Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Collection of Skin Samples
4.3. Lipid Extraction
4.4. LC-MS/MS Analysis
4.5. Ceramides Identification
4.6. Data Treatment and Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rendon, A.; Schäkel, K. Psoriasis Pathogenesis and Treatment. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [Green Version]
- Edmondson, S.R.; Thumiger, S.P.; Werther, G.A.; Wraight, C.J. Epidermal homeostasis: The role of the growth hormone and insulin-like growth factor systems. Endocr. Rev. 2003, 24, 737–764. [Google Scholar] [CrossRef] [PubMed]
- Pilgram, G.S.; Vissers, D.C.; van der Meulen, H.; Pavel, S.; Lavrijsen, S.P.; Bouwstra, J.A.; Koerten, H.K. Aberrant lipid organization in stratum corneum of patients with atopic dermatitis and lamellar ichthyosis. J. Invest. Dermatol. 2001, 117, 710–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyano, S.; Hatamochi, A.; Yamazaki, S.; Ishikawa, J.; Kitahara, T.; Narita, H.; Kondo, N.; Masukawa, Y. Psoriasis patients have abnormal ceramide profile in stratum corneum. Nishinihon. J. Dermatol. 2010, 72, 494–499. [Google Scholar] [CrossRef]
- T’Kindt, R.; Jorge, L.; Dumont, E.; Couturon, P.; David, F.; Sandra, P.; Sandra, K. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography–quadrupole time-of-flight mass spectrometry. Anal. Chem. 2011, 84, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Tawada, C.; Kanoh, H.; Banno, Y.; Nakamura, Y.; Seishima, M. Analysis of ceramide profiles in stratum corneum of atopic dermatitis and psoriasis by MALDI-TOF-MS. J. Dermatol. 2012, 39, 67. [Google Scholar]
- Tawada, C.; Kanoh, H.; Nakamura, M.; Mizutani, Y.; Fujisawa, T.; Banno, Y.; Seishima, M. Interferon-γ decreases ceramides with long-chain fatty acids: possible involvement in atopic dermatitis and psoriasis. J. Invest. Dermatol. 2014, 134, 712–718. [Google Scholar] [CrossRef] [Green Version]
- Lowes, M.A.; Suarez-Farinas, M.; Krueger, J.G. Immunology of psoriasis. Annu. Rev. Immunol. 2014, 32, 227–255. [Google Scholar] [CrossRef] [Green Version]
- Hubler, M.J.; Kennedy, A.J. Role of lipids in the metabolism and activation of immune cells. J. Nutr. Biochem. 2016, 34, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Briganti, S.; Picardo, M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J. Eur. Acad. Dermatol. Venereol. 2003, 17, 663–669. [Google Scholar] [CrossRef]
- Zeng, C.; Wen, B.; Hou, G.; Lei, L.; Mei, Z.; Jia, X.; Chen, X.; Zhu, W.; Li, J.; Kuang, Y. Lipidomics profiling reveals the role of glycerophospholipid metabolism in psoriasis. GigaScience 2017, 6, gix087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cha, H.J.; He, C.; Zhao, H.; Dong, Y.; An, I.-S.; An, S. Intercellular and intracellular functions of ceramides and their metabolites in skin. Int. J. Mol. Med. 2016, 38, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, Y.; Mitsutake, S.; Tsuji, K.; Kihara, A.; Igarashi, Y. Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 2009, 91, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Masukawa, Y.; Narita, H.; Shimizu, E.; Kondo, N.; Sugai, Y.; Oba, T.; Homma, R.; Ishikawa, J.; Takagi, Y.; Kitahara, T. Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 2008, 49, 1466–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coderch, L.; López, O.; de la Maza, A.; Parra, J.L. Ceramides and skin function. Am. J, Clin. Dermatol. 2003, 4, 107–129. [Google Scholar] [CrossRef] [PubMed]
