Matrix-Induced Sugaring-Out: A Simple and Rapid Sample Preparation Method for the Determination of Neonicotinoid Pesticides in Honey
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Solvent
2.2. Initial Content of Acetonitrile and Sample Amount of Honey
2.3. Comparison with Salting-Out and Subzero-Temperature Assisted Liquid-liquid Extraction
2.4. HPLC Analysis
2.5. Analytical Performance
3. Materials and Methods
3.1. Materials
3.2. Matrix-Induced Sugaring-Out
3.3. Salting-Out Assisted Liquid-liquid Extraction
3.4. Subzero-Temperature Assisted Liquid-liquid Extraction
3.5. HPLC Analysis
3.6. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Bogdanov, S.; Jurendic, T.; Sieber, R.; Gallmann, P. Honey for nutrition and health: A review. J. Am. Coll. Nutr. 2008, 27, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S. Contaminants of bee products. Apidologie 2006, 37, 1–18. [Google Scholar] [CrossRef]
- Johnson, R.M.; Ellis, M.D.; Mullin, C.A.; Frazier, M. Pesticides and honey bee toxicity-USA. Apidologie 2010, 41, 312–331. [Google Scholar] [CrossRef]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Blacquière, T.; Smagghe, G.; van Gestel, C.A.M.; Mommaerts, V. Neonicotinoids in bees: A review on concentrations, side-effects, and risk assessment. Ecotoxicology 2012, 21, 973–992. [Google Scholar] [CrossRef] [PubMed]
- Kujawski, M.W.; Namieśnik, J. Challenges in preparing honey samples for chromatographic determination of contaminants and trace residues. Trends Anal. Chem. 2008, 27, 785–793. [Google Scholar] [CrossRef]
- Tanner, G.; Czerwenka, C. LC-MS/MS Analysis of neonicotinoid insecticides in honey: Methodology and residue findings in Austrian honeys. J. Agric. Food Chem. 2011, 59, 12271–12277. [Google Scholar] [CrossRef] [PubMed]
- Paradis, D.; Bérail, G.; Bonmatin, J.; Belzunces, L. Sensitive analytical methods for 22 relevant insecticides of 3 chemical families in honey by GC-MS/MS and LC-MS/MS. Anal. Bioanal. Chem. 2014, 406, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Orso, D.; Floriano, L.; Ribeiro, L.C.; Bandeira, N.M.G.; Prestes, O.D.; Zanella, R. Simultaneous determination of multiclass pesticides and antibiotics in honey samples based on ultra-high performance liquid chromatography-tandem mass spectrometry. Food Anal. Methods 2016, 9, 1638–1653. [Google Scholar] [CrossRef]
- Hrynko, I.; Lozowicka, B.; Kaczyński, P. Liquid chromatographic MS/MS analysis of a large group of insecticides in honey by modified QuEChERS. Food Anal. Methods 2018, 11, 2307–2319. [Google Scholar] [CrossRef]
- Kamel, A. Refined methodology for the determination of neonicotinoid pesticides and their metabolites in honey bees and bee products by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J. Agric. Food Chem. 2010, 58, 5926–5931. [Google Scholar] [CrossRef] [PubMed]
- Gbylik-Sikorska, M.; Sniegocki, T.; Posyniak, A. Determination of neonicotinoid insecticides and their metabolites in honey bee and honey by liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2015, 990, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Hernández, L.; Hernández-Domínguez, D.; Martín, M.; Nozal, M.J.; Higes, M.; Yagüe, J.L.B. Residues of neonicotinoids and their metabolites in honey and pollen from sunflower and maize seed dressing crops. J. Chromatogr. A 2016, 1428, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Valverde, S.; Ibáñez, M.L.; Bernal, J.L.; Nozal, M.J.; Hernándezb, F.; Bernal, J. Development and validation of Ultra high performance-liquid chromatography-tandem mass spectrometry based methods for the determination of neonicotinoid insecticides in honey. Food Chem. 2018, 266, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.B.; Xie, W.; Hong, D.; Zhang, W.H.; Li, F.; Qian, Y.; Han, C. Simultaneous determination of ten neonicotinoid insecticides and two metabolites in honey and Royal-jelly by solid-phase extraction and liquid chromatography-tandem mass spectrometry. Food Chem. 2019, 270, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Jovanov, P.; Guzsvány, V.; Lazic, S.; Franko, M.; Sakac, M.; Saric, L.; Kos, J. Development of HPLC-DAD method for determination of neonicotinoids in honey. J. Food Compos. Anal. 2015, 40, 106–113. [Google Scholar] [CrossRef]
