Development and Application of a Novel QuEChERS Method for Monitoring of Tributyltin and Triphenyltin in Bottom Sediments of the Odra River Estuary, North Westernmost Part of Poland
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimisation of the QuEChERS Extraction Procedure
2.1.1. Effect of Composition of Solutions and QuEChERS Salts
2.1.2. Effect of d-SPE Clean-Up
2.1.3. Effect of Extraction Time and Agitation Technique
2.2. Method Validation
2.2.1. Lower Limit of Quantification and Limit of Detection
2.2.2. Analytical Range
2.2.3. Accuracy and Precision
2.2.4. Selectivity and Carry-Over
2.2.5. Stability
2.2.6. Estimation of Trueness
2.2.7. The Matrix Effect
2.2.8. Extraction Recovery
2.3. Application of the Method to the Real Environmental Samples
3. Materials and Methods
3.1. Reagents
3.2. Standard Solutions
3.3. Chromatographic Separation Conditions and Parameters of Mass Spectrometry
3.4. Sample Collection and Preparation
3.5. Optimisation of the QuEChERS Extraction Procedure
3.6. Extraction Procedure
3.7. Method Validation
3.8. Real Sample Analysis
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Geographic coordinates | Localisation | MEA TBT [%] | MEA TPhT [%] | RE TBT [%] | RE TPhT [%] | pH | Conductivity [mS] | TOC [%] | N [%] | H [%] | AVS [%] | P [mg/kg] | Heavy Metals [mg/kg] | PAH [µg/kg] | Sand [%] | Clay [%] | Silt [%] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N 53°46′881′′ E 14°35′224” | Skoszewska Bay | 79 | 77 | 97 | 95 | 7.1 | 1.63 | 3.82 | 0.45 | 0.62 | 0.26 | 0.061 | 1808 | 1516 | 55 | 1 | 43 |
N 53°55.698′ E 014°45.278′ | South part of Cicha Bay | 80 | 63 | 92 | 88 | 7.2 | 1.92 | 11.8 | 1.34 | 1.57 | 0.61 | 0.094 | 1977 | 4460 | 38 | 1 | 61 |
N 53°51.209′ E 014°18.107′ | Karsibor | 86 | 86 | 98 | 94 | 7 | 5.01 | 1.48 | 0.41 | 0.32 | 0.06 | 0.036 | 404 | 622 | 65 | 1 | 34 |
N 53°45.638′ E 014°17.685′ | Szczecin Lagoon | 71 | 73 | 91 | 89 | 7.4 | 3.55 | 6.85 | 0.94 | 1.15 | 0.38 | 0.128 | 4183 | 4091 | 51 | 1 | 48 |
N 53°42.946′ E 014°21.396′ | Warnolecka Bay | 70 | 72 | 85 | 86 | 7.7 | 2.51 | 7.99 | 0.99 | 1.28 | 0.24 | 0.105 | 3477 | 6517 | 29 | 2 | 69 |
N 53°39.319′ E 014°36.367′ | Roztoka Odrzanska | 83 | 64 | 98 | 91 | 6.9 | 1.13 | 6.53 | 0.6 | 1.16 | 0.4 | 0.302 | 2497 | 6517 | 52 | 1 | 46 |
N 53°27.336′ E 014°35.434′ | West Odra River | 58 | 58 | 87 | 85 | 6.9 | 1.13 | 7.04 | 0.665 | 1.24 | 0.53 | 0.297 | 2594 | 9828 | 26 | 3 | 71 |
N 53°26.300′ E 014°35.280′ | Elevator „Ewa” | 74 | 76 | 88 | 91 | 6.9 | 1 | 2.87 | 0.26 | 0.52 | 0.08 | 0.168 | 1300 | 2247 | 49 | 3 | 48 |
N 54°00.598′ E 014°46.232′ | Kamienski Lagoon | 92 | 92 | 106 | 99 | 7.3 | 3.15 | 0.09 | 0.03 | 0.15 | 0 | 0.008 | 51 | 3926 | 97 | 2 | 1 |
N 53°35.917′ E 014°34.886′ | Police | 68 | 62 | 90 | 87 | 6.8 | 1.273 | 0.13 | 0.03 | 0.14 | 0.03 | 0.011 | 268 | 4924 | 96 | 1 | 3 |
Extraction Methods | Extraction Solvents | Derivatization | Instrument | LOD for TBT [ng/g] | LOD for TPhT [ng/g] | Ref. |
---|---|---|---|---|---|---|
QuEChERS | acetonitrile, H2O, formic acid | No | LC–MS/MS | 0.6 | 2.4 | This work |
ASE | Methanol, H2O acetic acid and tropolone | NaBT4 | GC–FPD | 19 | 14 | [21] |
SPE | Tetrahydrofurane, hydrochloric acid, tropolone, hexane | Grignard′s reagent | GC–MS/MS | 0.4–1.5 | – | [45] |