- Van Smeden, J.; Janssens, M.; Gooris, G.S.; Bouwstra, J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta 2014, 1841, 295–313. [Google Scholar] [CrossRef]
- Geilen, C.C.; Barz, S.; Bektas, M. Sphingolipid signaling in epidermal homeostasis. Skin Pharmacol. Appl. Skin Physiol. 2001, 14, 261–271. [Google Scholar] [CrossRef]
- Ishikawa, J.; Narita, H.; Kondo, N.; Hotta, M.; Takagi, Y.; Masukawa, Y.; Kitahara, T.; Takema, Y.; Koyano, S.; Yamazaki, S.; et al. Changes in the ceramide profile of atopic dermatitis patients. J. Invest. Dermatol. 2010, 130, 2511–2514. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, B.; West, J.A.; Koulman, A. A review of odd-chain fatty acid metabolism and the role of pentadecanoic acid (C15: 0) and heptadecanoic acid (C17: 0) in health and disease. Molecules 2015, 20, 2425–2444. [Google Scholar] [CrossRef] [Green Version]
- Hinder, A.; Schmelzer, C.E.H.; Rawlings, A.V.; Neubert, R.H.H. Investigation of the molecular structure of the human stratum corneum ceramides [NP] and [EOS] by mass spectrometry. Skin Pharmacol. Physiol. 2011, 24, 127–135. [Google Scholar] [CrossRef]
- Farwanah, H.; Wohlrab, J.; Neubert, R.H.; Raith, K. Profiling of human stratum corneum ceramides by means of normal phase LC/APCI–MS. Anal. Bioanal. Chem. 2005, 383, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Kondo, N.; Ohno, Y.; Yamagata, M.; Obara, T.; Seki, N.; Kitamura, T.; Naganuma, T.; Kihara, A. Identification of the phytosphingosine metabolic pathway leading to odd-numbered fatty acids. Nat. Commun. 2014, 5, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mundra, P.A.; Barlow, C.K.; Nestel, P.J.; Barnes, E.H.; Kirby, A.; Thompson, P.; Sullivan, D.R.; Alshehry, Z.H.; Mellett, N.A.; Huynh, K. Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight 2018, 3. [Google Scholar] [CrossRef] [PubMed]
- Lew, B.-L.; Cho, Y.; Kim, J.; Sim, W.-Y.; Kim, N.-I. Ceramides and cell signaling molecules in psoriatic epidermis: reduced levels of ceramides, PKC-α, and JNK. J. Korean Med. Sci. 2006, 21, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Lew, B.-L.; Seong, K.; Kim, N.-I. An inverse relationship between ceramide synthesis and clinical severity in patients with psoriasis. J. Korean Med. Sci. 2004, 19, 859–863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouwstra, J.A.; Ponec, M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta 2006, 1758, 2080–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candi, E.; Schmidt, R.; Melino, G. The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 2005, 6, 328–340. [Google Scholar] [CrossRef]
- Man, M.-Q.; Choi, E.-H.; Schmuth, M.; Crumrine, D.; Uchida, Y.; Elias, P.M.; Holleran, W.M.; Feingold, K.R. Basis for improved permeability barrier homeostasis induced by PPAR and LXR activators: liposensors stimulate lipid synthesis, lamellar body secretion, and post-secretory lipid processing. J. Invest. Dermatol. 2006, 126, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Amen, N.; Mathow, D.; Rabionet, M.; Sandhoff, R.; Langbein, L.; Gretz, N.; Jäckel, C.; Gröne, H.-J.; Jennemann, R. Differentiation of epidermal keratinocytes is dependent on glucosylceramide: ceramide processing. Hum. Mol. Genet. 2013, 22, 4164–4179. [Google Scholar] [CrossRef] [Green Version]