- Vichapong, J.; Burakham, R.; Srijaranai, S. In-coupled syringe assisted octanol-water partition microextraction coupled with high-performance liquid chromatography for simultaneous determination of neonicotinoid insecticide residues in honey. Talanta 2015, 139, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Vichapong, J.; Burakham, R.; Santaladchaiyakit, Y.; Srijaranai, S. A preconcentration method for analysis of neonicotinoids in honey sample by ionic liquid-based cold-induced aggregation microextraction. Talanta 2016, 155, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Campillo, N.; Viñas, P.; Ferez-Melgarejo, G.; Hernández-Córdoba, M. Liquid chromatography with diode array detection and tandem mass spectrometry for the determination of neonicotinoid insecticides in honey samples using dispersive liquid-liquid microextraction. J. Agric. Food Chem. 2013, 61, 4799–4805. [Google Scholar] [CrossRef] [PubMed]
- Song, S.M.; Zhang, C.F.; Chen, Z.J.; He, F.M.; Wei, J.; Tan, H.H.; Li, X.S. Simultaneous determination of neonicotinoid insecticides and insect growth regulators residues in honey using LC–MS/MS with anion exchanger-disposable pipette extraction. J. Chromatogr. A 2018, 1557, 51–61. [Google Scholar] [CrossRef]
- Wang, B.; Ezejias, T.; Feng, H.; Blaschek, H. Sugaring-out: A novel phase separation and extraction system. Chem. Eng. Sci. 2008, 63, 2595–2600. [Google Scholar] [CrossRef]
- Dhamole, P.B.; Mahajan, P.; Feng, H. Sugaring out: A new method for removal of acetonitrile from preparative RP-HPLC eluent for protein purification. Process Biochem. 2010, 45, 1672–1676. [Google Scholar] [CrossRef]
- Cardoso, G.B.; Mourão, T.; Pereira, F.M.; Freire, M.G.; Fricks, A.T.; Soares, C.M.F.; Lima, Á.S. Aqueous two-phase systems based on acetonitrile and carbohydrates and their application to the extraction of vanillin. Sep. Purif. Technol. 2013, 104, 106–113. [Google Scholar] [CrossRef]
- Tu, X.J.; Sun, F.Y.; Wu, S.Y.; Liu, W.Y.; Gao, Z.S.; Huang, S.K.; Chen, W.B. Comparison of salting-out and sugaring-out liquid-liquid extraction methods for the partition of 10-hydroxy-2-decenoic acid in royal jelly and their co-extracted protein content. J. Chromatogr. B 2018, 1073, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Myasein, F.; Wu, H.Q.; El-Shourbagy, T.A. Sugaring-out assisted liquid/liquid extraction with acetonitrile for bioanalysis using liquid chromatography-mass spectrometry. Microchem. J. 2013, 108, 198–202. [Google Scholar] [CrossRef]
- Chen, W.B.; Tu, X.J.; Wu, D.H.; Gao, Z.S.; Wu, S.Y.; Huang, S.K. Comparison of the partition efficiencies of multiple phenolic compounds contained in propolis in different modes of acetonitrile–water-based homogenous liquid-liquid extraction. Molecules 2019, 24, 442. [Google Scholar] [CrossRef]
- Tu, X.J.; Wu, S.Y.; Liu, W.Y.; Gao, Z.S.; Huang, S.K.; Chen, W.B. Sugaring-out assisted liquid-liquid extraction combined with high performance liquid chromatography fluorescence detection for the determination of bisphenol A and bisphenol B in royal jelly. Food Anal. Methods 2019, 12, 705–711. [Google Scholar] [CrossRef]
- Tsai, W.H.; Chuang, H.Y.; Chen, H.H.; Wu, Y.W.; Cheng, S.H.; Huang, T.C. Application of sugaring-out extraction for the determination of sulfonamides in honey by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A 2010, 1217, 7812–7815. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Zhang, Y.; Wang, J.H.; Li, X.; Wang, W.; Huang, Z.P. Sugaring-out assisted liquid-liquid extraction coupled with high performance liquid chromatography-electrochemical detection for the determination of 17 phenolic compounds in honey. J. Chromatogr. A 2019, 1601, 104–114. [Google Scholar] [CrossRef]
- Tubtimadee, C.; Shotipruk, A. Extraction of phenolics from Terminalia chebula Retz with water-ethanol and water-propylene glycol and sugaring-out concentration of extracts. Sep. Purif. Technol. 2011, 77, 339–346. [Google Scholar] [CrossRef]
- Lazarević, K.B.; Jovetić, M.S.; Tešić, Ž.L.J. Physicochemical parameters as a tool for the assessment of origin of honey. J. AOAC. Int. 2017, 100, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Valente, I.M.; Rodrigues, J.A. Recent advances in salt-assisted LLE for analyzing biological samples. Bioanalysis 2015, 7, 2187–2193. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.Q.; Weng, N.D. Salting-out assisted liquid-liquid extraction for bioanalysis. Bioanalysis 2013, 5, 1583–1598. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Akane, A. Subzero-temperature liquid-liquid extraction of benzodiazepines for high-performance liquid chromatography. Anal. Chem. 1999, 71, 1918–1921. [Google Scholar] [CrossRef] [PubMed]
- Taverniers, I.; Loose, M.D.; Bockstaele, E.V. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal. Chem. 2004, 23, 535–552. [Google Scholar] [CrossRef]
- MRLs for Honey and Other Apiculture Products, EU Pesticides Database. Available online: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database (accessed on 24 July 2019).