SPME | Hydrochloric acid, methanol | NaBT4 | GC–FPD | 1.7 | 20 | [46] |
MAE | Acetic acid, tartaric acid, iso-octane | NaBT4 | GC–MS | 126 | – | [47] |
References
- Sousa, A.; Pastorinho, M.R.; Takahashi, S.; Tanabe, S. History on organotin compounds, from snails to humans. Environ. Chem. Lett. 2014, 12, 117–137. [Google Scholar] [CrossRef]
- Hoch, M. Organotin compounds in the environment—An overview. Appl. Geochem. 2001, 16, 719–743. [Google Scholar] [CrossRef]
- Filipkowska, A.; Kowalewska, G. Butyltins in sediments from the Southern Baltic coastal zone: Is it still a matter of concern, 10 years after implementation of the total ban? Mar. Pollut. Bull. 2019, 146, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Matsuno-Yagi, A.; Hatefi, Y. Studies on the mechanism of oxidative phosphorylation. ATP synthesis by submitochondrial particles inhibited at F0 by venturicidin and organotin compounds. J. Biol. Chem. 1993, 268, 6168–6173. [Google Scholar] [PubMed]
- Kotake, Y. Molecular mechanisms of environmental organotin toxicity in mammals. Biol. Pharm. Bull. 2012, 35, 1876–1880. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Nishikawa, J.; Hiromori, Y.; Yokoyama, H.; Koyanagi, M.; Takasuga, S.; Ishizaki, J.; Watanabe, M.; Isa, S.; Utoguchi, N.; et al. Trialkyltin compounds bind retinoid X receptor to alter human placental endocrine functions. Mol. Endocrinol. 2005, 19, 2502–2516. [Google Scholar] [CrossRef] [Green Version]
- Novelli, A.A.; Argese, E.; Tagliapietra, D.; Bettiol, C.; Ghirardini, A.V. Toxicity of tributyltin and triphenyltin to early life–stages of Paracentrotus lividus (Echinodermata: Echinoidea). Environ. Toxicol. Chem. 2002, 21, 859–864. [Google Scholar] [CrossRef]
- Michel, P.; Averty, B. Distribution and Fate of Tributyltin in Surface and Deep Waters of the Northwestern Mediterranean. Environ. Sci. Technol. 1999, 33, 2524–2528. [Google Scholar] [CrossRef]
- Gao, J.-M.; Wu, L.; Chen, Y.-P.; Zhou, B.; Guo, J.-S.; Zhang, K.; Ouyang, W.-J. Spatiotemporal distribution and risk assessment of organotins in the surface water of the Three Gorges Reservoir Region, China. Chemosphere 2017, 171, 405–414. [Google Scholar] [CrossRef]
- Jones-Lepp, T.L.; Varner, K.E.; Heggem, D. Monitoring Dibutyltin and Triphenyltin in Fresh Waters and Fish in the United States Using Micro–Liquid Chromatography–Electrospray/Ion Trap Mass Spectrometry. Arch. Environ. Con. Toxicol. 2004, 46, 90–95. [Google Scholar] [CrossRef]
- Yozukmaz, A.; Sunlu, S.F.; Sunlu, U.; Ozsuer, M. The Determination of Organotin Compounds Levels in Sediment Samples from Turkish Aegean Sea Coast. Turk. J. Fish. Aquat Sci. 2011, 11, 649–666. [Google Scholar] [CrossRef]
- Lofrano, G.; Libralato, G.; Alfieri, A.; Carotenuto, M. Metals and tributyltin sediment contamination along the Southeastern Tyrrhenian Sea coast. Chemosphere 2016, 144, 399–407. [Google Scholar] [CrossRef]
- Cole, R.F.; Mills, G.A.; Parker, R.; Bolam, T.; Birchenough, A.; Kröger, S.; Fones, G.R. Trends in the analysis and monitoring of organotins in the aquatic environment. Trends Environ. Anal. 2015, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- M. Tzollas, N.; A. Zachariadis, G.; Rosenberg, E. Speciation Study of Trialkyl– and Triphenyl– Tin by Liquid Chromatography Using Ion Trap TOF Tandem MS and Atmospheric Pressure Chemical Ionization. Curr. Anal. Chem. 2013, 9, 279–287. [Google Scholar] [CrossRef]
