The In Vitro Activity of Essential Oils against Helicobacter Pylori Growth and Urease Activity
Abstract
:1. Introduction
2. Results
2.1. Anti-H. Pylori Activity of Essential Oils
2.2. Analysis of Essential Oils
2.3. Antioxidant Analysis
2.4. Urease Inhibitory Analysis
2.5. In Vitro Antimicrobial Activity of Selected Essential Oils against Clinical H. pylori Strains
2.6. Principal Component Analysis (PCA) of Phytochemical Composition and Biological Properties against H. pylori Strain of the Analyzed Essential Oils
3. Discussion
4. Materials and Methods
4.1. Essential Oils
4.2. Analysis of Essential Oils
4.3. Antioxidant Assay
4.4. Bacteria
4.5. Antimicrobial Activity Testing
4.6. Urease Inhibitory Effect
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Makola, D.; Petura, D.A.; Crowe, S.E. Helicobacter pylori infection and related gastrointestinal diseases. J. Clin. Gastroenterol. 2007, 41, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Malfertheiner, P.; Megraud, F.; O’Morain, C.A.; Gisbert, J.P.; Kuipers, E.J.; Axon, A.T.; Bazzoli, F.; Gasbarrini, A.; Atherton, J.; Graham, D.Y.; et al. Management of Helicobacter pylori infection - the Maastricht V/ Florence consensus report. Gut 2017, 66, 646–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molina-Infante, J.; Perez-Gallardo, B.; Fernandez-Bermejo, M.; Hernandez-Alonso, M.; Vinagre, G.; Dueñas, C.; Mateos-Rodriguez, J.M.; Gonzalez-Garcia, G.; Abadia, E.G.; Gisbert, J.P. Clinical trial: Clarithromycin vs. levofloxacinin first-line triple and sequential regiments for Helicobacter pylori eradication. Aliment Pharmacol. Ther. 2010, 31, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Follmer, C. Ureases as a target for the treatment of gastric and urinary infections. J. Clin. Pathol. 2010, 63, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Vale, F.F.; Oleastro, M. Overview of the phytomedicine approaches against Helicobacter pylori. World J. Gastroenterol. 2014, 20, 5594–5609. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.C. Medicinal plant activity on Helicobacter pylori related diseases. World J. Gastroenterol. 2014, 20, 10368–10382. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical And Therapeutic Potential - A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef]
- Bergonzelli, G.E.; Donnicola, D.; Porta, N.; Corthésy-Theulaz, I.E. Essential oils as components of a diet-based approach to management of Helicobacter infection. Antimicrob. Agents Chemother. 2003, 47, 3240–3246. [Google Scholar] [CrossRef] [Green Version]
- Bonifácio, B.V.; dos Santos Ramos, M.A.; da Silva, P.B.; Bauab, T.M. Antimicrobial activity of natural products against Helicobacter pylori: A review. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 54. [Google Scholar] [CrossRef] [Green Version]
- Miguel, G.; Faleiro, L.; Cavaleiro, C.; Salgueiro, L.; Casanova, J. Susceptibility of Helicobacter pylori to essential oil of Dittrichia viscosa subsp. revoluta. Phytother. Res. 2008, 22, 259–263. [Google Scholar] [CrossRef] [Green Version]
- Ohno, T.; Kita, M.; Yamaoka, Y.; Imamura, S.; Yamamoto, T.; Mitsufuji, S.; Kodama, T.; Kashima, K.; Imanishi, J. Antimicrobial activity of essential oils against Helicobacter pylori. Helicobacter 2003, 8, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Harmati, M.; Gyukity-Sebestyen, E.; Dobra, G.; Terhes, G.; Urban, E.; Decsi, G.; Mimica-Dukic, N.; Lasjak, M.; Simin, N.; Pap, B.; et al. Binary mixture of Satureja hortensis and Origanum vulgare subsp. hirtum essential oils: in vivo therapeutic efficiency against Helicobacter pylori infection. Helicobacter 2017, 22. [Google Scholar] [CrossRef] [PubMed]
