Mineral Constituents Profiling of Ready-To-Drink Nutritional Supplements by Inductively Coupled Plasma Optical Emission Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Trueness of the Analytical Method
2.2. Concentrations of Macro-, Micro- and Trace Elements in the Nutritional Drinks
2.3. Inter-Element Relationships
2.4. Nutritional Value Compliance Assessment
2.5. The Contribution of Nutritional Drink Administration to Recommended Daily Allowances of Elements
3. Materials and Methods
3.1. Samples and Reagents
3.2. Freeze-Drying
3.3. Microwave-Assisted Mineralization
3.4. Measurements
3.5. Method Validation
3.6. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Report: Diet and Physical Activity: A Public Health Priority. Available online: https://www.who.int/dietphysicalactivity (accessed on 18 November 2019).
- Kupirovic, U.P.; Miklavec, K.; Hribar, M.; Kusar, A.; Zmitek, K.; Pravst, I. Nutrient profiling is needed to improve the nutritional quality of the foods labelled with health-related claims. Nutrients 2019, 11, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurowski, K.; Krośniak, M.; Fołtac, M.; Cole, M.; Piekoszewski, W. The toxicological analysis of lead and cadmium in prescription food for special medical purposes and modified milk products for newborns and infants available in Polish pharmacies. J. Trace Elem. Med. Biol. 2019, 51, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurowski, K.; Krośniak, M.; Fołta, M.; Tatar, B.; Cole, M.; Piekoszewski, W. The toxicological analysis of Ni and Cr in prescription food for special medical purposes and modified milk products for babies in infancy available in pharmacies in Poland. Biol. Trace Elem. Res. 2019, 192, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jurowski, K.; Krośniak, M.; Fołtac, M.; Cole, M.; Tatar, B.; Piekoszewski, W. The analysis of Cu, Mn and Zn content in prescription food for special medical purposes and modified milk products for newborns and infants available in Polish pharmacies from toxicological and nutritional point of view. J. Trace Elem. Med. Biol. 2019, 53, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anschau, K.F.; Enders, M.S.P.; Senger, C.M.; Duarte, F.A.; Dressler, V.L.; Muller, E.I. A novel strategy for medical foods digestion and subsequent elemental determination using inductively coupled plasma optical emission spectrometry. Microchem. J. 2019, 147, 1055–1060. [Google Scholar] [CrossRef]
- Iturbide-Casas, M.A.; Molina-Recio, G.; Cámara-Martos, F. Macronutrients and trace elements in enteral nutrition formulas: Compliance with label, bioaccessibility and contribution to reference intakes through a probabilistic assessment. J. Food Compos. Anal. 2019, 83, 103250. [Google Scholar] [CrossRef]
- Bilandžić, N.; Sedak, M.; Dokić, M.; Božić, D.; Solomun Kolanović, B.; Varenina, I. Differences in macro- and microelement contents in milk and yoghurt. Arch. Biol. Sci. 2015, 67, 1391–1397. [Google Scholar] [CrossRef]
- Bakircioglu, D.; Topraksever, N.; Yurtsever, S.; Kizildere, M.; Kurtulus, Y.B. Investigation of macro, micro and toxic element concentrations of milk and fermented milks products by using an inductively coupled plasma optical emission spectrometer, to improve food safety in Turkey. Microchem. J. 2018, 136, 133–138. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, S.; Zhang, H.; Liu, G.; Lin, K.; Huang, W.; Luo, R.; Zhang, X.; Tang, C.; Yu, Y. Dietary intake of human essential elements from a Total Diet Study in Shenzhen, Guangdong Province, China. J. Food Compos. Anal. 2015, 39, 1–7. [Google Scholar] [CrossRef]
- Pandelova, M.; Levy Lopez, W.; Michalke, B.; Schramm, K.-W. Ca, Cd, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn contents in baby foods from the EU market: Comparison of assessed infant intakes with the present safety limits for minerals and trace elements. J. Food Compos. Anal. 2012, 27, 120–127. [Google Scholar] [CrossRef]
- Sola-Larrañaga, C.; Navarro-Blasco, I. Optimization of a slurry dispersion method for minerals and trace elements analysis in infant formulae by ICP OES and FAA. Food Chem. 2009, 115, 1048–1055. [Google Scholar] [CrossRef] [Green Version]
- Commission Regulation (EU) No 488/2014 of 12 May 2014 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Cadmium in Foodstuffs. Available online: http://data.europa.eu/eli/reg/2014/488/oj (accessed on 18 November 2019).
