Combination of Three Functionalized Temperature-Sensitive Chromatographic Materials for Serum Protein Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of Chromatographic Materials
2.2. Temperature Sensitivity of the Materials
2.3. Characterization of Capture Performance
2.4. Combination of Three Functional Temperature-Sensitive Chromatographic Materials for Serum Protein Analysis
3. Materials and Methods
3.1. Materials and Instruments
3.2. Synthesis of CTA-Grafted Silica
3.3. Synthesis and Characterization of the Three Temperature-Responsive Materials
3.4. Chromatographic Assay for the Separation and Enrichment of Steroids and Proteins
3.5. Combination of Three Functional Temperature-Sensitive Chromatographic Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Domon, B.; Aebersold, R. Mass spectrometry and protein analysis. Science 2006, 312, 212–217. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Dong, M.; Wang, Y.; Dong, J.; Li, S.S.; Zhou, H.; Ye, M. Biphasic Affinity Chromatographic Approach for Deep Tyrosine Phosphoproteome Analysis. Anal. Chem. 2017, 89, 2405–2410. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Lorenzo, C.; Concheiro, A. Smart drug delivery systems: From fundamentals to the clinic. Chem. Commun. 2014, 50, 7743–7765. [Google Scholar] [CrossRef] [PubMed]
- Baeza, A.; Vallet-Regi, M. Smart Mesoporous Silica Nanocarriers for Antitumoral Therapy. Curr. Top. Med. Chem. 2015, 15, 2306–2315. [Google Scholar] [CrossRef] [PubMed]
- Dabbagh, A.; Abdullah, B.J.; Abdullah, H.; Hamdi, M.; Kasim, N.H. Triggering Mechanisms of Thermosensitive Nanoparticles under Hyperthermia Condition. J. Pharm. Sci. 2015, 104, 2414–2428. [Google Scholar] [CrossRef] [PubMed]
- Calejo, M.T.; Sande, S.A.; Nystrom, B. Thermoresponsive polymers as gene and drug delivery vectors: Architecture and mechanism of action. Expert Opin. Drug Del. 2013, 10, 1669–1686. [Google Scholar] [CrossRef] [PubMed]
- Betre, H.; Liu, W.; Zalutsky, M.R.; Chilkotia, A.; Krausc, V.B.; Setton, L.A. A thermally responsive biopolymer for intra-articular drug delivery. J. Control. Release 2006, 115, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Tang, N.; Brock, J.W.; Mottaz, H.M.; Ames, J.M.; Baynes, J.W.; Smith, R.D.; Metz, T.O. Enrichment and analysis of nonenzymatically glycated peptides: Boronate affinity chromatography coupled with electron-transfer dissociation mass spectrometry. J. Proteome Res. 2007, 6, 2323–2330. [Google Scholar] [CrossRef] [PubMed]
- Gil, E.S.; Hudson, S.M. Stimuli-reponsive polymers and their bioconjugates. Prog. Polym. Sci. 2004, 29, 1173–1222. [Google Scholar] [CrossRef]
- Kanazawa, H.; Okano, T. Temperature-responsive chromatography for the separation of biomolecules. J. Chromatogr. A 2011, 1218, 8738–8747. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, A.S.; Stayton, P.S. Conjugates of stimuli-responsive polymers and proteins. Prog. Polym. Sci. 2016, 32, 922–932. [Google Scholar] [CrossRef]
- Kikuchi, A.; Okano, T. Pulsatile drug release control using hydrogels. Adv. Drug Del. Rev. 2002, 54, 53–77. [Google Scholar] [CrossRef]
- Mano, J.F. Stimuli-responsive polymeric systems for biomedical applications. Adv. Eng. Mater. 2008, 10, 515–527. [Google Scholar] [CrossRef]
- Roy, D.; Cambre, J.N.; Sumerlin, B.S. Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 2010, 35, 278–301. [Google Scholar] [CrossRef]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Akimoto, J.; Okano, T. Polymeric micelles with stimulitriggering systems for advanced cancer drug targeting. J. Drug Target 2014, 22, 584–599. [Google Scholar] [CrossRef] [PubMed]
- Nagase, K.; Okano, T. Thermoresponsive-polymer-based materials for temperature-modulated bioanalysis and bioseparations. J. Mater. Chem. B 2016, 4, 6381–6397. [Google Scholar] [CrossRef] [Green Version]
- Heskins, M.; Guillet, J.E. Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci. A 1968, 2, 1441–1455. [Google Scholar] [CrossRef]
