Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Polyphenols Compounds in C. sativa Inflorescences though UHPLC-Q-Orbitrap HRMS
2.2. Quantification of Phenolic Acids and Flavonoids in C. sativa Inflorescences
2.2.1. Phenolic Acids
2.2.2. Flavonoids
2.3. Total Phenolic Contents and Antioxidant Activity of C. sativa Extracts
2.3.1. Total Phenolic Contents of C. sativa Extracts
2.3.2. Antioxidant Activity of C. sativa Extracts
3. Materials and Methods
3.1. Reagents and Materials
3.2. Polyphenols Extraction
3.3. Determination of Total Phenolic Content (TPC)
3.4. Determination of 1,1-Diphenyl-2-picrylhydrazyl (DPPH) Free Radical-Scavenging
3.5. Ultra-High Performance Liquid Chromatography and Orbitrap High-Resolution Mass Spectrometry Analysis
3.6. Statistics and Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis sativa: The Plant of the Thousand and One Molecules. Front Plant Sci 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cushnie, T.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Mkpenie, V.; Essien, E.; Udoh, I. Effect of extraction conditions on total polyphenol contents, antioxidant and antimicrobial activities of Cannabis sativa L. Electron. J. Environ. Agric. Food Chem. 2012, 11, 300. [Google Scholar]
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.L.; Sorrentino, G.; Di Stasio, M.; La Cara, F.; Volpe, M.G. Comparative Study of Chemical, Biochemical Characteristic and ATR-FTIR Analysis of Seeds, Oil and Flour of the Edible Fedora Cultivar Hemp (Cannabis sativa L.). Molecules 2018, 24, 83. [Google Scholar] [CrossRef] [Green Version]
- Pollastro, F.; Minassi, A.; Fresu, L.G. Cannabis phenolics and their bioactivities. Curr. Med. Chem. 2018, 25, 1160–1185. [Google Scholar] [CrossRef]
- Mandal, S.M.; Chakraborty, D.; Dey, S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal. Behav. 2010, 5, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Castaldo, L.; Narváez, A.; Izzo, L.; Graziani, G.; Gaspari, A.; Minno, G.D.; Ritieni, A. Red Wine Consumption and Cardiovascular Health. Molecules 2019, 24, 3626. [Google Scholar] [CrossRef] [Green Version]
- Santini, A.; Tenore, G.C.; Novellino, E. Nutraceuticals: A paradigm of proactive medicine. Eur. J. Pharm. Sci. 2017, 96, 53–61. [Google Scholar] [CrossRef]
- Kelly, N.P.; Kelly, A.L.; O’Mahony, J.A. Strategies for enrichment and purification of polyphenols from fruit-based materials. Trends Food Sci. Technol. 2019, 83, 248–258. [Google Scholar] [CrossRef]
- Lin, J.; Teo, L.M.; Leong, L.P.; Zhou, W. In vitro bioaccessibility and bioavailability of quercetin from the quercetin-fortified bread products with reduced glycemic potential. Food Chem. 2019, 286, 629–635. [Google Scholar] [CrossRef]
