Optimization of Total Phenolic and Flavonoid Contents of Defatted Pitaya (Hylocereus polyrhizus) Seed Extract and Its Antioxidant Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fitting Model
2.2. Analysis of Response Surface
2.3. Optimum Extraction Condition Based on TPC
2.4. Optimum Extraction Condition Based on TFC
2.5. Optimum Extraction Condition on Antioxidant Activity
2.5.1. Optimum Extraction Condition Based on FRAP Activity
2.5.2. Optimum Extraction Condition Based on ABTS Activity
2.6. Optimization of Extracting Conditions for TPC, TFC, FRAP, and ABTS Activity
2.7. Identification of Phytochemical Compound in DPSE
- kaempferol-3-O-rutinoside,
- kaempferol-3-O-β-d-glucopyranoside,
- apigenin-7-O-α-l-rhamnose(1->4)-6″-O-acetyl-β-d glucoside, and
- isohamnetin-3-O-(2G-α-l-rhamnosyl)-rutinoside.
3. Materials and Methods
3.1. Materials
3.2. Extraction of Defatted Pitaya Seed (DPS)
3.3. Experimental Design
3.4. Determination of Total Phenolics Content (TPC)
3.5. Determination of Total Flavonoid Content (TFC)
3.6. Ferric Reducing Antioxidant Power (FRAP)
3.7. ABTS Radical Scavenging Activity
3.8. Identification of Phytochemical Compounds in Defatted Pitaya Seed Extract (DPSE)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rebecca, O.P.S.; Boyce, A.N.; Chandran, S. Pigment identification and antioxidant properties of red dragon fruit (Hylocereus polyrhizus). Afr. J. Biotechnol. 2010, 9, 1450–1454. [Google Scholar]
- Tenore, G.C.; Novellino, E.; Basile, A. Nutraceutical potential and antioxidant benefits of red pitaya (Hylocereus polyrhizus) extracts. J. Funct. Foods 2012, 4, 129–136. [Google Scholar] [CrossRef]
- Baydar, N.G.; Özkan, G.; Çetin, E.S. Characterization of grape seed and pomace oil extracts. Grasas y Aceites 2007, 58, 29–33. [Google Scholar]
- Lemcke-Norojärvi, M.; Kamal-Eldin, A.; Appelqvist, L.-Å.; Dimberg, L.H.; Öhrvall, M.; Vessby, B. Corn and Sesame Oils Increase Serum γ-Tocopherol Concentrations in Healthy Swedish Women. J. Nutr. 2001, 131, 1195–1201. [Google Scholar] [CrossRef] [Green Version]
- Van Hoed, V.; De Clercq, N.; Echim, C.; Andjelkovic, M.; Leber, E.; Dewettinck, K.; VerhÉ, R. Berry seeds: A source of specialty oils with high content of bioactives and nutritional value. J. Food Lipids 2009, 16, 33–49. [Google Scholar] [CrossRef]
- Voigt, J. Phenolic Compounds in Food and Their Effects on Health. I. Analysis, Occurrence, and Chemistry (ACS Symposium Series 506). Herausgegeben von Chi-Tang Ho, Chang Y. Lee und Mou-Tuan Huang. 338 Seiten, zahlr. Abb. und Tab. American Chemical Society, Washington. Food/Nahrung 1993, 37, 185. [Google Scholar]
- Hollman, P.C.H.; Katan, M.B. Dietary flavonoids: Intake, health effects and bioavailability. Food Chem. Toxicol. 1999, 37, 937–942. [Google Scholar] [CrossRef]
- Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004, 65, 79–85. [Google Scholar] [CrossRef]