- Alessandrini, F.; Pfister, S.; Kremmer, E.; Gerber, J.-K.; Ring, J.; Behrendt, H. Alterations of glucosylceramide-β-glucosidase levels in the skin of patients with psoriasis vulgaris. J. Invest. Dermatol. 2004, 123, 1030–1036. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.M.; Jin, W.; Jiang, X.-C. Mechanisms involved in cellular ceramide homeostasis. Nutr. Metab. 2012, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Uchida, Y.; Di Nardo, A.; Collins, V.; Elias, P.M.; Holleran, W.M. De novo ceramide synthesis participates in the ultraviolet B irradiation-induced apoptosis in undifferentiated cultured human keratinocytes. J. Ivest. Dermatol. 2003, 120, 662–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathias, S.; Younes, A.; Kan, C.-C.; Orlow, I.; Joseph, C.; Kolesnick, R.N. Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 beta. Science 1993, 259, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Obeid, L.M.; Linardic, C.M.; Karolak, L.A.; Hannun, Y.A. Programmed cell death induced by ceramide. Science 1993, 259, 1769–1771. [Google Scholar] [CrossRef] [PubMed]
- Daido, S.; Kanzawa, T.; Yamamoto, A.; Takeuchi, H.; Kondo, Y.; Kondo, S. Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res. 2004, 64, 4286–4293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarlatti, F.; Bauvy, C.; Ventruti, A.; Sala, G.; Cluzeaud, F.; Vandewalle, A.; Ghidoni, R.; Codogno, P. Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J. Biol. Chem. 2004, 279, 18384–18391. [Google Scholar] [CrossRef] [Green Version]
- Jun, W.U.; Hansen, G.H.; Nilsson, Å.; Rui-Dong, D. Functional studies of human intestinal alkaline sphingomyelinase by deglycosylation and mutagenesis. Biochem. J. 2005, 386, 153–160. [Google Scholar]
- Elsherbini, A.; Bieberich, E. Ceramide and exosomes: a novel target in cancer biology and therapy. Adv. Cancer Res. 2018, 140, 121–154. [Google Scholar]
- Raposo, G.; Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Maia, J.; Caja, S.; Strano Moraes, M.C.; Couto, N.; Costa-Silva, B. Exosome-based cell-cell communication in the tumor microenvironment. Front. Cell Dev. Biol. 2018, 6, 18. [Google Scholar] [CrossRef]
- Paolicelli, R.C.; Bergamini, G.; Rajendran, L. Cell-to-cell communication by extracellular vesicles: focus on microglia. Neuroscience 2018. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.-H.; Kim, J.-Y.; Song, E.-H.; Shin, M.-K.; Cho, Y.-H.; Kim, N.-I. Altered levels of sphingosine and sphinganine in psoriatic epidermis. Ann. Dermatol. 2013, 25, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Uchida, Y.; Hara, M.; Nishio, H.; Sidransky, E.; Inoue, S.; Otsuka, F.; Suzuki, A.; Elias, P.M.; Holleran, W.M.; Hamanaka, S. Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. Res. J. Lipid Res. 2000, 41, 2071–2082. [Google Scholar] [PubMed]
- Hamanaka, S.; Suzuki, A.; Hara, M.; Nishio, H.; Otsuka, F.; Uchida, Y. Human epidermal glucosylceramides are major precursors of stratum corneum ceramides. J. Invest. Dermatol. 2002, 119, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchida, Y.; Holleran, W.M. Omega-O-acylceramide, a lipid essential for mammalian survival. J. Dermatol. Sci. 2008, 51, 77–87. [Google Scholar] [CrossRef]
- Motta, S.; Monti, M.; Sesana, S.; Mellesi, L.; Ghidoni, R.; Caputo, R. Abnormality of water barrier function in psoriasis: role of ceramide fractions. Arch. Dermatol. 1994, 130, 452–456. [Google Scholar] [CrossRef]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010, 11, 395. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
CER Subclass | Fatty Acid | Sphingoid Base |