- Gómez-Juaristi, M.; Martínez-López, S.; Sarria, B.; Bravo, L.; Mateos, R. Bioavailability of hydroxycinnamates in an instant green/roasted coffee blend in humans. Identification of novel colonic metabolites. Food Funct. 2018, 9, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Shukla, M.; Jaiswal, S.; Sharma, A.; Srivastava, P.K.; Arya, A.; Dwivedi, A.K.; Lal, J. A combination of complexation and self-nanoemulsifying drug delivery system for enhancing oral bioavailability and anticancer efficacy of curcumin. Drug Dev. Ind. Pharm. 2017, 43, 847–861. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop. 2017, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Tenore, G.C.; Campiglia, P.; Ciampaglia, R.; Izzo, L.; Novellino, E. Antioxidant and antimicrobial properties of traditional green and purple “Napoletano” basil cultivars (Ocimum basilicum L.) from Campania region (Italy). Nat. Prod. Res. 2017, 31, 2067–2071. [Google Scholar] [CrossRef]
- Castaldo, L.; Graziani, G.; Gaspari, A.; Izzo, L.; Luz, C.; Mañes, J.; Rubino, M.; Meca, G.; Ritieni, A. Study of the Chemical Components, Bioactivity and Antifungal Properties of the Coffee Husk. J. Food Res. 2018, 7, 43–54. [Google Scholar] [CrossRef] [Green Version]
- Fathordoobady, F.; Singh, A.; Kitts, D.D.; Pratap Singh, A. Hemp (Cannabis sativa L.) Extract: Anti-Microbial Properties, Methods of Extraction, and Potential Oral Delivery. Food Rev. Int. 2019, 35, 664–684. [Google Scholar] [CrossRef]
- Frassinetti, S.; Moccia, E.; Caltavuturo, L.; Gabriele, M.; Longo, V.; Bellani, L.; Giorgi, G.; Giorgetti, L. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem. 2018, 262, 56–66. [Google Scholar] [CrossRef]
- Nagy, D.U.; Cianfaglione, K.; Maggi, F.; Sut, S.; Dall’Acqua, S. Chemical Characterization of Leaves, Male and Female Flowers from Spontaneous Cannabis (Cannabis sativa L.) Growing in Hungary. Chem. Biodivers. 2019, 16, e1800562. [Google Scholar] [CrossRef]
- Piccolella, S.; Crescente, G.; Candela, L.; Pacifico, S. Nutraceutical polyphenols: New analytical challenges and opportunities. J. Pharm. Biomed. Anal. 2019, 175, 112774. [Google Scholar] [CrossRef]
- López-Gutiérrez, N.; Romero-González, R.; Plaza-Bolaños, P.; Martínez Vidal, J.L.; Garrido Frenich, A. Identification and quantification of phytochemicals in nutraceutical products from green tea by UHPLC–Orbitrap-MS. Food Chem. 2015, 173, 607–618. [Google Scholar] [CrossRef]
- López-Gutiérrez, N.; Romero-González, R.; Martínez Vidal, J.L.; Frenich, A.G. Determination of polyphenols in grape-based nutraceutical products using high resolution mass spectrometry. LWT Food Sci. Technol. 2016, 71, 249–259. [Google Scholar] [CrossRef]
- Stanojević, M.; Trifkovic, J.; Dramićanin, A.; Gašić, U.; Fotiric Aksic, M.; Milojković-Opsenica, D. Determination of the phenolic profile of peach (Prunus persica L.) kernels using UHPLC–LTQ OrbiTrap MS/MS technique. Eur. Food Res. Technol. 2018, 244, 2051–2064. [Google Scholar]
