.E.M | 48 h | S.E.M |
---|---|---|---|---|
UAE | 100.59 | 5.28 | 136.31 * | 0.39 |
Reflux | 131.65 * | 5.86 | 164.89 * | 0.67 |
Agitation | 119.93 * | 4.69 | 160.25 * | 5.22 |
Control | 100 | - | 100 | - |
No. | tR (min) | Compound | Mass | Difference (ppm) | Score |
---|---|---|---|---|---|
1. | 1.64 | Carpaine | 478.379 | −3.66 | 98.48 |
2. | 1.807 | Kaempferol 3-(2G-glucosylrutinoside) | 756.2128 | −1.97 | 96.85 |
3. | 2.069 | Kaempferol 3-(2″-rhamnosylgalactoside) 7-rhamnoside | 740.2185 | −2.88 | 97.22 |
4. | 2.14 | Kaempferol 3-rhamnosyl-(1->2)-galactoside-7-rhamnoside | 740.2187 | −3.07 | 96.85 |
5. | 2.447 | Luteolin 7-galactosyl-(1->6)-galactoside | 610.1560 | −4.35 | 97.55 |
6. | 2.951 | Orientin 7-O-rhamnoside | 594.1606 | −3.67 | 98.19 |
7. | 4.913 | 11-hydroperoxy-12,13-epoxy-9-octadecenoic acid | 328.2263 | −3.99 | 98.95 |
8. | 5.386 | Palmitic amide | 255.257 | −4.18 | 94.74 |
9. | 6.632 | 2-Hexaprenyl-6-methoxyphenol | 532.428 | −0.31 | 98.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soib, H.H.; Ismail, H.F.; Husin, F.; Abu Bakar, M.H.; Yaakob, H.; Sarmidi, M.R. Bioassay-Guided Different Extraction Techniques of Carica papaya (Linn.) Leaves on In Vitro Wound-Healing Activities. Molecules 2020, 25, 517. https://doi.org/10.3390/molecules25030517
Soib HH, Ismail HF, Husin F, Abu Bakar MH, Yaakob H, Sarmidi MR. Bioassay-Guided Different Extraction Techniques of Carica papaya (Linn.) Leaves on In Vitro Wound-Healing Activities. Molecules. 2020; 25(3):517. https://doi.org/10.3390/molecules25030517
Chicago/Turabian StyleSoib, Husnul Hanani, Hassan Fahmi Ismail, Fitrien Husin, Mohamad Hafizi Abu Bakar, Harisun Yaakob, and Mohamad Roji Sarmidi. 2020. "Bioassay-Guided Different Extraction Techniques of Carica papaya (Linn.) Leaves on In Vitro Wound-Healing Activities" Molecules 25, no. 3: 517. https://doi.org/10.3390/molecules25030517
APA StyleSoib, H. H., Ismail, H. F., Husin, F., Abu Bakar, M. H., Yaakob, H., & Sarmidi, M. R. (2020). Bioassay-Guided Different Extraction Techniques of Carica papaya (Linn.) Leaves on In Vitro Wound-Healing Activities. Molecules, 25(3), 517. https://doi.org/10.3390/molecules25030517