- Evans, C.; Paganga, G.; Miller, J.N. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Zengin, G.; Uysal, S.; Ceylan, R.; Aktumsek, A. Phenolic constituent, antioxidative and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Ind. Crop. Prod. 2015, 70, 1–6. [Google Scholar] [CrossRef]
- Clifford, M.N. Chlorogenic acids and other cinnamates—Nature, occurrence, dietary burden, absorption and metabolism. J. Sci. Food Agric. 2000, 80, 1033–1043. [Google Scholar] [CrossRef]
- Chirinos, R.; Rogez, H.; Campos, D.; Pedreschi, R.; Larondelle, Y. Optimization of extraction conditions of antioxidant phenolic compounds from mashua (Tropaeolum tuberosum Ruíz & Pavón) tubers. Sep. Purif. Technol. 2007, 55, 217–225. [Google Scholar]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef]
- Banik, R.M.; Pandey, D.K. Optimizing conditions for oleanolic acid extraction from Lantana camara roots using response surface methodology. Ind. Crop. Prod. 2008, 27, 241–248. [Google Scholar] [CrossRef]
- Silva, E.M.; Rogez, H.; Larondelle, Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology. Sep. Purif. Technol. 2007, 55, 381–387. [Google Scholar] [CrossRef]
- Box, G.E.P.; Wilson, K.B. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B 1951, 13, 1–38. [Google Scholar] [CrossRef]
- Anderson-Cook, C.M.; Borror, C.M.; Montgomery, D.C. Response surface design evaluation and comparison. J. Stat. Plan. Inference 2009, 139, 629–641. [Google Scholar] [CrossRef]
- Andreotti, C.; Ravaglia, D.; Ragaini, A.; Costa, G. Phenolic compounds in peach (Prunus persica) cultivars at harvest and during fruit maturation. Ann. Appl. Biol. 2008, 153, 11–23. [Google Scholar] [CrossRef]
- Azahar, N.F.; Gani, S.S.A.; Mohd Mokhtar, N.F. Optimization of phenolics and flavonoids extraction conditions of Curcuma Zedoaria leaves using response surface methodology. Chem. Cent. J. 2017, 11, 96. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Gao, Y.; Mao, L.; Zhao, J. Optimisation of conditions for the preparation of β-carotene nanoemulsions using response surface methodology. Food Chem. 2008, 107, 1300–1306. [Google Scholar] [CrossRef]
- Quanhong, L.; Caili, F. Application of response surface methodology for extraction optimization of germinant pumpkin seeds protein. Food Chem. 2005, 92, 701–706. [Google Scholar] [CrossRef]
- Mohamed Mahzir, K.A.; Abd Gani, S.S.; Hasanah Zaidan, U.; Halmi, M.I.E. Development of Phaleria macrocarpa (Scheff.) Boerl Fruits Using Response Surface Methodology Focused on Phenolics, Flavonoids and Antioxidant Properties. Molecules 2018, 23, 724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, X.J.; Fu, Y.J.; Luo, M.; Zhao, C.J.; Zu, Y.G.; Li, C.Y.; Wang, W.; Li, J.; Wei, Z.F. Acidic pH based microwave-assisted aqueous extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.). Ind. Crop. Prod. 2013, 43, 420–426. [Google Scholar] [CrossRef]
- Lotfi, D.; Anissa, M.; Hafsa, B.; Djamila, B.; Ihdene, Z.; Yelda Bakos, P.; Boudjema, H. Optimization of Hydrolysis Degradation of Neurotoxic Pesticide Methylparathion Using a Response Surface Methodology (RSM). IOSR J. Appl. Chem. Ver. I 2015, 8, 43–52. [Google Scholar]
