The Radiolabeling of a Gly-Sar Dipeptide Derivative with Flourine-18 and Its Use as a Potential Peptide Transporter PET Imaging Agent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gly-Sar Dipeptide Derivative Radiolabeled with Fluorine-18
2.2. Initial Testing of [18F]FEPPG in Pancreatic Carcinoma Cell Lines and Tumors
3. Conclusions
4. Material and Methods
4.1. General Information
4.2. Animals
4.3. Radiochemistry
4.3.1. (S)-tert-Butyl 2-(2-((tert-butoxycarbonyl)amino)-3-(4-(2-[18F]fluoro-ethoxy)phenyl)-N-methylpropanamido)acetate (4)
4.3.2. (S)-2-(2-Amino-3-(4-(2-[18F]fluoroethoxy)phenyl)-N-methylpropanamido)acetic acid, [18F]FEPPG (1)
4.4. Cell Uptake
4.5. PET Experiments
4.6. Quantification and Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Fei, Y.J.; Kanai, Y.; Nussberger, S.; Ganapathy, V.; Leibach, F.H.; Romero, M.F.; Singh, S.K.; Boron, W.F.; Hediger, M.A. Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 1994, 368, 563–566. [Google Scholar] [CrossRef]
- Verri, T.; Maffia, M.; Danieli, A.; Herget, M.; Wenzel, U.; Daniel, H.; Storelli, C. Characterisation of the H(+)/peptide cotransporter of eel intestinal brush-border membranes. J. Exp. Biol. 2000, 203, 2991–3001. [Google Scholar]
- Conrad, E.M.; Ahearn, G.A. 3H-L-histidine and 65Zn(2+) are cotransported by a dipeptide transport system in intestine of lobster Homarus americanus. J. Exp. Biol. 2005, 208, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Sleisenger, M.H.; Burston, D.; Dalrymple, J.A.; Wilkinson, S.; Mathews, D.M. Evidence for a single common carrier for uptake of a dipeptide and a tripeptide by hamster jejunum in vitro. Gastroenterology 1976, 71, 76–81. [Google Scholar] [CrossRef]
- Shen, H.; Smith, D.E.; Brosius, F.C., 3rd. Developmental expression of PEPT1 and PEPT2 in rat small intestine, colon, and kidney. Pediatric Res. 2001, 49, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Liang, R.; Fei, Y.J.; Prasad, P.D.; Ramamoorthy, S.; Han, H.; Yang-Feng, T.L.; Hediger, M.A.; Ganapathy, V.; Leibach, F.H. Human intestinal H+/peptide cotransporter. Cloning, functional expression, and chromosomal localization. J. Biol. Chem. 1995, 270, 6456–6463. [Google Scholar] [CrossRef] [Green Version]
- Knutter, I.; Hartrodt, B.; Toth, G.; Keresztes, A.; Kottra, G.; Mrestani-Klaus, C.; Born, I.; Daniel, H.; Neubert, K.; Brandsch, M. Synthesis and characterization of a new and radiolabeled high-affinity substrate for H+/peptide cotransporters. Febs J. 2007, 274, 5905–5914. [Google Scholar] [CrossRef]
- Groneberg, D.A.; Eynott, P.R.; Doring, F.; Dinh, Q.T.; Oates, T.; Barnes, P.J.; Chung, K.F.; Daniel, H.; Fischer, A. Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung. Thorax 2002, 57, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Mitsuoka, K.; Miyoshi, S.; Kato, Y.; Murakami, Y.; Utsumi, R.; Kubo, Y.; Noda, A.; Nakamura, Y.; Nishimura, S.; Tsuji, A. Cancer detection using a PET tracer, 11C-glycylsarcosine, targeted to H+/peptide transporter. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2008, 49, 615–622. [Google Scholar] [CrossRef] [Green Version]
- Tai, W.; Chen, Z.; Cheng, K. Expression profile and functional activity of peptide transporters in prostate cancer cells. Mol. Pharm. 2013, 10, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Mitsuoka, K.; Kato, Y.; Miyoshi, S.; Murakami, Y.; Hiraiwa, M.; Kubo, Y.; Nishimura, S.; Tsuji, A. Inhibition of oligopeptide transporter suppress growth of human pancreatic cancer cells. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2010, 40, 202–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knutter, I.; Rubio-Aliaga, I.; Boll, M.; Hause, G.; Daniel, H.; Neubert, K.; Brandsch, M. H+-peptide cotransport in the human bile duct epithelium cell line SK-ChA-1. Am. J. Physiol Gastrointest Liver Physiol 2002, 283, G222–G229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, D.E.; Covitz, K.M.; Sadee, W.; Mrsny, R.J. An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines AsPc-1 and Capan-2. Cancer Res. 1998, 58, 519–525. [Google Scholar] [PubMed]