- Rodríguez-Carrasco, Y.; Gaspari, A.; Graziani, G.; Santini, A.; Ritieni, A. Fast analysis of polyphenols and alkaloids in cocoa-based products by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS). Food Res. Int. 2018, 111, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Flores-Sanchez, I.J.; Verpoorte, R. Secondary metabolism in cannabis. Phytochem. Rev. 2008, 7, 615–639. [Google Scholar] [CrossRef]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect οf Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Tang, J.; dos Santos Passos, C.; Nurisso, A.; Simoes-Pires, C.A.; Ji, M.; Lou, H.; Fan, P. Characterization of lignanamides from hemp (Cannabis sativa L.) seed and their antioxidant and acetylcholinesterase inhibitory activities. J. Agric. Food Chem. 2015, 63, 10611–10619. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Li, Y.-J.; Sun, Y.-J.; Gong, J.-H.; Du, K.; Zhang, Y.-L.; Su, C.-F.; Han, Q.-Q.; Zheng, X.-K.; Feng, W.-S. Lignanamides with potent antihyperlipidemic activities from the root bark of Lycium chinense. Fitoterapia 2017, 122, 119–125. [Google Scholar] [CrossRef]
- Zhang, J.-X.; Guan, S.-H.; Feng, R.-H.; Wang, Y.; Wu, Z.-Y.; Zhang, Y.-B.; Chen, X.-H.; Bi, K.-S.; Guo, D.-A. Neolignanamides, lignanamides, and other phenolic compounds from the root bark of Lycium chinense. J. Nat. Prod. 2013, 76, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Gu, Y.-F.; Su, X.-Q.; Li, M.-M.; Huo, H.-X.; Zhang, J.; Zeng, K.-W.; Zhang, Q.; Zhao, Y.-F.; Li, J. Anti-inflammatory lignanamides from the roots of Solanum melongena L. Fitoterapia 2014, 98, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Gao, K.; Ma, D.; Cheng, Y.; Tian, X.; Lu, Y.; Du, X.; Tang, H.; Chen, J. Three new dimers and two monomers of phenolic amides from the fruits of Lycium barbarum and their antioxidant activities. J. Agric. Food Chem. 2015, 63, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Biesiada, A.; Tomczak, A. Biotic and abiotic factors affecting the content of the chosen antioxidant compounds in vegetables. Veg. Crop. Res. Bull. 2012, 76, 55–78. [Google Scholar] [CrossRef]
- Rea, K.A.; Casaretto, J.A.; Al-Abdul-Wahid, M.S.; Sukumaran, A.; Geddes-McAlister, J.; Rothstein, S.J.; Akhtar, T.A. Biosynthesis of cannflavins A and B from Cannabis sativa L. Phytochemistry 2019, 164, 162–171. [Google Scholar] [CrossRef]
- Werz, O.; Seegers, J.; Schaible, A.M.; Weinigel, C.; Barz, D.; Koeberle, A.; Allegrone, G.; Pollastro, F.; Zampieri, L.; Grassi, G. Cannflavins from hemp sprouts, a novel cannabinoid-free hemp food product, target microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase. PharmaNutrition 2014, 2, 53–60. [Google Scholar] [CrossRef]
- Barrett, M.; Gordon, D.; Evans, F. Isolation from Cannabis sativa L. of cannflavin—a novel inhibitor of prostaglandin production. Biochem. Pharmacol. 1985, 34, 2019–2024. [Google Scholar] [CrossRef]
- Barrett, M.; Scutt, A.; Evans, F. Cannflavin A and B, prenylated flavones from Cannabis sativa L. Experientia 1986, 42, 452–453. [Google Scholar] [CrossRef] [PubMed]
- Eggers, C.; Fujitani, M.; Kato, R.; Smid, S. Novel cannabis flavonoid, cannflavin A displays both a hormetic and neuroprotective profile against amyloid β-mediated neurotoxicity in PC12 cells: Comparison with geranylated flavonoids, mimulone and diplacone. Biochem. Pharmacol. 2019, 169, 113609. [Google Scholar] [CrossRef]