- Deng, J.; Liu, Q.; Zhang, C.; Cao, W.; Fan, D.; Yang, H. Extraction optimization of polyphenols from waste kiwi fruit seeds (Actinidia chinensis Planch.) and evaluation of its antioxidant and anti-inflammatory properties. Molecules 2016, 21, 832. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Hou, Z.; Gao, Y.; Xue, Y.; Liu, X.; Liu, G. Optimization of extraction parameters of bioactive components from defatted marigold (Tagetes erecta L.) residue using response surface methodology. Food Bioprod. Process. 2012, 90, 9–16. [Google Scholar] [CrossRef]
- Bucić-Kojić, A.; Planinić, M.; Tomas, S.; Bilić, M.; Velić, D. Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. J. Food Eng. 2007, 81, 236–242. [Google Scholar] [CrossRef]
- Harbourne, N.; Marete, E.; Jacquier, J.C.; O’Riordan, D. Effect of drying methods on the phenolic constituents of meadowsweet (Filipendula ulmaria) and willow (Salix alba). LWT-Food Sci. Technol. 2009, 42, 1468–1473. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 8, 200–208. [Google Scholar] [CrossRef]
- Lim, Y.Y.; Murtijaya, J. Antioxidant properties of Phyllanthus amarus extracts as affected by different drying methods. LWT-Food Sci. Technol. 2007, 40, 1664–1669. [Google Scholar] [CrossRef]
- Yolmeh, M.; Habibi Najafi, M.B.; Farhoosh, R. Optimisation of ultrasound-assisted extraction of natural pigment from annatto seeds by response surface methodology (RSM). Food Chem. 2014, 155, 319–324. [Google Scholar] [CrossRef]
- Prasad, K.N.; Yang, B.; Zhao, M.; Ruenroengklin, N.; Jiang, Y. Application of ultrasonication or high-pressure extraction of flavonoids from litchi fruit pericarp. J. Food Process. Eng. 2009, 32, 828–843. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Şahin, S.; Şamli, R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013, 20, 595–602. [Google Scholar] [CrossRef]
- Rajha, H.N.; El Darra, N.; Hobaika, Z.; Boussetta, N.; Vorobiev, E.; Maroun, R.G.; Louka, N. Extraction of Total Phenolic Compounds, Flavonoids, Anthocyanins and Tannins from Grape Byproducts by Response Surface Methodology. Influence of Solid-Liquid Ratio, Particle Size, Time, Temperature and Solvent Mixtures on the Optimization Process. Food Nutr. Sci. 2014, 5, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Z.L.; Wan, P.F.; Dong, C.L.; Li, Y.H. Optimization of total flavonoids content extracted from Flos Populi using response surface methodology. Ind. Crop. Prod. 2013, 43, 778–786. [Google Scholar] [CrossRef]
- Wang, Y.L.; Xi, G.S.; Zheng, Y.C.; Miao, F.S. Microwave-assisted extraction of flavonoids from Chinese herb Radix puerariae (Ge Gen). J. Med. Plants Res. 2010, 4, 304–308. [Google Scholar]
- Krishnaswamy, K.; Orsat, V.; Gariépy, Y.; Thangavel, K. Optimization of Microwave-Assisted Extraction of Phenolic Antioxidants from Grape Seeds (Vitis vinifera). Food Bioprocess Technol. 2013, 6, 441–455. [Google Scholar] [CrossRef]
