Analysis of Binding Interactions of Ramipril and Quercetin on Human Serum Albumin: A Novel Method in Affinity Evaluation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fluorescence Spectroscopy
2.2. Stern–Volmer Analysis
2.3. Binding Constant Analysis
2.4. Microscale Thermophoresis
2.5. Circular Dichroism Spectroscopy
2.6. Molecular Modeling
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Methods
4.2.1. Fluorescence Measurements
4.2.2. Binding Constant Analysis
4.2.3. UV Absorption Measurements
4.2.4. Microscale Thermophoresis (MST) Measurements
4.2.5. Circular Dichroism (CD) Measurements
4.2.6. Docking Study
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Peters, T., Jr. All About Albumin, 1st ed.; Academic Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: From bench to bedside. Mol. Asp. Med. 2012, 33, 209–290. [Google Scholar] [CrossRef] [PubMed]
- Sudlow, G.; Birkett, D.J.; Wade, D.N. Spectroscopic techniques in the study of protein binding. A fluorescence technique for the evaluation of the albumin binding and displacement of warfarin and warfarin-alcohol. Clin. Exp. Pharmacol. Physiol. 1975, 2, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Zsila, F. Subdomain IB Is the Third Major Drug Binding Region of Human Serum Albumin: Toward the Three-Sites Model. Mol. Pharm. 2013, 10, 1668–1682. [Google Scholar] [CrossRef] [PubMed]
- Brodersen, B. Fusidic Acid Binding to Serum Albumin and Interaction with Binding of Bilirubin. Acta Prediatr. Scand. 1985, 74, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Zunsain, P.A.; Ghuman, J.; McDonagh, A.F.; Curry, S. Crystallographic Analysis of Human Serum Albumin Complexed with 4Z,15Z-Bilirubin-IXα. J. Mol. Biol. 2008, 381, 394–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zsila, F. Circular Dichroism Spectroscopic Detection of Ligand Binding Induced Subdomain IB Specific Structural Adjustment of Human Serum Albumin. J. Phys. Chem. B 2013, 117, 10798–10806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, Y.; Su, S.; Kokot, S. Spectrofluorimetric studies on the binding of salicylic acid to bovine serum albumin using warfarin and ibuprofen as site markers with the aid of parallel factor analysis. Anal. Chim. Acta 2006, 580, 206. [Google Scholar] [CrossRef] [PubMed]
- Todd, P.A.; Benfield, P. Ramipril: A Review of its Pharmacological Properties and Therapeutic Efficacy in Cardiovascular Disorders. Drugs 1990, 39, 110–135. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Pan, D.; Jiang, M.; Liu, T.; Wang, Q. Binding interaction of ramipril with bovine serum albumin (BSA): Insights from multi-spectroscopy and molecular docking methods. J. Photochem. Photobiol. 2016, 164, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin. A review. Trends Food Sci. Technol. 2016, 56, 21–38. [Google Scholar] [CrossRef]
- Formica, J.V.; Regelson, W. Review of the Biology of Quercetin and Related Bioflavonoids. Food Chem. Toxicol. 1995, 33, 1061–1080. [Google Scholar] [CrossRef]
- Kameníková, M.; Furtmüller, P.G.; Klacsová, M.; Lopez-Guzman, A.; Toca-Herrera, J.L.; Vitkovská, A.; Devínsky, F.; Mučaji, P.; Nagy, M. Influence of quercetin on the interaction of gliclazide with human serum albumin – spectroscopic and docking approaches. Luminescence 2017, 32, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Vaneková, Z.; Hubčík, L.; Toca-Herrera, J.L.; Furtmüller, P.G.; Valentová, J.; Mučaji, P.; Nagy, M. Study of Interactions between Amlodipine and Quercetin on Human Serum Albumin: Spectroscopic and Modeling Approaches. Molecules 2019, 24, 487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer Science+Business Media, LLC: New York, NY, USA, 2006. [Google Scholar]
- Poór, M.; Li, Y.; Matisz, G.; Kiss, L.; Kunsági-Máté, S.; Köszegi, T. Quantitation of species differences in albumin–ligand interactions for bovine, human and rat serum albumins using fluorescence spectroscopy: A test case with some Sudlow’s site I ligands. J. Lumin. 2014, 145, 767–773. [Google Scholar] [CrossRef]