- Valdivieso-Ugarte, M.; Gomez-Llorente, C.; Plaza-Díaz, J.; Gil, Á. Antimicrobial, Antioxidant, and Immunomodulatory Properties of Essential Oils: A Systematic Review. Nutrients 2019, 11, E2786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’agostino, M.; Tesse, N.; Frippiat, J.P.; Machouart, M.; Debourgogne, A. Essential Oils and Their Natural Active Compounds Presenting Antifungal Properties. Molecules 2019, 24, 3713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, G.; Buchbauer, G. A review on recent research result (2018-2010) on essential oils as antimicrobials and antifungals. A review. Flavour. Fragr. J. 2012, 27, 13–39. [Google Scholar] [CrossRef]
- Tongnuanchan, P.; Benjakul, S. Essential oils: Extraction, bioactivities, and their uses for food preservation. J Food Sci. 2014, 79, R1231–R1249. [Google Scholar] [CrossRef]
- O’Donnell, F.; Smyth, T.J.P.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. Int. J. Antimicrob. Agents 2009, 35, 30. [Google Scholar] [CrossRef] [Green Version]
- Preuss, H.G.; Echard, B.; Enig, M.; Brook, I.; Elliott, T.B. Minimum inhibitory concentrations of herbal essential oils andmonolaurin for gram-positive and gram-negative bacteria. Mol. Cell Biochem. 2005, 272, 29–34. [Google Scholar] [CrossRef]
- Prabuseenivasan, S.; Jayakumar, M.; Ignacimuthu, S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 2006, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Sikkema, J.; De Bont, J.A.M.; Poolman, B. Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem. 1994, 269, 8022–8028. [Google Scholar]
- Veldhuizen, E.J.; Tjeerdsma-van Bokhoven, J.L.; Zweijtzer, C.; Burt, S.A.; Haagsman, H.P. Structural requirements for the antimicrobial activity of carvacrol. J. Agric. Food Chem. 2006, 54, 1874–1879. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhou, F.; Ji, B.P.; Pei, R.S.; Xu, N. The antibacterial mechanism of carvacrol and thymol against Escherichia coli. Lett. Appl. Microbiol. 2008, 47, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Falsafi, T.; Moradi, P.; Mahboubi, M.; Rahimi, E.; Momtaz, H.; Hamedi, B. Chemical composition and anti-Helicobacter pylori effect of Satureja bachtiarica Bunge essential oil. Phytomedicine 2015, 22, 173–177. [Google Scholar] [CrossRef]
- Cox, S.D.; Mann, C.M.; Markham, J.L. Interactions between components of the essential oil of Melaleuca alternifolia. J. Appl. Microbiol. 2001, 91, 492–497. [Google Scholar] [CrossRef]
- Juven, B.J.; Kanner, J.; Schved, F.; Weisslowicz, H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents. J. Appl. Bacteriol. 1994, 76, 626–631. [Google Scholar] [CrossRef]
- Andrews, R.E.; Parks, L.W.; Spence, K.D. Some effects of douglas fir terpenes on certain microorganisms. Appl. Environ. Microbiol. 1980, 40, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Ultee, A.; Bennik, M.H.; Moezelaar, R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [Green Version]
- Ben, H.A.; Ben, H.N. Essential oil from Artemisia phaeolepis: Chemical composition and antimicrobial activities. J. Oleo Sci. 2013, 62, 973–980. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.F.; Lian, D.W.; Chen, Y.Q.; Cai, Y.F.; Zheng, Y.F.; Fan, P.L.; Ren, W.K.; Fu, L.J.; Li, Y.C.; Xie, J.H.; et al. In Vitro and In Vivo Antibacterial Activities of Patchouli Alcohol, a Naturally Occurring Tricyclic Sesquiterpene, against Helicobacter pylori Infection. Antimicrob. Agents Chemother. 2017, 61, e00122-17. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, L.K.; Jawale, B.A.; Sharma, S.; Sharma, H.; Kumar, C.D.; Kulkarni, P.A. Antimicrobial activity of commercially available essential oils against Streptococcus mutans. J. Contemp. Dent. Pract. 2012, 13, 71–74. [Google Scholar] [CrossRef]