- Salar, R.K.; Purewal, S.S.; Bhatti, M.S. Optimization of extraction conditions and enhancement of phenolic content and antioxidant activity of pearl millet fermented with Aspergillus awamori MTCC-548. Resour. Effic. Technol. 2016, 2, 148–157. [Google Scholar] [CrossRef]
- Herodež, Š.S.; Hadolin, M.; Škerget, M.; Knez, Ž. Solvent extraction study of antioxidants from Balm (Melissa officinalis L.) leaves. Food Chem. 2003, 80, 275–282. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Baghdadi, A.; Jaafar, H.Z.E.; Swamy, M.K.; Megat Wahab, P.E. Optimization of flavonoid extraction from red and brown rice bran and evaluation of the antioxidant properties. Molecules 2018, 23, 1863. [Google Scholar] [CrossRef] [Green Version]
- Wong, P.Y.Y.; Kitts, D.D. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem. 2006, 97, 505–515. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Li, D.; Wang, L.J.; Ozkan, N.; Chen, X.D.; Mao, Z.H.; Yang, H.Z. Optimization of ethanol-water extraction of lignans from flaxseed. Sep. Purif. Technol. 2007, 57, 17–24. [Google Scholar] [CrossRef]
- Karacabey, E.; Mazza, G. Optimisation of antioxidant activity of grape cane extracts using response surface methodology. Food Chem. 2010, 119, 343–348. [Google Scholar] [CrossRef]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef]
- Dent, M.; Dragović-Uzelac, V.; Penić, M.; Brñić, M.; Bosiljkov, T.; Levaj, B. The effect of extraction solvents, temperature and time on the composition and mass fraction of polyphenols in dalmatian wild sage (Salvia officinalis L.) extracts. Food Technol. Biotechnol. 2013, 51, 84–91. [Google Scholar]
- Jovanović, A.A.; Đorđević, V.B.; Zdunić, G.M.; Pljevljakušić, D.S.; Šavikin, K.P.; Gođevac, D.M.; Bugarski, B.M. Optimization of the extraction process of polyphenols from Thymus serpyllum L. herb using maceration, heat- and ultrasound-assisted techniques. Sep. Purif. Technol. 2017, 179, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Fecka, I.; Turek, S. Determination of polyphenolic compounds in commercial herbal drugs and spices from Lamiaceae: Thyme, wild thyme and sweet marjoram by chromatographic techniques. Food Chem. 2008, 108, 1039–1053. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef]
- Miron, T.L.; Plaza, M.; Bahrim, G.; Ibáñez, E.; Herrero, M. Chemical composition of bioactive pressurized extracts of Romanian aromatic plants. J. Chromatogr. A 2011, 1218, 4918–4927. [Google Scholar] [CrossRef] [Green Version]
- Vajić, U.J.; Grujić-Milanović, J.; Živković, J.; Šavikin, K.; Godevac, D.; Miloradović, Z.; Bugarski, B.; Mihailović-Stanojević, N. Optimization of extraction of stinging nettle leaf phenolic compounds using response surface methodology. Ind. Crop. Prod. 2015, 74, 912–917. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Wu, T.; Liu, R.; Loewen, S.; Tsao, R. Microwave-assisted extraction of phenolics with maximal antioxidant activities in tomatoes. Food Chem. 2012, 130, 928–936. [Google Scholar] [CrossRef]