- Schild, H.G. Poly(N-isopropylacrylamide): Experiment, theory and application. Prog. Polym. Sci. 1992, 17, 163–249. [Google Scholar] [CrossRef]
- Dhara, D.; Rathna, G.V.N.; Chatterji, P.R. Volume Phase Transition in Interpenetrating Networks of Poly(N-Isopropylacrylamide) with Gelatin. Langmuir 2000, 16, 2424–2429. [Google Scholar] [CrossRef]
- Gewehr, M.; Nakamura, K.; Ise, N.; Kitano, H. Gel permeation chromatography using porous glass beads modified with temperature-responsive polymers. Macromol. Chem. Phys. 1992, 193, 249–256. [Google Scholar]
- Kanazawa, H.; Yamamoto, K.; Matsushima, Y.; Takai, N.; Kikuchi, A.; Sakurai, Y.; Okano, T. Temperature-ResponsiveChromatography UsingPoly(N-isopropylacrylamide)-Modified Silica. Anal. Chem. 1996, 68, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Lynen, F.; He, M.D.; Prez, F.D.; Brown, R.; Szucs, R.; Sandra, P. Evaluation of the Temperature Responsive Stationary Phase Poly(N-isopropylacrylamide) in Aqueous LC for the Analysis of Small Molecule. Chromatographia 2007, 66, 143–150. [Google Scholar] [CrossRef]
- Ayano, E.; Okada, Y.; Sakamoto, C.; Kanazawa, H.; Kikuchi, A.; Okano, T. Study of temperature-responsibility on the surfaces of a thermo-responsive polymer modified stationary phase. J. Chromatogr. A 2006, 1119, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, A.; Nagase, K.; Kikuchi, A.; Kanazawa, H.; Akiyama, Y.; Kobayashi, J.; Annaka, M.; Okano, T. Preparation of thermo-responsive polymer brushes on hydrophilic polymeric beads by surface-initiated atom transfer radical polymerization for a highly resolutive separation of peptides. J. Chromatogr. A 2010, 1217, 5978–5985. [Google Scholar] [CrossRef] [PubMed]
- Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Annaka, M.; Okano, T. Preparation of Thermoresponsive Anionic Copolymer Brush Surfaces for Separating Basic Biomolecules. Biomacromolecules 2010, 11, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Okano, T. Preparation of thermoresponsive cationic copolymer brush surfaces and application of the surface to separationof biomolecules. Biomacromolecules 2008, 9, 1340–1347. [Google Scholar] [CrossRef] [PubMed]
- Yamanaka, H.; Shinohara, Y.; Hasegawa, Y.; Carredano, E.; Kikuchi, A.; Okano, T. Regulation of Protein Binding toward a Ligand on Chromatographic Matrixes by Masking and Forced-Releasing Effects Using Thermoresponsive Polymer. Anal. Chem. 2002, 74, 4160–4166. [Google Scholar]
- Yamanaka, H.; Yoshizako, K.; Akiyama, Y.; Sota, H.; Hasegawa, Y.; Shimohara, Y. Affinity chromatography with collapsibly tethered ligands. Anal. Chem. 2003, 75, 1658–1663. [Google Scholar] [CrossRef]
- Hosoya, K.; Sawada, E.; Kimata, K.; Araki, T.; Tanaka, N.; Frechet, J.M.J. In Situ Surface-Selective Modification of Uniform Size Macroporous Polymer Particles with Temperature-Responsive Poly-N-isopropylacrylamide. Macromolecules 1994, 27, 3973–3976. [Google Scholar] [CrossRef]
- Lakhiari, H.; Okano, T.; Nurdin, N.; Luthi, C.; Descouts, P.; Muller, D.; Jozefonvicz, J. Temperature- responsive size-exclusion chromatography using poly(N-isopropylacrylamide) grafted silica. Biochim. Biophys. Acta 1998, 1379, 303–313. [Google Scholar] [CrossRef]
- Nagase, K.; Yamato, M.; Kanazawa, H.; Okano, T. Poly( N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 2018, 153, 27–48. [Google Scholar] [CrossRef] [PubMed]
- AKimoto, A.M.; Niitsu, E.H.; Nagase, K.; Okano, T.; Kanazawa, H.; Yoshida, R. Mesenchylmal Stem Cell Culture on Poly(N-isopropylacrylamide) Hydrogel with Repeated Thermo-Stimulation. Int. J. Mol. Sci. 2018, 19, 1253. [Google Scholar] [CrossRef] [PubMed]