- Smedes, F.; De Jong, A.S.; Davies, I.M. Determination of (mono–, di– and) tributyltin in sediments. Analytical methods. J. Environ. Monit. 2000, 2, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Astruc, A.; Astruc, M.; Pinel, R.; Potin-Gautier, M. Speciation of butyltin compounds by on–line HPLC–ETAA of tropolone complexes in environmental samples. Appl. Organomet. Chem. 1992, 6, 39–47. [Google Scholar] [CrossRef]
- Morabito, R.; Massanisso, P.; Quevauviller, P. Derivatization methods for the determination of organotin compounds in environmental samples. Trends Anal. Chem. 2000, 19, 113–119. [Google Scholar] [CrossRef]
- Brown, K.A. Sulphur in the environment: A review. Environ. Pollut. B 1982, 3, 47–80. [Google Scholar] [CrossRef]
- Fernández-Escobar, I.; Gibert, M.; Messeguer, À.; Bayona, J.M. Complete Elimination of Interferences in the Organotin Determination by Oxidation with Dimethyldioxirane Combined with Alumina Cleanup. Anal. Chem. 1998, 70, 3703–3707. [Google Scholar] [CrossRef]
- Marr, I.L.; White, C.; Ristau, D.; Wardell, J.L.; Lomax, J. Interference from elemental sulphur in the determination of organotins by gas chromatography with flame photometric detection. Appl. Organomet. Chem. 1997, 11, 11–19. [Google Scholar] [CrossRef]
- Wasik, A.; Radke, B.; Bolałek, J.; Namieśnik, J. Optimisation of pressurised liquid extraction for elimination of sulphur interferences during determination of organotin compounds in sulphur-rich sediments by gas chromatography with flame photometric detection. Chemosphere 2007, 68, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, D.-R.; Dust, J.M. Overview of the current status of sediment chemical analysis: Trends in analytical techniques. Environ. Rev. 2010, 18, 37–59. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid–phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [PubMed]
- Lehotay, S.J.; Kok, A.D.; Hiemstra, M.; Bodegraven, P.V. Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection. J. AOAC Int. 2005, 88, 595–614. [Google Scholar]
- Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.M.; Silva, C.; Medina, S.; Câmara, J.S. QuEChERS – Fundamentals, relevant improvements, applications and future trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef]
- Kim, L.; Lee, D.; Cho, H.-K.; Choi, S.-D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019, 22, e00063. [Google Scholar] [CrossRef]
- Soboń, A.; Szewczyk, R.; Długoński, J. Tributyltin (TBT) biodegradation induces oxidative stress of Cunninghamella echinulata. Int. Biodeter. Biodegr. 2016, 107, 92–101. [Google Scholar] [CrossRef]
- Staniszewska, M.; Radke, B.; Namieśnik, J.; Bolałek, J. Analytical methods and problems related to the determination of organotin compounds in marine sediments. Int. J. Environ. Anal. Chem. 2008, 88, 747–774. [Google Scholar] [CrossRef]