- Takao, Y.; Kuriyama, I.; Yamada, T.; Mizoguchi, H.; Yoshida, H.; Mizushina, Y. Antifungal properties of Japanese cedar essential oil from waste wood chips made from used sake barrels. Mol. Med. Rep. 2012, 5, 1163–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matongo, F.; Nwodo, U.U. In vitro assessment of Helicobacter pylori urease inhibition by honey fractions. Arch. Med. Res. 2014, 45, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.A.; Ahmad, M.N.; Obaidullah; Khan, A.; Choudhary, M.I.; Ahmad, W.; Ahmad, M. Urease inhibitors from Indigofera gerardiana Wall. J. Enzyme Inhib. Med. Chem. 2011, 26, 480–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, M.; Anwar, F.; Naz, F.; Mehmood, T.; Saari, N. Anti-Helicobacter pylori and urease inhibition activities of some traditional medicinal plants. Molecules 2013, 18, 2135–2149. [Google Scholar] [CrossRef]
- Pastene, E.; Speisky, H.; García, A.; Moreno, J.; Troncoso, M.; Figueroa, G. In vitro and in vivo effects of apple peel polyphenols against Helicobacter pylori. J. Agric. Food Chem. 2010, 58, 7172–7179. [Google Scholar] [CrossRef]
- Pastene, E.; Troncoso, M.; Figueroa, G.; Alarcón, J.; Speisky, H. Association between polymerization degree of apple peel polyphenols and inhibition of Helicobacter pylori urease. J. Agric. Food Chem. 2009, 57, 416–424. [Google Scholar] [CrossRef]
- Lin, Y.T.; Kwon, Y.I.; Labbe, R.G.; Shetty, K. Inhibition of Helicobacter pylori and associated urease by oregano and cranberry phytochemical synergies. Appl. Environ. Microbiol. 2005, 71, 8558–8564. [Google Scholar] [CrossRef] [Green Version]
- Quílez, A.; Berenguer, B.; Gilardoni, G.; Souccar, C.; de Mendonça, S.; Oliveira, L.F.; Martín-Calero, M.J.; Vidari, G. Anti-secretory, anti-inflammatory and anti-Helicobacter pylori activities of several fractions isolated from Piper carpunya Ruiz & Pav. J. Ethnopharmacol. 2010, 128, 583–589. [Google Scholar] [CrossRef]
- Wei, A.; Shibamoto, T. Antioxidant/lipoxygenase inhibitory activities and chemical compositions of selected essential oils. J. Agric. Food Chem. 2010, 58, 7218–7225. [Google Scholar] [CrossRef]
- Bounatirou, S.; Smiti, S.; Miguel, M.G.; Faleiro, L.; Rejeb, M.N.; Neffati, M.; Costa, M.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chem. 2007, 105, 146–155. [Google Scholar] [CrossRef]
- Bozin, B.; Mimica-Dukic, N.; Simin, N.; Anackov, G. Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J. Agric. Food Chem. 2006, 54, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Ruberto, G.; Baratta, M.T. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 2000, 69, 167–174. [Google Scholar] [CrossRef]
- Teixeira, B.; Marques, A.; Ramos, C.; Neng, N.R.; Nogueira, J.M.F.; Saraiva, J.A.; Nunes, M.L. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind. Crops Prod. 2013, 43, 587–595. [Google Scholar] [CrossRef]
- Hagag, A.A.; Amin, S.M.; Emara, M.H.; Abo-Resha, S.E. Gastric mucosal oxidative stress markers in children with Helicobacter pylori infection. Infect. Disord. Drug Targets (Formerly Curr. Drug Targets Infect. Disord.) 2018, 18, 60–67. [Google Scholar] [CrossRef]
- Chun, S.S.; Vattem, D.A.; Lin, Y.T.; Shetty, K. Phenolic antioxidants from clonal oregano (Origanum vulgare) with antimicrobial activity against Helicobacter pylori. Process Biochem. 2005, 40, 809–816. [Google Scholar] [CrossRef]
- Akyön, Y. Effect of antioxidants on the immune response of Helicobacter pylori. Clin. Microbiol. Infect. 2002, 8, 438–441. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Kim, H. Astaxanthin and β-carotene in Helicobacter pylori-induced Gastric Inflammation: A Mini-review on Action Mechanisms. J. Cancer Prev. 2017, 22, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Joulain, D.; König, W.A. The Atlas of Spectral Data of Sesquiterpene Hydrocarbons; E.B.-Verlag: Hamburg, Germany, 1998. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography /Mass Spectrometry, ed. 4.1. 2017. Available online: http://essentialoilcomponentsbygcms.com/ (accessed on 15 November 2019).