- Vonapartis, E.; Aubin, M.-P.; Seguin, P.; Mustafa, A.F.; Charron, J.-B. Seed composition of ten industrial hemp cultivars approved for production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Gonçalves, J.; Rosado, T.; Soares, S.; Simão, A.Y.; Caramelo, D.; Luís, Â.; Fernández, N.; Barroso, M.; Gallardo, E.; Duarte, A.P. Cannabis and its secondary metabolites: Their use as therapeutic drugs, toxicological aspects, and analytical determination. Medicines 2019, 6, 31. [Google Scholar] [CrossRef] [Green Version]
- Moccia, S.; Siano, F.; Russo, G.L.; Volpe, M.G.; La Cara, F.; Pacifico, S.; Piccolella, S.; Picariello, G. Antiproliferative and antioxidant effect of polar hemp extracts (Cannabis sativa L. Fedora cv.) in human colorectal cell lines. Int. J. Food Sci. Nutr. 2019, 1–14. [Google Scholar] [CrossRef]
- Smeriglio, A.; Galati, E.M.; Monforte, M.T.; Lanuzza, F.; D’Angelo, V.; Circosta, C. Polyphenolic Compounds and Antioxidant Activity of Cold-Pressed Seed Oil from Finola Cultivar of Cannabis sativa L. Phytother. Res. 2016, 30, 1298–1307. [Google Scholar] [CrossRef]
- Drinić, Z.; Vidović, S.; Vladić, J.; Koren, A.; Kiprovski, B.; Sikora, V. Effect of extraction solvent on total polyphenols content and antioxidant activity of Cannabis sativa L. Lek. Sirovine 2018, 38, 17–21. [Google Scholar] [CrossRef]
- Ferrante, C.; Recinella, L.; Ronci, M.; Menghini, L.; Brunetti, L.; Chiavaroli, A.; Leone, S.; Di Iorio, L.; Carradori, S.; Tirillini, B. Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity. Food Chem. Toxicol. 2019, 125, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Mikulec, A.; Kowalski, S.; Sabat, R.; Skoczylas, Ł.; Tabaszewska, M.; Wywrocka-Gurgul, A. Hemp flour as a valuable component for enriching physicochemical and antioxidant properties of wheat bread. Lwt-Food Sci. Technol. 2019, 102, 164–172. [Google Scholar] [CrossRef]
- De Beer, D.; Harbertson, J.F.; Kilmartin, P.A.; Roginsky, V.; Barsukova, T.; Adams, D.O.; Waterhouse, A.L. Phenolics: A comparison of diverse analytical methods. Am. J. Enol. Vitic. 2004, 55, 389–400. [Google Scholar]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef]
- Heleno, S.A.; Martins, A.; Queiroz, M.J.R.; Ferreira, I.C. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food Chem. 2015, 173, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Burri, S.C.; Ekholm, A.; Håkansson, Å.; Tornberg, E.; Rumpunen, K. Antioxidant capacity and major phenol compounds of horticultural plant materials not usually used. J. Funct. Foods 2017, 38, 119–127. [Google Scholar] [CrossRef]
- European Commission (EC). European Commission (EC) No. 809/2014. Offic. J. Eur. Union 2014, L227, 69–124. [Google Scholar]
- Calzolari, D.; Magagnini, G.; Lucini, L.; Grassi, G.; Appendino, G.; Amaducci, S. High added-value compounds from Cannabis threshing residues. Ind. Crop. Prod. 2017, 108, 558–563. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Compound | Retention Time (min) | Chemical Formula | Adduct Ion | Theoretical Mass (m/z) | Measured Mass (m/z) | Accuracy (Δ mg/kg) | LOD (mg/kg) | LOQ (mg/kg) |
---|---|---|---|---|---|---|---|---|