- González-Curbelo, M.Á.; Lehotay, S.J.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Use of ammonium formate in QuEChERS for high–throughput analysis of pesticides in food by fast, low–pressure gas chromatography and liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2014, 1358, 75–84. [Google Scholar] [CrossRef]
- European Committee for Standardization. Foods of Plant Origin – Multimethod for the Determination of Pesticide Residues using GC– and LC–Based Analysis following Acetonitrile Extraction/Partitioning and Clean-up by Dispersive SPE – Modular QuEChERS–Method; CEN–EN 15662; European Committee for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- Lehotay, S.J. Determination of pesticide residues in foods by acetonitrile extraction and partitioning with magnesium sulfate: Collaborative study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar]
- Hoch, M.; Alonso-Azcarate, J.; Lischick, M. Adsorption behavior of toxic tributyltin to clay–rich sediments under various environmental conditions. Environ. Toxicol. Chem. 2002, 21, 1390–1397. [Google Scholar] [CrossRef] [PubMed]
- Bangkedphol, S.; Keenan, H.E.; Davidson, C.; Sakultantimetha, A.; Songsasen, A. The partition behavior of tributyltin and prediction of environmental fate, persistence and toxicity in aquatic environments. Chemosphere 2009, 77, 1326–1332. [Google Scholar] [CrossRef] [PubMed]
- González-Toledo, E.; Compañó, R.; Granados, M.; Dolors Prat, M. Detection techniques in speciation analysis of organotin compounds by liquid chromatography. Trends Anal. Chem. 2003, 22, 26–33. [Google Scholar] [CrossRef]
- Cabrera Lda, C.; Caldas, S.S.; Prestes, O.D.; Primel, E.G.; Zanella, R. Evaluation of alternative sorbents for dispersive solid–phase extraction clean-up in the QuEChERS method for the determination of pesticide residues in rice by liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2016, 39, 1945–1954. [Google Scholar] [CrossRef]
- Shirsath, S.R.; Sonawane, S.H.; Gogate, P.R. Intensification of extraction of natural products using ultrasonic irradiations—A review of current status. Chem. Eng. Process. 2012, 53, 10–23. [Google Scholar] [CrossRef]
- Betz, J.M.; Brown, P.N.; Roman, M.C. Accuracy, precision, and reliability of chemical measurements in natural products research. Fitoterapia 2011, 82, 44–52. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized guidelines for single–laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- International Organization for Standarization. Reference Materials–Good Practice in Using Reference Materials; ISO Guide 33:2015; International Organization for Standarization: Geneva, Switzerland, 2015. [Google Scholar]
- International Organization for Standarization. Accuracy (trueness and precision) of measurement methods and results–parts 1–6; ISO 5725–1:1994; International Organization for Standarization: Geneva, Switzerland, 1994. [Google Scholar]
- Ouakhssase, A.; Chahid, A.; Choubbane, H.; Aitmazirt, A.; Addi, E.A. Optimization and validation of a liquid chromatography/tandem mass spectrometry (LC–MS/MS) method for the determination of aflatoxins in maize. Heliyon 2019, 5, e01565. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Yang, S.; Wang, P.G. Matrix effects and application of matrix effect factor. Bioanalysis 2017, 9, 1839–1844. [Google Scholar] [CrossRef] [Green Version]