- Ràfols, C.; Amézqueta, S.; Fugueta, E.; Bosch, E. Molecular interactions between warfarin and human (HSA) or bovine (BSA) serum albumin evaluated by isothermal titration calorimetry (ITC), fluorescence spectrometry (FS) and frontal analysis capillary electrophoresis (FA/CE). J. Pharm. Biomed. Anal. 2018, 150, 452–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, R.; Jadhao, M.; Kumar, H.; Ghosh, S.K. Is the Sudlow site I of human serum albumin more generous to adopt prospective anti-cancer bioorganic compound than that of bovine: A combined spectroscopic and docking simulation approach. Bioorg. Chem. 2017, 75, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Zhdanova, N.G.; Maksimov, E.G.; Arutyunyan, A.M.; Fadeev, V.V.; Shirshin, E.A. Tyrosine fluorescence probing of conformational changes in tryptophan-lacking domain of albumins. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 174, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Zhdanova, N.G.; Shirshin, E.A.; Maksimov, E.G.; Panchishin, I.M.; Saletskya, A.M.; Fadeev, V.V. Tyrosine fluorescence probing of the surfactant-induced conformational changes of albumin. Photochem. Photobiol. Sci. 2015, 14, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Jerabek-Willemsen, M.; André, T.; Wanner, R.; Roth, H.M.; Duhr, S.; Baaske, P.; Breitsprecher, D. MicroScale Thermophoresis: Interaction analysis and beyond. J. Mol. Struct. 2014, 1077, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Zaccai, N.R.; Serdyuk, I.N.; Zaccai, J. Methods in Molecular Biophysics: Structure, Dynamics, Function for Biology and Medicine, 2nd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Zsila, F.; Bikádi, Z.; Simonyi, M. Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modelling methods. Biochem. Pharmacol. 2003, 65, 447. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds HSA, Q, R and FA are available from the authors. |
System | KD [μM] (Fluor.) | KD [μM] (MST) | KD [μM] (MST Fluorescence) |
---|---|---|---|
HSA + Q | 2.28 ± 0.61 | - | - |
HSA + R | 1220.86 ± 677.20 | 774.82 ± 75.28 | - |
[(HSA + R) + Q] | 34.73 ± 15.08 | - | - |
[(HSA + Q) + R] | 592.90 ± 90.63 | 111.92 ± 24.60 | 167.95 ± 29.84 |
System | Ratio Protein:ligand | α-Helix Content |
---|---|---|
HSA + Q | 1:0 | 59.1 ± 1.0 |
1:0.5 | 63.0 ± 2.0 | |
1:1 | 65.4 ± 0.5 | |
1:2 | 65.2 ± 0.9 | |
1:3 | 66.2 ± 0.7 | |
1:4 | 66.3 ± 1.5 | |
HSA + R | 1:0 | 59.1 ± 1.0 |
1:0.5 | 63.0 ± 2.6 | |
1:1 | 65.0 ± 1.7 | |
1:2 | 65.1 ± 0.5 | |
1:3 | 68.2 ± 1.1 | |
1:4 | 70.2 ± 1.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaneková, Z.; Hubčík, L.; Toca-Herrera, J.L.; Furtműller, P.G.; Mučaji, P.; Nagy, M. Analysis of Binding Interactions of Ramipril and Quercetin on Human Serum Albumin: A Novel Method in Affinity Evaluation. Molecules 2020, 25, 547. https://doi.org/10.3390/molecules25030547
Vaneková Z, Hubčík L, Toca-Herrera JL, Furtműller PG, Mučaji P, Nagy M. Analysis of Binding Interactions of Ramipril and Quercetin on Human Serum Albumin: A Novel Method in Affinity Evaluation. Molecules. 2020; 25(3):547. https://doi.org/10.3390/molecules25030547
Chicago/Turabian StyleVaneková, Zuzana, Lukáš Hubčík, José Luis Toca-Herrera, Paul Georg Furtműller, Pavel Mučaji, and Milan Nagy. 2020. "Analysis of Binding Interactions of Ramipril and Quercetin on Human Serum Albumin: A Novel Method in Affinity Evaluation" Molecules 25, no. 3: 547. https://doi.org/10.3390/molecules25030547
APA StyleVaneková, Z., Hubčík, L., Toca-Herrera, J. L., Furtműller, P. G., Mučaji, P., & Nagy, M. (2020). Analysis of Binding Interactions of Ramipril and Quercetin on Human Serum Albumin: A Novel Method in Affinity Evaluation. Molecules, 25(3), 547. https://doi.org/10.3390/molecules25030547