- Ahmed, D.; Khan, M.; Saeed, R. Comparative Analysis of Phenolics, Flavonoids, and Antioxidant and Antibacterial Potential of Methanolic, Hexanic and Aqueous Extracts from Adiantum caudatum Leaves. Antioxidants 2015, 4, 394–409. [Google Scholar] [CrossRef]
- Yim, H.S.; Chye, F.Y.; Rao, V.; Low, J.Y.; Matanjun, P.; How, S.E.; Ho, C.W. Optimization of extraction time and temperature on antioxidant activity of Schizophyllum commune aqueous extract using response surface methodology. J. Food Sci. Technol. 2013, 50, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Youn, J.S.; Kim, Y.J.; Na, H.J.; Jung, H.R.; Song, C.K.; Kang, S.Y.; Kim, J.Y. Antioxidant activity and contents of leaf extracts obtained from Dendropanax morbifera LEV are dependent on the collecting season and extraction conditions. Food Sci. Biotechnol. 2019, 28, 201–207. [Google Scholar] [CrossRef]
- Pinelo, M.; Del Fabbro, P.; Manzocco, L.; Nuñez, M.J.; Nicoli, M.C. Optimization of continuous phenol extraction from Vitis vinifera byproducts. Food Chem. 2005, 92, 109–117. [Google Scholar] [CrossRef]
- Md Yusof, A.H.; Abd Gani, S.S.; Zaidan, U.H.; Halmi, M.I.E.; Zainudin, B.H. Optimization of an Ultrasound-Assisted Extraction Condition for Flavonoid Compounds from Cocoa Shells (Theobroma cacao) Using Response Surface Methodology. Molecules 2019, 24, 711. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Wei, S.; Liao, M. Optimization of ultrasonic extraction of phenolic compounds from Euryale ferox seed shells using response surface methodology. Ind. Crop. Prod. 2013, 49, 837–843. [Google Scholar] [CrossRef]
- Atanassova, M.; Bagdassarian, V. RUTIN CONTENT IN PLANT PRODUCTS. J. Univ. Chem. Technol. Metall. 2009, 44, 201–203. [Google Scholar]
- Zielińska, D.; Turemko, M.; Kwiatkowski, J.; Zieliński, H. Evaluation of flavonoid contents and antioxidant capacity of the aerial parts of common and tartary buckwheat plants. Molecules 2012, 17, 9668–9682. [Google Scholar] [CrossRef]
- Wells, J.M.; McLuckey, S.A. Collision-induced dissociation (CID) of peptides and proteins. Methods Enzymol. 2005, 402, 148–185. [Google Scholar]
- Wysocki, V.H.; Kenttämaa, H.I.; Cooks, R.G. Internal energy distributions of isolated ions after activation by various methods. Int. J. Mass Spectrom. Ion Process. 1987, 75, 181–208. [Google Scholar] [CrossRef]
- Daji, G.; Steenkamp, P.; Madala, N.; Dlamini, B. Phytochemical Composition of Solanum retroflexum Analysed with the Aid of Ultra-Performance Liquid Chromatography Hyphenated to Quadrupole-Time-of-Flight Mass Spectrometry (UPLC-qTOF-MS). J. Food Qual. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Cha, M.N.; Jun, H.I.; Lee, W.J.; Kim, M.J.; Kim, M.K.; Kim, Y.S. Chemical composition and antioxidant activity of Korean cactus (Opuntia humifusa) fruit. Food Sci. Biotechnol. 2013, 22, 523–529. [Google Scholar] [CrossRef]