- Nakanishi, T.; Tamai, I.; Sai, Y.; Sasaki, T.; Tsuji, A. Carrier-mediated transport of oligopeptides in the human fibrosarcoma cell line HT1080. Cancer Res. 1997, 57, 4118–4122. [Google Scholar] [PubMed]
- Nabulsi, N.B.; Smith, D.E.; Kilbourn, M.R. [11C]Glycylsarcosine: Synthesis and in vivo evaluation as a PET tracer of PepT2 transporter function in kidney of PepT2 null and wild-type mice. Bioorganic Med. Chem. 2005, 13, 2993–3001. [Google Scholar] [CrossRef]
- Brandsch, M.; Knutter, I.; Bosse-Doenecke, E. Pharmaceutical and pharmacological importance of peptide transporters. J. Pharm. Pharmacol. 2008, 60, 543–585. [Google Scholar] [CrossRef]
- Cherry, S.R. Fundamentals of positron emission tomography and applications in preclinical drug development. J. Clin. Pharmacol. 2001, 41, 482–491. [Google Scholar] [CrossRef]
- Schlyer, D.J. PET tracers and radiochemistry. Ann. Acad Med. Singap. 2004, 33, 146–154. [Google Scholar]
- Tateoka, R.; Abe, H.; Miyauchi, S.; Shuto, S.; Matsuda, A.; Kobayashi, M.; Miyazaki, K.; Kamo, N. Significance of substrate hydrophobicity for recognition by an oligopeptide transporter (PEPT1). Bioconjug. Chem. 2001, 12, 485–492. [Google Scholar] [CrossRef]
- Jappar, D.; Wu, S.P.; Hu, Y.; Smith, D.E. Significance and regional dependency of peptide transporter (PEPT) 1 in the intestinal permeability of glycylsarcosine: In situ single-pass perfusion studies in wild-type and Pept1 knockout mice. Drug Metab. Dispos. Biol. Fate Chem. 2010, 38, 1740–1746. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Smith, D.E.; Yang, T.; Huang, Y.G.; Schnermann, J.B.; Brosius, F.C., 3rd. Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am. J. Physiol. 1999, 276, F658–F665. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Ruiz, D.; Wang, Q.; Gudmundsson, O.S.; Cook, T.J.; Smith, R.L.; Faria, T.N.; Knipp, G.T. Spatial expression patterns of peptide transporters in the human and rat gastrointestinal tracts, Caco-2 in vitro cell culture model, and multiple human tissues. Aaps Pharmsci 2001, 3, E9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Hu, Y.; Li, P.; Weng, Y.; Kamada, N.; Jiang, H.; Smith, D.E. Expression and regulation of proton-coupled oligopeptide transporters in colonic tissue and immune cells of mice. Biochem. Pharmacol. 2018, 148, 163–173. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the standards for compounds 1 and compounds 4 are available from the authors. |
Entry | Amount of 3 (mg) | % Conversion to 4 |
---|---|---|
1 | 0.5 | 8 |
2 | 1.0 | 12 |
3 | 2.0 | 23 |
4 | 4.0 | 18 |
Entry | Time (min) | % Conversion to 4 |
---|---|---|
1 | 0 | ND |
2 | 2 | 5 |
3 | 5 | 14 |
4 | 10 | 19 |
5 | 20 | 14 |
6 | 60 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molotkov, A.; W. Castrillon, J.; Santha, S.; E. Harris, P.; K. Leung, D.; Mintz, A.; Carberry, P. The Radiolabeling of a Gly-Sar Dipeptide Derivative with Flourine-18 and Its Use as a Potential Peptide Transporter PET Imaging Agent. Molecules 2020, 25, 643. https://doi.org/10.3390/molecules25030643
Molotkov A, W. Castrillon J, Santha S, E. Harris P, K. Leung D, Mintz A, Carberry P. The Radiolabeling of a Gly-Sar Dipeptide Derivative with Flourine-18 and Its Use as a Potential Peptide Transporter PET Imaging Agent. Molecules. 2020; 25(3):643. https://doi.org/10.3390/molecules25030643
Chicago/Turabian StyleMolotkov, Andrei, John W. Castrillon, Sreevidya Santha, Paul E. Harris, David K. Leung, Akiva Mintz, and Patrick Carberry. 2020. "The Radiolabeling of a Gly-Sar Dipeptide Derivative with Flourine-18 and Its Use as a Potential Peptide Transporter PET Imaging Agent" Molecules 25, no. 3: 643. https://doi.org/10.3390/molecules25030643
APA StyleMolotkov, A., W. Castrillon, J., Santha, S., E. Harris, P., K. Leung, D., Mintz, A., & Carberry, P. (2020). The Radiolabeling of a Gly-Sar Dipeptide Derivative with Flourine-18 and Its Use as a Potential Peptide Transporter PET Imaging Agent. Molecules, 25(3), 643. https://doi.org/10.3390/molecules25030643