Sample Availability: Not available. |
Analytes | Linear Equation | r2 | LOD (μg/kg) | LOQ (μg/kg) | Accuracy and Precision | ||||
---|---|---|---|---|---|---|---|---|---|
Spiked Content (μg/kg) | Mean Recovery in Intra-day ± SD (n = 6, %) | Intra-day RSD (n = 6, %) | Mean Recovery in Inter-day ± SD (n = 18, %) | Inter-day RSD (n = 18, %) | |||||
imidacloprid | y = 0.280x | 0.9999 | 21 | 70 | 70 | 96.20 ± 2.18 | 2.27 | 97.48 ± 3.42 | 3.51 |
350 | 94.75 ± 1.24 | 1.31 | 94.65 ± 1.36 | 1.44 | |||||
700 | 93.78 ± 1.21 | 1.29 | 93.87 ± 1.23 | 1.31 | |||||
acetamiprid | y = 0.054x | 0.9998 | 21 | 70 | 70 | 97.73 ± 4.27 | 4.37 | 96.99 ± 4.44 | 4.58 |
350 | 94.85 ± 1.44 | 1.52 | 94.83 ± 1.86 | 1.96 | |||||
700 | 91.49 ± 2.31 | 2.52 | 92.24 ± 1.71 | 1.85 | |||||
thiacloprid | y = 0.063x | 0.9995 | 27 | 90 | 90 | 92.21 ± 2.73 | 2.96 | 91.84 ± 2.76 | 3.01 |
450 | 94.72 ± 1.77 | 1.87 | 92.88 ± 2.07 | 2.23 | |||||
900 | 96.65 ± 2.46 | 2.55 | 96.13 ± 1.99 | 2.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Wu, S.; Zhang, J.; Yu, F.; Hou, J.; Miao, X.; Tu, X. Matrix-Induced Sugaring-Out: A Simple and Rapid Sample Preparation Method for the Determination of Neonicotinoid Pesticides in Honey. Molecules 2019, 24, 2761. https://doi.org/10.3390/molecules24152761
Chen W, Wu S, Zhang J, Yu F, Hou J, Miao X, Tu X. Matrix-Induced Sugaring-Out: A Simple and Rapid Sample Preparation Method for the Determination of Neonicotinoid Pesticides in Honey. Molecules. 2019; 24(15):2761. https://doi.org/10.3390/molecules24152761
Chicago/Turabian StyleChen, Wenbin, Siyuan Wu, Jianing Zhang, Fengjie Yu, Jianbo Hou, Xiaoqing Miao, and Xijuan Tu. 2019. "Matrix-Induced Sugaring-Out: A Simple and Rapid Sample Preparation Method for the Determination of Neonicotinoid Pesticides in Honey" Molecules 24, no. 15: 2761. https://doi.org/10.3390/molecules24152761
APA StyleChen, W., Wu, S., Zhang, J., Yu, F., Hou, J., Miao, X., & Tu, X. (2019). Matrix-Induced Sugaring-Out: A Simple and Rapid Sample Preparation Method for the Determination of Neonicotinoid Pesticides in Honey. Molecules, 24(15), 2761. https://doi.org/10.3390/molecules24152761