Catechin | 7.65 | C15H14O6 | [M − H]− | 289.07176 | 289.07224 | 1.6605 | 0.0015 | 0.0046 |
Chlorogenic acid | 8.13 | C16H18O9 | [M − H]− | 353.08780 | 353.08798 | 0.5098 | 0.0012 | 0.0036 |
Caffeic acid | 8.24 | C9H8O4 | [M − H]− | 179.03498 | 179.03455 | −2.4018 | 0.0007 | 0.0020 |
Epicatechin | 8.51 | C15H14O6 | [M − H]− | 289.07176 | 289.07196 | 0.6919 | 0.0014 | 0.0043 |
Luteolin-7-O-glucoside | 9.23 | C21H20O11 | [M − H]− | 447.09328 | 447.09366 | 0.8499 | 0.0008 | 0.0025 |
p-Coumaric acid | 9.31 | C9H8O3 | [M − H]− | 163.04001 | 163.03937 | −3.9254 | 0.0006 | 0.0018 |
Caffeoyl tyramine | 9.46 | C17H17NO4 | [M − H]− | 298.10848 | 298.10910 | 2.0798 | - | - |
Rutin | 9.79 | C27H30O16 | [M − H]− | 609.14611 | 609.14624 | 0.2134 | 0.0012 | 0.0035 |
Ferulic acid | 9.88 | C10H10O4 | [M − H]− | 193.05063 | 193.05016 | −2.4346 | 0.0018 | 0.0054 |
Quercetin-3-glucoside | 9.93 | C20H20O12 | [M − H]− | 463.08820 | 463.08862 | 0.9070 | 0.0017 | 0.0052 |
Kaempferol-3-O-glucoside | 10.36 | C21H20O11 | [M − H]− | 447.09323 | 447.09360 | 0.8276 | 0.0008 | 0.0025 |
Apigenin-7-glucoside | 10.36 | C21H20O10 | [M − H]− | 431.09837 | 431.09836 | −0.0232 | 0.0004 | 0.0013 |
Cannabisin A | 10.54 | C34H30N2O8 | [M − H]− | 593.19294 | 593.19281 | −0.2192 | - | - |
Quercetin | 11.00 | C15H10O7 | [M − H]− | 301.03538 | 301.03508 | −0.9966 | 0.0021 | 0.0064 |
Luteolin | 11.25 | C15H10O6 | [M − H]− | 285.04046 | 285.04050 | 0.1403 | 0.0004 | 0.0012 |
Cannabisin B | 11.41 | C34H32N2O8 | [M − H]− | 595.20859 | 595.20709 | −2.5201 | - | - |
Kaempferol | 11.60 | C15H10O6 | [M − H]− | 285.04046 | 285.04086 | 1.4033 | 0.0005 | 0.0014 |
Naringenin | 11.78 | C15H12O5 | [M − H]− | 271.06120 | 271.06146 | 0.9592 | 0.0005 | 0.0015 |
Apigenin | 11.85 | C15H10O5 | [M − H]− | 269.04555 | 269.04572 | 0.6319 | 0.0004 | 0.0011 |
Cannabisin C | 12.34 | C35H34N2O8 | [M − H]− | 609.22424 | 609.22485 | 1.0013 | - | - |
Cannflavin B | 13.77 | C21H20O6 | [M − H]− | 367.11871 | 367.11871 | 0.000 | - | - |
Cannflavin A | 14.84 | C26H28O6 | [M − H]− | 435.18131 | 435.18143 | 0.2757 | - | - |
Sample | Kompolti (n = 9) | Tiborszallasi (n = 7) | Antal (n = 7) | Carmagnola Cs (n = 4) | ||||
---|---|---|---|---|---|---|---|---|
Average (mg/kg) | Range (mg/kg) | Average (mg/kg) | Range (mg/kg) | Average (mg/kg) | Range (mg/kg) | Average (mg/kg) | Range (mg/kg) | |
Phenolic acids | ||||||||
Hydroxycinnamic acids | ||||||||
Chlorogenic acid | 12.0 | 2.2–28.2 | 9.0 | 2.0–20.5 | 10.1 | 3.5–23.6 | 15.0 | 11.1–22.1 |
Caffeic acid | 1.4 | 0.4–2.8 | 4.3 | 1.2–6.4 | 3.3 | 1.6–5.6 | 3.9 | 2.9–4.6 |
p-Coumaric acid | 13.1 | 0.5–28.0 | 37.3 | 15.5–84.7 | 28.2 | 5.1–105.8 | 41.1 | 18.1–93.0 |
Ferulic acid | 19.7 | 3.0–35.6 | 26.0 | 14.7–35.3 | 18.9 | 4.7–30.6 | 25.5 | 20.2–33.4 |
SUM | 46.2 | 76.5 | 60.5 | 85.4 | ||||
Lignanamides | ||||||||
Cannabisin A | 1.1 | 0.1–2.9 | 0.01 | 0.005–0.01 | 1.5 | 1.2–1.8 | 1.6 | 0.09–2.85 |
Cannabisin B | 0.40 | 0.02–1.1 | - | - | 0.6 | 0.4–0.7 | 0.5 | 0.02–1.15 |
Cannabisin C | 0.10 | 0.01–0.35 | 0.09 | 0.01–0.27 | 0.14 | 0.01–0.38 | 0.02 | 0.003–0.05 |
SUM | 1.60 | 0.1 | 1.7 | 2.12 | ||||