- Tyug, T.S.; Johar, M.H.; Ismail, A. Antioxidant properties of fresh, powder, and fiber products of mango (Mangifera foetida) fruit. Int. J. Food Prop. 2010, 13, 682–691. [Google Scholar] [CrossRef]
- Quettier-Deleu, C.; Gressier, B.; Vasseur, J.; Dine, T.; Brunet, C.; Luyckx, M.; Cazin, M.; Cazin, J.C.; Bailleul, F.; Trotin, F. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J. Ethnopharmacol. 2000, 72, 35–42. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Source | TPC | TFC | FRAP | ABTS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dFa | SSb | F-Value | p-Value | dFa | SSb | F-Value | p-Value | dFa | SSb | F-Value | p-Value | dFa | SSb | F-Value | p-Value | |
Model | 9 | 9533.98 | 17.97 | <0.0001 | 9 | 67.3 | 63.87 | <0.0001 | 9 | 1.53 | 41.97 | <0.0001 | 9 | 722.71 | 68.43 | <0.0001 |
A | 1 | 96.90 | 1.64 | 0.2288 | 1 | 0.6602 | 5.64 | 0.039 | 1 | 0.1811 | 44.82 | <0.0001 | 1 | 199.29 | 169.83 | <0.0001 |
B | 1 | 4231.34 | 71.76 | <0.0001 | 1 | 6.95 | 59.39 | <0.0001 | 1 | 1.02 | 251.6 | <0.0001 | 1 | 185.83 | 158.36 | <0.0001 |
C | 1 | 1163.51 | 19.73 | 0.0013 | 1 | 48.33 | 412.77 | <0.0001 | 1 | 0.0082 | 2.03 | 01849 | 1 | 9.8 | 8.35 | 0.0161 |
AB | 1 | 1530.98 | 25.96 | 0.0005 | 1 | 1.66 | 14.15 | 0.0037 | 1 | 0.0112 | 2.78 | 0.1262 | 1 | 128.24 | 109.28 | <0.0001 |
AC | 1 | 1.00 | 0.0170 | 0.8989 | 1 | 7.57 | 64.63 | <0.0001 | 1 | 0.1861 | 46.04 | <0.0001 | 1 | 44.79 | 38.17 | 0.0001 |
BC | 1 | 125.37 | 2.13 | 0.1755 | 1 | 0.6161 | 5.26 | 0.0447 | 1 | 0.0288 | 7.13 | 0.0235 | 1 | 42 | 35.79 | 0.0001 |
A2 | 1 | 1178.75 | 19.99 | 0.0012 | 1 | 0.8306 | 7.09 | 0.0238 | 1 | 0.0485 | 11.99 | 0.0061 | 1 | 72.79 | 62.03 | <0.0001 |
B2 | 1 | 906.72 | 15.38 | 0.0029 | 1 | 0.1742 | 1.49 | 0.2505 | 1 | 0.0004 | 0.0874 | 0.7736 | 1 | 45.34 | 38.64 | <0.0001 |
C2 | 1 | 256.80 | 4.36 | 0.0635 | 1 | 0.4853 | 4.15 | 0.0691 | 1 | 0.0545 | 13.5 | 0.0043 | 1 | 0.6885 | 0.5867 | 0.4614 |
Residual | 10 | 589.64 | 10 | 1.17 | 10 | 0.0404 | 10 | 11.73 | ||||||||
Lack of fit | 5 | 323.64 | 1.22 | 0.4174 | 5 | 0.4582 | 0.6431 | 0.6801 | 5 | 0.0129 | 0.4677 | 0.788 | 5 | 9.07 | 3.41 | 0.1022 |
R2 | 0.9418 | 0.9829 | 0.9742 | 0.9840 | ||||||||||||
R2Adj | 0.8893 | 0.9675 | 0.9510 | 0.9696 | ||||||||||||
CV | 7.62 | 4.62 | 5.57 | 1.21 |
TPC (mg GAE/g Sample) | TFC (mg QE/g Sample) | FRAP (mM Fe2+/g Sample) | ABTS (%) | |
---|---|---|---|---|
Predicted | 129.75 | 9.995 | 1.24 | 92.87 |
Experimental | 128.58 ± 1.61 | 9.805 ± 0.69 | 1.23 ± 0.03 | 91.62 ± 0.15 |
No. | A | Component Name | B | C | D | Identification Status and Category |
---|---|---|---|---|---|---|
1 | FL | Rutin | 610.15338 | 609.146 | 8.38 | Identified, confirmed |
2 | FL | Kaempferol-3-O-rutinoside | 594.15847 | 593.1514 | 6.67 | Identified, tentative |
3 | FL | Kaempferol-3-O-β-d-glucopyranoside | 448.10056 | 447.093 | 9.32 | Identified, tentative |
4 | FL | Apigenin-7-O-α-l-rhamnose (1→4)-6”-O-acetyl-β-d-glucoside | 620.17412 | 619.1664 | 7.98 | Identified, tentative |