- Hiruta, Y.; Kanazashi, R.; Ayano, E.; Okano, T.; Kanazawa, H. Temperature-responsive molecular recognition chromatography using phenylalanine and tryptophan derived polymer modified silica beads. Analyst 2016, 141, 910–917. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Su, R.; Liang, X.; Deng, Y.; Li, Y.; Dai, R. A thermally switchable chromatographic material for selective capture and rapid release of proteins and nucleotides. RSC Adv. 2014, 4, 15830–15834. [Google Scholar] [CrossRef]
- Wang, J.S.; Matyjaszewski, K. Controlled/”living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614–5615. [Google Scholar] [CrossRef]
- Wang, J.S.; Matyjaszewski, K. Controlled/”living” radical polymerization. halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 1995, 28, 7901–7910. [Google Scholar] [CrossRef]
- Unsal, E.; Elmas, B.; Çaglayan, B.; Tuncel, M.; Patir, S.; Tuncel, A. Preparation of An Ion Exchange Chromatographic Support By A New “Grafting From” Strategy Based on Atom Transfer Radical Polymerization. Anal. Chem. 2006, 78, 5868–5875. [Google Scholar] [CrossRef] [PubMed]
- Nagase, K.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Okano, T. Monolithic silica rods grafted with thermoresponsive anionic polymer brushes for high-speed separation of basic biomolecules and peptides. Biomacromolecules 2014, 15, 1204–1215. [Google Scholar] [CrossRef] [PubMed]
- Shakya, A.K.; Holmdahl, R.; Nandakumar, K.S.; Kumar, A. Characterization of chemically defined poly-N-isopropylacrylamide based copolymeric adjuvants. Vaccine 2013, 31, 3519–3527. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ullah, K.; Su, L.; Lv, F.; Deng, Y.; Dai, R.; Li, Y.; Zhang, Y. Switchable boronate affinity materials for thermally modulated capture, separation and enrichment of cis-diol biomolecules. J. Mater. Chem. 2012, 22, 18753–18756. [Google Scholar] [CrossRef]
- Springsteen, G.; Wang, B. A detailed examination of boronic acid–diol complexation. Tetrahedron 2002, 58, 5291–5300. [Google Scholar] [CrossRef]
- Rzaev, Z.M.O.; Dincer, S.; Piskin, E. Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog. Polym. Sci. 2007, 32, 534–595. [Google Scholar] [CrossRef]
- Hong, J.; Wang, Q.; Lin, Y.; Fan, Z. Styrene polymerization in the presence of cyclic trithiocarbonate. Macromolecules 2005, 38, 2691–2695. [Google Scholar] [CrossRef]
- Roohi, F.; Titirici, M.M. Thin thermo-responsive polymer films onto the pore system of chromatographic beads via reversible addition–fragmentation chain transfer polymerization. New, J. Chem. 2008, 32, 1409–1414. [Google Scholar] [CrossRef]
- Titirici, M.M.; Sellergren, B. Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization. Chem. Mater. 2006, 18, 1773–1779. [Google Scholar] [CrossRef]
- Cammas, S.; Suzuki, K.; Sone, C.; Sakurai, Y.; Kataoka, K.; Okano, T. Thermoresponsive polymer nanoparticles with a core-shell micelle structure as sitespecific drug carriers. J. Control. Release 1997, 48, 157–164. [Google Scholar] [CrossRef]
- Chung, J.E.; Yokoyama, M.; Yamato, M.; Aoyagi, T.; Sakurai, Y.; Okano, T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate). J. Control. Release 1999, 62, 115–127. [Google Scholar] [CrossRef]
- Kurisawa, M.; Yokoyama, M.; Okano, T. Gene expression control by temperature with thermo-responsive polymeric gene carriers. J. Control. Release 2000, 69, 127–137. [Google Scholar] [CrossRef]
- Takeda, N.; Nakamura, E.; Yokoyama, M.; Okano, T. Temperature-responsive polymeric carriers incorporating hydrophobic monomers for effective transfection in small doses. J. Control. Release 2004, 95, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Akimoto, J.; Nakayama, M.; Okano, T. Temperature-responsive polymeric micelles for optimizing drug targeting to solid tumors. J. Control. Release 2014, 193, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Man, Y.; Peng, G.; Lv, X.; Liang, Y.; Wang, Y.; Chen, Y.; Deng, Y. Microchip-Grafted P(NIPAAm-co-VPBA) with Thermoresponsive Boronate Affinity for Capture–Release of cis-Diol Biomolecules. Chromatographia 2015, 78, 157–162. [Google Scholar] [CrossRef]