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Tech. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2009, 112, 654–658. [Google Scholar] [CrossRef]
- Korona-Glowniak, I.; Cichoz-Lach, H.; Siwiec, R.; Andrzejczuk, S.; Glowniak, A.; Matras, P.; Malm, A. Antibiotic Resistance and Genotypes of Helicobacter pylori Strains in Patients with Gastroduodenal Disease in Southeast Poland. J. Clin. Med. 2019, 8, 1071. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are available from the authors. |
Essential Oil Name | Plant Name, Family | Supplier | MIC (mg/L) | MBC (mg/L) | MBC/MIC Ratio |
---|---|---|---|---|---|
Thyme | Thymus vulgaris L. Lamiaceae | Avicenna-Oil | 15.6 | 15.6 | 1 |
Lemongrass | Cymbopogon schoenanthus (L.) Spreng, Poaceae | Avicenna-Oil | 15.6 | 15.6 | 1 |
Ylang-Ylang | Related to Cananga odorata Lam. Hook et Thomson, Annonaceae | Avicenna-Oil | 15.6 | 62.5 | 1 |
Cedarwood | Juniperus virginiana L., Cupressaceae | Bamer | 15.6 | 62.5 | 4 |
Lemon balm no. 2 | Melissa spp, Lamiaceae | Kej | 15.6 | 62.5 | 4 |
Basil | Ocimum basilicum L., Lamiaceae | Mogo | 15.6 | 250 | 16 |
Niaouli | Melaleuca viridiflora Gaertn, Myrtaceae | Bamer | 31.3 | 31.3 | 1 |
Oregano | Origanum vulgare L. Lamiaceae | Bamer | 31.3 | 31.3 | 1 |
Clove | Syzygium aromaticum L., Myrtaceae | Bamer | 31.3 | 31.3 | 1 |
Lemon balm no. 1 | Melissa spp, Lamiaceae | Avicenna-Oil | 31.3 | 62.5 | 2 |
Sandalwood | Santalum album L., Santalaceae | Bamer | 31.3 | 62.5 | 1 |
Petitgrain | Citrus aurantium L. Rutaceae | Bamer | 31.3 | 62.5 | 2 |
Kajeput | Melaleuca leucadendra L., Myrtaceae | Bamer | 31.3 | 125 | 4 |
Tea tree | Melaleuca alternifolia Maiden et Betche, Myrtaceae | Avicenna-Oil | 62.5 | 62.5 | 1 |
Rosemary | Rosmarinus officinalis Lindl., Lamiaceae | Avicenna-Oil | 62.5 | 62.5 | 1 |
Geranium | Pelargonium odorantissimum (L.) L’Hér, Geraniaceae | Avicenna-Oil | 62.5 | 62.5 | 1 |
Sage | Salvia hispanica L., Lamiaceae | Avicenna-Oil | 62.5 | 62.5 | 2 |
Lavender | Lavandula angustifolia Mill., Lamiaceae | Bamer | 62.5 | 125 | 2 |
Marjoram | Origanum majorana L., Lamiaceae | Dr.Beta | 62.5 | 250 | 4 |
Peppermint | Mentha piperita L., Lamiaceae | Ejta | 62.5 | 500 | 8 |
Hyssop | Hyssopus spp. L., Lamiaceae | Vera | 62.5 | 500 | 8 |
Eucalyptus | Eucalyptus globulus Labill., Myrtaceae | Kej | 62.5 | 500 | 8 |
Camphor | Cinnamomum camphora Ness et Eberm. Lauraceae | Bamer | 125 | 125 | 1 |