Phenolic amides | ||||||||
N-trans-Caffeoyltyramine | 17.6 | 0.1–59.2 | 15.3 | 4.7–30.6 | 25.8 | 5.7–44.9 | 36.1 | 5.3–76.2 |
FLAVONOIDS | ||||||||
Flavonol | ||||||||
Rutin | 13.8 | 1.7–42.8 | 27.6 | 14.1–38.6 | 12.5 | 2.4–24.1 | 27.2 | 7.8–60.8 |
Quercetin-3-glucoside | 37.6 | 2.2–87.1 | 94.3 | 23.2–269.8 | 55.8 | 10.0–172.1 | 126.1 | 58.9–285.9 |
Kaempferol-3-O-glucoside | 6.5 | 0.1–15.3 | 15.4 | 4.2–44.5 | 9.9 | 1.6–29.6 | 26.6 | 12.6–46.6 |
Quercetin | 12.1 | 6.2–24.6 | 15.8 | 6.3–26.0 | 10.3 | 6.5–16.8 | 28.8 | 8.2–58.5 |
Kaempferol | 3.4 | 0.7–7.6 | 5.1 | 1.3–8.7 | 2.4 | 0.3–3.9 | 9.2 | 0.6–13.6 |
SUM | 73.4 | 158.2 | 90.9 | 217.8 | ||||
Flavones | ||||||||
Cannflavin A | 55.4 | 35.2–130.0 | 72.9 | 30.9–107.5 | 51.3 | 19.6–106.5 | 67.7 | 28.4–118.6 |
Cannflavin B | 55.4 | 30.2–110.6 | 86.7 | 26.2–215.5 | 98.8 | 32.9–182.5 | 97.2 | 11.9–154.4 |
Luteolin-7-O-glucoside | 9.4 | 3.3–19.0 | 13.4 | 2.1–42.8 | 13.9 | 8.8–17.7 | 22.2 | 1.1–52.6 |
Apigenin-7-O-glucoside | 1.9 | 0.1–5.6 | 2.5 | 0.1–6.7 | 1.1 | 0.2–3.0 | 2.6 | 0.8–6.5 |
Luteolin | 12.2 | 0.8–23.5 | 19.0 | 6.3–38.2 | 8.6 | 0.9–14.3 | 25.7 | 16.9–38.2 |
Apigenin | 5.4 | 2.1–11.7 | 6.5 | 2.4–16.3 | 4.1 | 0.4–8.5 | 8.7 | 6.3–13.9 |
SUM | 139.7 | 201.0 | 27.7 | 59.2 | ||||
Flavanols | ||||||||
Catechin | 85.3 | 0.1–334.0 | 16.8 | 2.6–43.4 | 40.9 | 1.9–155.2 | 70.1 | 39.2–115.2 |
Epicatechin | 30.7 | 1.6–88.4 | 64.2 | 10.6–183.7 | 63.2 | 11.1–156.4 | 106.9 | 21.5–194.6 |
SUM | 116.0 | 81.0 | 104.1 | 177.0 | ||||
Flavanone | ||||||||
Naringenin | 0.50 | 0.01–1.10 | 0.5 | 0.3–1.0 | 0.9 | 0.5–2.0 | 1.0 | 0.7–1.8 |
Total bioactive | 377.9 | 532.6 | 461.7 | 743.5 |
Cultivar | TPC | DPPH | ||
---|---|---|---|---|
Average (mg GAE/g) | Range (mg GAE/g) | Average (mmol trolox/kg) | Range (mmol trolox/kg) | |
Kompolti (n = 9) | 26.2 ± 0.5 | 10.5–47.2 | 46.7 ± 0.7 | 36.6–55.0 |
Tiborszallasi (n = 7) | 29.9 ± 0.4 | 21.9–42.9 | 61.3 ± 0.9 | 50.8–72.7 |
Antal (n = 7) | 30.7 ± 0.5 | 17.0–48.9 | 45.9 ± 0.4 | 27.5–67.5 |
Carmagnola Cs (n = 4) | 33.2 ± 0.5 | 26.3–41.5 | 63.6 ± 0.9 | 59.1–77.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izzo, L.; Castaldo, L.; Narváez, A.; Graziani, G.; Gaspari, A.; Rodríguez-Carrasco, Y.; Ritieni, A. Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 631. https://doi.org/10.3390/molecules25030631
Izzo L, Castaldo L, Narváez A, Graziani G, Gaspari A, Rodríguez-Carrasco Y, Ritieni A. Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS. Molecules. 2020; 25(3):631. https://doi.org/10.3390/molecules25030631
Chicago/Turabian StyleIzzo, Luana, Luigi Castaldo, Alfonso Narváez, Giulia Graziani, Anna Gaspari, Yelko Rodríguez-Carrasco, and Alberto Ritieni. 2020. "Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS" Molecules 25, no. 3: 631. https://doi.org/10.3390/molecules25030631
APA StyleIzzo, L., Castaldo, L., Narváez, A., Graziani, G., Gaspari, A., Rodríguez-Carrasco, Y., & Ritieni, A. (2020). Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS. Molecules, 25(3), 631. https://doi.org/10.3390/molecules25030631