- Filipkowska, A.; Kowalewska, G.; Pavoni, B.; Łęczyński, L. Organotin compounds in surface sediments from seaports on the Gulf of Gdańsk (southern Baltic coast). Environ. Monit. Assess. 2011, 182, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Filipkowska, A.; Kowalewska, G.; Pavoni, B. Organotin compounds in surface sediments of the Southern Baltic coastal zone: A study on the main factors for their accumulation and degradation. Environ. Sci. Pollut. Res. 2014, 21, 2077–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Z.; Qian, Y.; Ge, N.; Zhang, J.; Liu, Y.; Cao, Y. Determination of butyltin and phenyltin analogues in sea products by Grignard derivatization and gas chromatography–triple quadrupole tandem mass spectrometry. Anal. Methods 2014, 6, 9333–9339. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, J.; He, B.; Xu, W.; Li, X.; Jiang, G. Organotin compounds in surface sediments from selected fishing ports along the Chinese coast. Chin. Sci. Bull. 2013, 58, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Flores, M.; Bravo, M.; Pinochet, H.; Maxwell, P.; Mester, Z. Tartaric acid extraction of organotin compounds from sediment samples. Microchem. J. 2011, 98, 129–134. [Google Scholar] [CrossRef]
Sample Availability: Samples of the bottom sediments are not available from the authors. |
Composition Number | Aqueous Solution | Organic Solution |
---|---|---|
1 | MiliQ water | Acetonitrile |
2 | 30 mM KH2PO4 solution in water (pH = 7) | Acetonitrile |
3 | MiliQ water | Acetonitrile + 5% formic acid |
4 | 30 mM KH2PO4 solution in water (pH = 7) | Acetonitrile + 5% formic acid |
TBT | ||||
Nominal Concentration (ng/g) | 1 | 3 | 2500 | 4000 |
Within-run precision (%) (n = 5) | 1.5–2.7 a | 2.8–3.9 | 5.3–6.2 | 2.1–3.0 |
Within-run accuracy (%) (n = 5) | 95–102 b | 85–104 | 98–106 | 98–101 |
Between-run precision (%) (n = 15) | 1.9 a | 3.5 | 5.6 | 2.6 |
Between-run accuracy (%) (n = 15) | 102 b | 99 | 103 | 100 |
TPhT | ||||
Nominal concentration (ng/g) | 5 | 15 | 2500 | 4000 |
Within-run precision (%) (n = 5) | 2.2–6.6 a | 3.2–9.3 | 4.0–7.6 | 3.7–9.5 |
Within-run accuracy (%) (n = 5) | 108–117 b | 91–97 | 97–102 | 100–104 |
Between-run precision (%) (n = 15) | 4.3 a | 6.8 | 5.7 | 5.7 |
Between-run accuracy (%) (n = 15) | 112 b | 95 | 101 | 102 |
TBT | TPhT | ||||
---|---|---|---|---|---|
3 ng/g | 4000 ng/g | 15 ng/g | 4000 ng/g | ||
Long-term stability | 114 | 113 | 113 | 112 | |
Short-term stability | 97 | 104 | 92 | 95 | |
Freeze/thaw stability | 114 | 104 | 90 | 91 | |
Stability in autosampler | After 24 h | 99 | 98 | 110 | 102 |
After 48 h | 100 | 99 | 112 | 105 |
Sediment Code | pH | Conductivity [mS] | TOC [%] | N [%] | H [%] | AVS [%] | P [%] | Heavy Metals [mg/kg] | PAH [µg/kg] | Sand [%] (0.063–1 mm) | Silt [%] (0.063–0.002 mm) | Clay [%] (<0.002 mm) | TBT [ng/g] | TPhT [ng/g] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 7.0 | 0.90 | 7.07 | 0.53 | 1.05 | 0.12 | 0.208 | 2399 | 9423 | 35 | 62 | 3 | 3296 | <5 |
S2 | 6.9 | 1.13 | 6.53 | 0.6 | 1.16 | 0.4 | 0.302 | 2497 | 9828 | 27 | 70 | 3 | 3884 | <5 |
S3 | 6.9 | 1.00 | 2.41 | 0.24 | 0.49 | 0.08 | 0.152 | 1213 | 2247 | 51 | 46 | 3 | 142 | 90 |
S4 | 6.7 | 0.95 | 8.81 | 0.66 | 1.24 | 0.35 | 0.297 | 2804 | 9625 | 30 | 67 | 3 | 1016 | <5 |