Pine needle | Pinus silvestris L., Pinaceae | Kej | 125 | 125 | 1 |
Lemon | Citrus limon (L.) Osbeck, Rutaceae | Avicenna-Oil | 125 | 250 | 2 |
Silver fir | Abies alba Mill, Pinaceae | Avicenna-Oil | 125 | 250 | 2 |
Thymol | Reference | Sigma | 7.8 | 31.3 | 4 |
Menthol | Reference | Sigma | 15.6 | 31.3 | 2 |
Bisabolol | Reference | Sigma | 31.3 | 31.3 | 1 |
No. | Compounds | RI a | Chemically Analyzed Essential Oils b | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PI | LE | SF | TY | LG | CE | ME | MA | OR | |||
1 | Tricyclene | 922 | 0.4 | ||||||||
2 | α-Thujene | 926 | 0.4 | 0.9 | |||||||
3 | α-Pinene | 936 | 31.1 | 2.8 | 15.5 | 1.4 | 0.1 | 2.3 | 2.2 | ||
4 | Camphene | 950 | 1.3 | 0.1 | 4.0 | 0.7 | 0.6 | 0.2 | |||
5 | Sabinene | 973 | 2.3 | 0.2 | 0.3 | ||||||
6 | β-Pinene | 978 | 20.4 | 17.0 | 4.6 | 0.3 | 0.7 | 0.1 | |||
7 | Myrcene | 988 | 1.7 | 1.9 | 0.4 | 1.6 | 0.7 | 1.7 | |||
8 | Δ3-Carene | 1009 | 15.0 | 5.1 | 0.5 | ||||||
9 | α-Terpinene | 1017 | 0.1 | 0.1 | 2.3 | 9.8 | 1.1 | ||||
10 | p-Cymene | 1026 | 1.2 | 1.7 | 0.6 | 22.5 | 3.1 | 14.6 | |||
11 | Limonene | 1030 | 12.1 | 58.1 | 9.1 | 0.8 | 0.2 | 4.4 | 1.0 | 1.1 | |
12 | 1,8-Cineole | 1034 | 0.4 | 4.1 | 0.8 | ||||||
13 | (Z)- β-Ocimene | 1036 | 0.2 | ||||||||
14 | (E)- β-Ocimene | 1046 | 0.1 | 0.1 | |||||||
15 | γ-Terpinene | 1059 | 0.1 | 9.1 | 8.1 | 19.3 | 2.4 | ||||
16 | Terpinolene | 1086 | 1.7 | 0.4 | 0.3 | 3.6 | |||||
17 | Linalool | 1101 | 0.2 | 5.5 | 1.0 | 0.8 | 2.6 | ||||
18 | (Z)-Limonene oxide | 1135 | 0.1 | ||||||||
19 | (E)-Limonene oxide | 1139 | 0.1 | ||||||||
20 | Isopinocarveol | 1146 | 0.1 | ||||||||
21 | Citronellal | 1152 | 0.3 | 31.2 | |||||||
22 | (Z)-α-Dihydroterpineol | 1154 | 0.2 | 0.4 | |||||||
23 | Isopulegol | 1163 | |||||||||
24 | Borneol | 1178 | 0.6 | 1.0 | 0.5 | ||||||
25 | Terpinen-4-ol | 1187 | 0.6 | 39.6 | 0.2 | ||||||
26 | α-Terpineol | 1199 | 0.5 | 0.1 | 1.0 | 1.4 | 0.1 | 3.3 | 0.4 | ||
27 | Fenchyl acetate | 1219 | 0.2 | ||||||||
28 | Citronellol | 1227 | 13.9 | ||||||||
29 | Neral | 1239 | 1.3 | 32.6 | 0.2 | ||||||
30 | Carvacrol methyl ether | 1242 | 0.2 | ||||||||
31 | Linalyl acetate | 1250 | 0.2 | ||||||||
32 | Geraniol | 1252 | 9.3 | 21.2 | |||||||
33 | Geranial | 1268 | 2.2 | 42.8 | 0.5 | ||||||
34 | Bornyl acetate | 1286 | 5.1 | 53.2 | |||||||
35 | Isobornyl acetate | 1289 | 0.1 | 1.9 | |||||||
36 | Thymol | 1301 | 45.4 | 0.5 | |||||||