5 | FL | Isorhamnetin-3-O-(2G-α-l-rhamnosyl)-rutinoside | 770.22694 | 769.2208 | 7.74 | Identified, tentative |
6 | PA | Sinapic acid | 224.06847 | 223.0609 | 5.42 | Identified, tentative |
7 | PA | E-p-Coumatic acid | 164.04734 | 163.0396 | 11.69 | Identified, tentative |
Independent Variables | Levels | ||||
---|---|---|---|---|---|
−α | −1 | 0 | 1 | −α | |
Extraction time (A) (min) | −9.54 | 30 | 60 | 90 | 110.45 |
Temperature (B) (°C) | 26.36 | 40 | 60 | 80 | 93.64 |
Ethanol concentration (C) (%) | 53.18 | 60 | 70 | 80 | 86.82 |
Run | Extraction Time, A | Temperature, B | Ethanol Conc., C | TPC | TFC | FRAP | ABTS |
---|---|---|---|---|---|---|---|
(Min.) | (°C) | (%) | (mg GAE/g) | (mg QE/g) | (mM Fe2+/g) | (%) | |
1 | 9.54622 | 60 | 70 | 75.83 | 6.38 | 0.85 | 78.89 |
2 | 60 | 60 | 70 | 103.75 | 7.34 | 1.34 | 91.22 |
3 | 60 | 26.3641 | 70 | 55.83 | 6.65 | 0.77 | 80.87 |
4 | 90 | 80 | 80 | 107 | 8.54 | 1.34 | 89.13 |
5 | 110.454 | 60 | 70 | 89.63 | 7.44 | 1.25 | 91.9 |
6 | 30 | 80 | 60 | 127.75 | 5.96 | 1.21 | 91.97 |
7 | 30 | 40 | 60 | 52 | 2.69 | 0.53 | 69.79 |
8 | 90 | 40 | 80 | 102.42 | 8.2 | 0.75 | 92.13 |
9 | 60 | 60 | 70 | 105.75 | 7.64 | 1.12 | 91.08 |
10 | 60 | 60 | 70 | 102.75 | 8.29 | 1.22 | 92.35 |
11 | 60 | 60 | 53.1821 | 96.5 | 3.88 | 1.08 | 91.52 |
12 | 60 | 60 | 70 | 108.38 | 7.2 | 1.19 | 91.35 |
13 | 60 | 93.6359 | 70 | 115.92 | 9.15 | 1.63 | 92.6 |
14 | 60 | 60 | 70 | 116.25 | 7.68 | 1.22 | 92.33 |
15 | 30 | 80 | 80 | 126.75 | 10.67 | 1.28 | 92.37 |
16 | 90 | 40 | 60 | 89 | 6.27 | 1.05 | 92.03 |
17 | 60 | 60 | 70 | 120.75 | 7.55 | 1.27 | 92.82 |
18 | 60 | 60 | 86.8179 | 144 | 10.26 | 1 | 93.22 |
19 | 30 | 40 | 80 | 77.5 | 9.35 | 0.97 | 83.21 |
20 | 90 | 80 | 60 | 98.75 | 6.88 | 1.75 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulkifli, S.A.; Abd Gani, S.S.; Zaidan, U.H.; Halmi, M.I.E. Optimization of Total Phenolic and Flavonoid Contents of Defatted Pitaya (Hylocereus polyrhizus) Seed Extract and Its Antioxidant Properties. Molecules 2020, 25, 787. https://doi.org/10.3390/molecules25040787
Zulkifli SA, Abd Gani SS, Zaidan UH, Halmi MIE. Optimization of Total Phenolic and Flavonoid Contents of Defatted Pitaya (Hylocereus polyrhizus) Seed Extract and Its Antioxidant Properties. Molecules. 2020; 25(4):787. https://doi.org/10.3390/molecules25040787
Chicago/Turabian StyleZulkifli, Siti Atikah, Siti Salwa Abd Gani, Uswatun Hasanah Zaidan, and Mohd Izuan Effendi Halmi. 2020. "Optimization of Total Phenolic and Flavonoid Contents of Defatted Pitaya (Hylocereus polyrhizus) Seed Extract and Its Antioxidant Properties" Molecules 25, no. 4: 787. https://doi.org/10.3390/molecules25040787
APA StyleZulkifli, S. A., Abd Gani, S. S., Zaidan, U. H., & Halmi, M. I. E. (2020). Optimization of Total Phenolic and Flavonoid Contents of Defatted Pitaya (Hylocereus polyrhizus) Seed Extract and Its Antioxidant Properties. Molecules, 25(4), 787. https://doi.org/10.3390/molecules25040787