S5 | 6.7 | 0.74 | 8.37 | 0.83 | 1.4 | 0.16 | 0.399 | 3123 | no data | 21 | 75 | 4 | 345 | <5 |
S6 | 6.6 | 8.00 | 7.83 | 1.04 | 1.38 | 0.44 | 0.137 | 1920 | 2019.4 | 35 | 63 | 2 | 213 | <5 |
S7 | 6.9 | 1.02 | 15.4 | 1.37 | 2.21 | 0.9 | 0.213 | 2814 | 73595 | 24 | 74 | 3 | 220 | <5 |
S8 | 6.7 | 1.07 | 7.67 | 0.75 | 1.42 | 0.38 | 0.794 | 3318 | no data | 34 | 63 | 3 | 750 | <5 |
S9 | 7.1 | 0.88 | 9.13 | 0.91 | 1.43 | 0.1 | 0.136 | 1704 | no data | 32 | 66 | 3 | 193 | <5 |
S10 | 6.8 | 1.15 | 7.57 | 0.82 | 1.51 | 0.27 | 0.385 | 3710 | no data | 14 | 82 | 4 | 5263 | 9 |
Compound | [M+H]+ Ion | Quantitative Product Ion | DP [V] | CE [V] | EP [V] | CXP [V] | Qualitative Product Ion | DP [V] | CE [V] | EP [V] |
---|---|---|---|---|---|---|---|---|---|---|
Tributyltin | 291 | 179 | 71 | 19 | 19 | 12 | 122 | 71 | 10 | 33 |
Tributyltin deuterated | 318 | 190 | 76 | 21 | 19 | 14 | 126 | 76 | 37 | 33 |
Triphenlyltin | 351 | 196 | 126 | 10 | 37 | 14 | 119 | 126 | 10 | 41 |
Sample Number | Geographic Coordinates | Depth of Sampling Measured from Water Surface [m] | Localization | |
---|---|---|---|---|
Latitude–N | Longitude–E | |||
S1 | 53°27.328′ | 14°35.968′ | 2.2 | Szczecin Shipyard |
S2 | 53°27.336′ | 14°35.434′ | 2.5 | Gunica River |
S3 | 53°26.300′ | 14°35.280′ | 10.3 | Elevator “Ewa” |
S4 | 53°27.621′ | 14°36.102′ | 2.2 | Swieta River |
S5 | 53°27.068′ | 14°36.287′ | 2.1 | Dabie Lake |
S6 | 53°54.329′ | 14°15.249′ | 5.6 | Piast Canal |
S7 | 53°33.481′ | 14°34.578′ | 1.9 | Larpia River– Police– |
S8 | 53°24.227′ | 14°32.492′ | 2.0 | Szczecin Harbor |
S9 | 53°23.895′ | 14°37.698′ | 5.0 | Szczecin – Dąbie Marina Club |
S10 | 53°27.895′ | 14°35.923′ | 1.7 | Szczecin– West Odra River |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kucharski, D.; Drzewicz, P.; Nałęcz-Jawecki, G.; Mianowicz, K.; Skowronek, A.; Giebułtowicz, J. Development and Application of a Novel QuEChERS Method for Monitoring of Tributyltin and Triphenyltin in Bottom Sediments of the Odra River Estuary, North Westernmost Part of Poland. Molecules 2020, 25, 591. https://doi.org/10.3390/molecules25030591
Kucharski D, Drzewicz P, Nałęcz-Jawecki G, Mianowicz K, Skowronek A, Giebułtowicz J. Development and Application of a Novel QuEChERS Method for Monitoring of Tributyltin and Triphenyltin in Bottom Sediments of the Odra River Estuary, North Westernmost Part of Poland. Molecules. 2020; 25(3):591. https://doi.org/10.3390/molecules25030591
Chicago/Turabian StyleKucharski, Dawid, Przemysław Drzewicz, Grzegorz Nałęcz-Jawecki, Kamila Mianowicz, Artur Skowronek, and Joanna Giebułtowicz. 2020. "Development and Application of a Novel QuEChERS Method for Monitoring of Tributyltin and Triphenyltin in Bottom Sediments of the Odra River Estuary, North Westernmost Part of Poland" Molecules 25, no. 3: 591. https://doi.org/10.3390/molecules25030591
APA StyleKucharski, D., Drzewicz, P., Nałęcz-Jawecki, G., Mianowicz, K., Skowronek, A., & Giebułtowicz, J. (2020). Development and Application of a Novel QuEChERS Method for Monitoring of Tributyltin and Triphenyltin in Bottom Sediments of the Odra River Estuary, North Westernmost Part of Poland. Molecules, 25(3), 591. https://doi.org/10.3390/molecules25030591