37 | Carvacrol | 1310 | 3.8 | 67.7 | |||||||
38 | Cytronellyl acetate | 1346 | 5.4 | ||||||||
39 | m-Eugenol | 1355 | 1.1 | ||||||||
40 | Naryl acetate | 1355 | 0.5 | ||||||||
41 | α-Longipinene | 1356 | 0.1 | ||||||||
42 | Geranyl acetate | 1374 | 0.4 | 5.6 | 4.2 | ||||||
43 | Cedr-9-en | 1392 | 0.3 | ||||||||
44 | β-Elemene | 1393 | 0.3 | 2.2 | |||||||
45 | 204 [M]+, 119(100), 93(82) | 1396 | 1.4 | ||||||||
46 | 7-epi-α-Cedrene | 1405 | 0.2 | ||||||||
47 | Longifolene | 1418 | 0.8 | 0.1 | |||||||
48 | (E)-β-Caryophyllene | 1426 | 4.2 | 0.4 | 0.7 | 2.6 | 2.5 | 0.3 | 2.9 | ||
49 | α-Cedrene | 1428 | 22.9 | ||||||||
50 | (E)-β-Farnesene | 1435 | 0.1 | ||||||||
51 | β-Cedrene | 1437 | 6.6 | ||||||||
52 | Thujopsene | 1447 | 21.8 | ||||||||
53 | Aromadendrene | 1449 | 1.3 | ||||||||
54 | α-Humulene | 1463 | 0.1 | 0.2 | 0.3 | 0.1 | |||||
55 | allo-Aromadendrene | 1471 | 0.6 | ||||||||
56 | 204 [M]+, 119(100), 93(53) | 1476 | 1.0 | ||||||||
57 | ar-Curcumene | 1486 | 1.6 | ||||||||
58 | Germacrene D | 1489 | 0.3 | 1.9 | |||||||
59 | cis-β-Guaiene | 1500 | 1.1 | ||||||||
60 | Ledene | 1501 | 1.3 | ||||||||
61 | α-Muurolene | 1502 | 0.8 | ||||||||
62 | Bicyclogermacrene | 1506 | 1.3 | ||||||||
63 | β-Bisabolene | 1509 | 0.2 | ||||||||
64 | α-Cuprenene | 1515 | 4.0 | ||||||||
65 | Cuparene | 1520 | 7.9 | ||||||||
66 | γ-Cadinene | 1520 | 1.3 | ||||||||
67 | Cubebol | 1524 | 1.0 | ||||||||
68 | ζ-Cadinene | 1526 | 1.4 | ||||||||
69 | 204 [M]+, 173(100), 119(60) | 1526 | 3.8 | ||||||||
70 | trans-Calamenene | 1531 | 1.5 | ||||||||
71 | γ-Cuprenene | 1545 | 1.4 | ||||||||
72 | Elemol | 1554 | 3.1 | ||||||||
73 | Carryophyllene oxide | 1592 | 0.1 | 0.8 | 0.2 | 0.7 | |||||
74 | Cedrol | 1622 | 0.2 | 15.1 | |||||||
75 | 12-epi-Cedrol | 1642 | 0.6 | ||||||||
76 | γ-Eudesmol | 1645 | 0.6 | ||||||||
77 | α-Cadinol | 1656 | 3.1 | ||||||||
78 | α-Eudesmol | 1671 | 1.2 | ||||||||
79 | β-Bisabolol | 1679 | 0.6 | ||||||||
Total | 95.8 | 99.7 | 98.6 | 99.6 | 99.3 | 96.7 | 91.4 | 95.4 | 99.0 | ||
Monoterpene hydrocarbons | 84.7 | 94.0 | 39.9 | 38.0 | 1.2 | 4.4 | 42.2 | 23.4 | |||
Monoterpene alcohols | 0.8 | 0.3 | 1.6 | 58.1 | 10.4 | 37.4 | 47.0 | 72.7 | |||
Monoterpene aldehydes | 3.5 | 75.7 | 32.9 | ||||||||
Monoterpene esters | 5.2 | 0.9 | 55.3 | 0.2 | 5.6 | 9.6 | |||||
Other oxygenated monoterpenoids | 0.2 | 0.2 | |||||||||
Sesquiterpene hydrocarbons | 5.1 | 0.7 | 0.8 | 2.9 | 4.7 | 75.5 | 5.0 | 6.2 | 2.9 | ||