- Shen, Y.; Dong, L.; Liang, Y.; Liu, Z.; Dai, R.; Meng, W.; Deng, Y. Effect of the grafting ratio of poly(N-isopropylacrylamide) on thermally responsive polymer brush surfaces. J. Sep. Sci. 2017, 40, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.T.; Filla, D.; Shea, R. Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient RAFT Agents. Macromolecules 2002, 35, 6754–6756. [Google Scholar] [CrossRef]
- Liu, Z.; Geng, F.; Ha, X.; Feng, Y.; Che, B.; Wu, K.; Li, Y.; Dai, R.; Zhang, Y.; Deng, Y. Evaluation of Temperature-Responsive Open Tubular Capillary Electrochromatographic Column Modified with Poly(N-isopropylacrylamide). Chromatographia 2013, 76, 201–206. [Google Scholar] [CrossRef]
- Dai, R.; Lei, C.; Liu, Z.; Wang, H.; Hu, D.; Deng, Y. Preparation and characterization of temperature-responsive chromatographic column containing poly(N-isopropylacrylamide) and poly([2-(methacryloyloxy)- ethyl]trimetylammonium chloride). J. Appl. Polym. Sci. 2011, 121, 2233–2238. [Google Scholar] [CrossRef]
- Liu, M.S.; Taylor, C.; Chong, B.; Liu, L.; Bilic, A.; Terefe, N.S.; Stockmann, R.; Thang, S.H.; Silva, K.D. Conformational transitions and dynamics of thermal responsive poly(N-isopropylacrylamide) polymers as revealed by molecular simulation. Eur. Polym. J. 2014, 55, 153–159. [Google Scholar] [CrossRef]
- Liang, Y.; Geng, F.; Dai, R.; Deng, Y. Enrichment of adenosine using thermally responsive chromatographic materials under friendly pH conditions. J. Sep. Sci. 2015, 38, 4036–4042. [Google Scholar] [CrossRef]
- Unger, K.K.; Ditz, R.; Machtejevas, E.; Skudas, R. Liquid Chromatography—Its Development and Key Role in Life Science Applications. Angew. Chem. Int. Ed. 2010, 49, 2300–2312. [Google Scholar] [CrossRef]
- Nagase, K.; Akimoto, A.M.; Kobayashi, J.; Kikuchi, A.; Akiyama, Y.; Kanazawa, H.; Okano, T. Effect of reaction solvent on the preparation of thermoresponsive stationary phase through a surface initiatedatom transfer radical polymerization. J. Chromatogr. A 2011, 1218, 8617–8628. [Google Scholar] [CrossRef] [PubMed]
- Seino, M.; Yokomachi, K.; Hayakawa, T.; Kikuchi, R.; Kakimoto, M.A.; Horiuchi, S. Preparation of poly(N-isopropylacrylamide) grafted silica bead using hyperbranched polysiloxysilane as polymer brush and application to temperature-responsive HPLC. Polymer 2006, 47, 1946–1952. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Element | C1s (%) | O1s (%) | N1s (%) | S2p (%) |
---|---|---|---|---|
NH2-grafted silica | 39.61 | 58.94 | 1.45 | 0 |
CTA-grafted silica 30% | 49.47 | 47.16 | 1.67 | 1.71 |
CTA-grafted silica 50% | 46.50 | 49.68 | 2.37 | 1.44 |
poly(NIPAAm-co-DEAEMA-co-tBAAm)-grafted silica 30% | 53.65 | 41.95 | 3.21 | 1.19 |
poly(NIPAAm-co-DEAEMA-co-tBAAm)-grafted silica 50% | 75.18 | 21.97 | 2.04 | 0.81 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, W.; Dai, R.; Li, B.; Dai, G.; Wang, D.; Yang, D.; Chu, P.; Deng, Y.; Luo, A. Combination of Three Functionalized Temperature-Sensitive Chromatographic Materials for Serum Protein Analysis. Molecules 2019, 24, 2626. https://doi.org/10.3390/molecules24142626
Sun W, Dai R, Li B, Dai G, Wang D, Yang D, Chu P, Deng Y, Luo A. Combination of Three Functionalized Temperature-Sensitive Chromatographic Materials for Serum Protein Analysis. Molecules. 2019; 24(14):2626. https://doi.org/10.3390/molecules24142626
Chicago/Turabian StyleSun, Weiwei, Rongji Dai, Bo Li, Guoxin Dai, Di Wang, Dandan Yang, Pingping Chu, Yulin Deng, and Aiqin Luo. 2019. "Combination of Three Functionalized Temperature-Sensitive Chromatographic Materials for Serum Protein Analysis" Molecules 24, no. 14: 2626. https://doi.org/10.3390/molecules24142626
APA StyleSun, W., Dai, R., Li, B., Dai, G., Wang, D., Yang, D., Chu, P., Deng, Y., & Luo, A. (2019). Combination of Three Functionalized Temperature-Sensitive Chromatographic Materials for Serum Protein Analysis. Molecules, 24(14), 2626. https://doi.org/10.3390/molecules24142626