---|---|---|
CER[NDS] | non-hydroxy [N] | dihydrosphingosine [DS] |
CER[NS] | non-hydroxy [N] | sphingosine [S] |
CER[NP] | non-hydroxy [N] | phytosphingosine [P] |
CER[ADS] | α-hydroxy [A] | dihydrosphingosine [DS] |
CER[AS] | α-hydroxy [A] | sphingosine [S] |
CER[AP] | α-hydroxy [A] | phytosphingosine [P] |
CER[EOS] | esterified ω-hydroxy [EO] | sphingosine [S] |
m/z | RT | VIP Score | CER Species | Class | Control | Ps |
---|---|---|---|---|---|---|
612.5858 | 42.11 | 1.71 | Cer(t18:0/20:0) | CER[NP] | ||
680.6881 | 34.91 | 1.65 | Cer(d18:0/26:0) | CER[NDS] | ||
622.6056 | 34.91 | 1.57 | Cer(d18:1/22:0) | CER[NS] | ||
512.4985 | 32.79 | 1.40 | Cer(d18:0/14:0) | CER[NDS] | ||
590.5429 | 38.94 | 1.38 | Cer(d18:2/20:1) | CER[NS] | ||
566.5429 | 36.95 | 1.37 | Cer(d18:1/18:0) | CER[NS] | ||
638.5996 | 43.02 | 1.35 | Cer(d16:1/24:0(2OH)) | CER[AS] | ||
554.5423 | 40.60 | 1.34 | Cer(d18:0/17:0) | CER[NDS] | ||
552.4898 | 41.10 | 1.32 | Cer(d16:1/18:1 (2OH)) | CER[AS] | ||
526.5142 | 36.49 | 1.32 | Cer(d18:0/15:0) | CER[NDS] | ||
538.5148 | 32.43 | 1.30 | Cer(d18:1/16:0) | CER[NS] | ||
606.5752 | 35.22 | 1.29 | Cer(d18:2/21:0) | CER[NS] | ||
612.5870 | 41.46 | 1.29 | Cer(d18:0/20:0(2OH)) | CER[ADS] | ||
748.7098 | 64.50 | 1.28 | 1-O-myristoyl-Cer(d18:1/16:0) | CER[EOS] | ||
580.5255 | 33.33 | 1.27 | Cer(d16:2/20:0(2OH)) | CER[AS] | ||
524.4978 | 33.56 | 1.23 | Cer(d16:1/17:0) | CER[NS] |
m/z | RT | VIP Score | CER Species | Class | Control | Ps |
---|---|---|---|---|---|---|
612.5858 | 42.11 | 1.71 | Cer(t18:0/20:0) | CER[NP] | ||
680.6881 | 34.91 | 1.65 | Cer(d18:0/26:0) | CER[NDS] | ||
622.6056 | 34.91 | 1.57 | Cer(d18:1/22:0) | CER[NS] | ||
512.4985 | 32.79 | 1.40 | Cer(d18:0/14:0) | CER[NDS] | ||
590.5429 | 38.94 | 1.38 | Cer(d18:2/20:1) | CER[NS] | ||
566.5429 | 36.95 | 1.37 | Cer(d18:1/18:0) | CER[NS] | ||
638.5996 | 43.02 | 1.35 | Cer(d16:1/24:0(2OH)) | CER[AS] | ||
554.5423 | 40.60 | 1.34 | Cer(d18:0/17:0) | CER[NDS] | ||
552.4898 | 41.10 | 1.32 | Cer(d16:1/18:1 (2OH)) | CER[AS] | ||
526.5142 | 36.49 | 1.32 | Cer(d18:0/15:0) | CER[NDS] | ||
538.5148 | 32.43 | 1.30 | Cer(d18:1/16:0) | CER[NS] | ||
606.5752 | 35.22 | 1.29 | Cer(d18:2/21:0) | CER[NS] | ||
612.5870 | 41.46 | 1.29 | Cer(d18:0/20:0(2OH)) | CER[ADS] | ||
748.7098 | 64.50 | 1.28 | 1-O-myristoyl-Cer(d18:1/16:0) | CER[EOS] | ||
580.5255 | 33.33 | 1.27 | Cer(d16:2/20:0(2OH)) | CER[AS] | ||
524.4978 | 33.56 | 1.23 | Cer(d16:1/17:0) | CER[NS] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łuczaj, W.; Wroński, A.; Domingues, P.; Domingues, M.R.; Skrzydlewska, E. Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris. Molecules 2020, 25, 630. https://doi.org/10.3390/molecules25030630
Łuczaj W, Wroński A, Domingues P, Domingues MR, Skrzydlewska E. Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris. Molecules. 2020; 25(3):630. https://doi.org/10.3390/molecules25030630
Chicago/Turabian StyleŁuczaj, Wojciech, Adam Wroński, Pedro Domingues, M Rosário Domingues, and Elżbieta Skrzydlewska. 2020. "Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris" Molecules 25, no. 3: 630. https://doi.org/10.3390/molecules25030630
APA StyleŁuczaj, W., Wroński, A., Domingues, P., Domingues, M. R., & Skrzydlewska, E. (2020). Lipidomic Analysis Reveals Specific Differences between Fibroblast and Keratinocyte Ceramide Profile of Patients with Psoriasis Vulgaris. Molecules, 25(3), 630. https://doi.org/10.3390/molecules25030630