Oxygenated sesquiterpenoids | 0.1 | 1.0 | 0.2 | 1.7 | 21.2 | 3.1 |
Essential Oil | EC50 ± SD (mg/mL) | AAI |
---|---|---|
Oregano | 0.70+/−0.03 | 0.114 |
Thyme | 0.71+/−0.05 | 0.110 |
Lemon balm | 0.78+/−0.08 | 0.102 |
Tea tree | 0.93+/−0.03 | 0.085 |
Lemongrass | 2.74+/−0.03 | 0.029 |
Cedarwood | 5.16+/−0.10 | 0.015 |
Pine needle | >10.00 | <0.08 |
Silver fir | >10.00 | <0.08 |
Lemon | >10.00 | <0.08 |
Essential Oil | IC50 (mg/L) | MIC (mg/L) |
---|---|---|
Cedarwood | 5.3 | 15.6 |
Pine needle | 18.4 | 125 |
Lemon | 35.6 | 125 |
Silver fir | 37.9 | 125 |
Tea tree | 39.1 | 62.5 |
Lemongrass | 67.1 | 15.6 |
Oregano | 208.3 | 31.3 |
Thyme | 248.7 | 15.6 |
Lemon balm | >1049.9 | 15.6 |
PCA Group. | Essential Oil | MIC (mg/L) | Urease Inhibitory Activity IC50 (mg/L) | AAI | |
---|---|---|---|---|---|
H. pylori ATCC 43504 | MIC50/90 for Clinical H. pylori Strains | ||||
I | Silver fir | 125 | 250/250 | 37.9 | <0.08 |
Pine needle | 125 | 250/250 | 18.4 | <0.08 | |
Lemon | 125 | 250/250 | 35.6 | <0.08 | |
II | Oregano | 31.3 | 31.3/62.5 | 208.3 | 0.114 |
Thyme | 15.6 | 62.5/125 | 248.7 | 0.110 | |
Tea tree | 125 | 125/250 | 39.1 | 0.085 | |
III | Lemongrass | 15.6 | 62.5/125 | 67.1 | 0.029 |
Lemon balm | 15.6 | 62.5/125 | >1049.9 | 0.102 | |
Cedarwood | 15.6 | 31.3/62.5 | 5.3 | 0.015 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korona-Glowniak, I.; Glowniak-Lipa, A.; Ludwiczuk, A.; Baj, T.; Malm, A. The In Vitro Activity of Essential Oils against Helicobacter Pylori Growth and Urease Activity. Molecules 2020, 25, 586. https://doi.org/10.3390/molecules25030586
Korona-Glowniak I, Glowniak-Lipa A, Ludwiczuk A, Baj T, Malm A. The In Vitro Activity of Essential Oils against Helicobacter Pylori Growth and Urease Activity. Molecules. 2020; 25(3):586. https://doi.org/10.3390/molecules25030586
Chicago/Turabian StyleKorona-Glowniak, Izabela, Anna Glowniak-Lipa, Agnieszka Ludwiczuk, Tomasz Baj, and Anna Malm. 2020. "The In Vitro Activity of Essential Oils against Helicobacter Pylori Growth and Urease Activity" Molecules 25, no. 3: 586. https://doi.org/10.3390/molecules25030586
APA StyleKorona-Glowniak, I., Glowniak-Lipa, A., Ludwiczuk, A., Baj, T., & Malm, A. (2020). The In Vitro Activity of Essential Oils against Helicobacter Pylori Growth and Urease Activity. Molecules, 25(3), 586. https://doi.org/10.3390/molecules25030586