- Abdel-Rahman, G.N.; Ahmed, M.B.M.; Sabry, B.A.; Ali, S.S.M. Heavy metals content in some non-alcoholic beverages (carbonated drinks, flavored yogurt drinks, and juice drinks) of the Egyptian markets. Toxicol. Rep. 2019, 6, 210–214. [Google Scholar] [CrossRef] [PubMed]
- de Paiva, E.L.; Milani, R.F.; Morgano, M.A.; Pavesi Arisseto-Bragotto, A. Aluminum in infant formulas commercialized in Brazil: Occurrence and exposure assessment. J. Food Compos. Anal. 2019, 82, 103230. [Google Scholar] [CrossRef]
- Sager, M.; McCulloch, C.R.; Schoder, D. Heavy metal content and element analysis of infant formula and milk powder samples purchased on the Tanzanian market: International branded versus black market products. Food Chem. 2018, 255, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Millour, S.; Noël, L.; Kadar, A.; Chekri, R.; Vastel, C.; Guérin, T. Simultaneous analysis of 21 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: Method validation. J. Food Compos. Anal. 2011, 24, 111–120. [Google Scholar] [CrossRef]
- Jarosz, M. Normy żywienia dla populacji Polski, Instytut Żywności i Żywienia (Polish National Food and Nutrition Institute). 2017. Available online: www.izz.waw.pl (accessed on 18 November 2019).
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; The National Academies Press: Washington, DC, USA, 1997. [Google Scholar] [CrossRef]
- European Food Safety Authority. Tolerable Upper Intake Levels for Vitamins and Minerals. 2006. Available online: http://www.efsa.eu.int (accessed on 18 November 2019).
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers. 2011. Available online: http://data.europa.eu/eli/reg/2011/1169/oj (accessed on 18 November 2019).
Sample Availability: Not available. |
Element | Concentration [µg/g] | t-Test b | |
---|---|---|---|
Certified Value | Experimental Data | ||
Al | 2 c | 2.13 ± 0.09 | 2.502, N |
B | - | 1.11 ± 0.11 | |
Ba | - | 0.71 ± 0.01 | |
Ca | 13000 ± 500 | 12400 ± 400 | 1.623, N |
Cu | 0.7 ± 0.1 | 0.75 ± 0.05 | 0.775, N |
Fe | 1.78 ± 0.10 | 1.80 ± 0.21 | 0.149, N |
Mg | 1200 ± 30 | 1090 ± 80 | 2.230, N |
Mn | 0.26 ± 0.06 | 0.24 ± 0.02 | 0.548, N |
Mo | 0.34 c | 0.33 ± 0.02 | 0.866, N |
Sr | - | 1.59 ± 0.14 | |
Zn | 46.1 ± 2.2 | 45.3 ± 0.8 | 0.592, N |
Element | ND1 | ND2 | ND3 | ND4 | ND5 | ND6 | ND7 | ND8 |
---|---|---|---|---|---|---|---|---|
Ag | 0.013 ± 0.007 | 0.015 ± 0.002 | 0.006 ± 0.001 | 0.010 ± 0.008 | 0.012 ± 0.002 | 0.010 ± 0.005 | 0.011 ± 0.009 | 0.003 ± 0.004 |
Al | 0.141 ± 0.038 | 0.136 ± 0.014 | 0.097 ± 0.038 | 0.159 ± 0.016 | 0.169 ± 0.044 | 0.153 ± 0.035 | 0.065 ± 0.007 | 0.136 ± 0.039 |
B | 0.800 ± 0.020 | 0.559 ± 0.028 | 0.246 ± 0.018 | 0.290 ± 0.021 | 0.342 ± 0.017 | 0.433 ± 0.037 | <0.067 a | <0.067 a |
Ba | 0.013 ± 0.002 | 0.016 ± 0.002 | 0.017 ± 0.001 | 0.033 ± 0.008 | 0.020 ± 0.002 | 0.018 ± 0.002 | 0.012 ± 0.002 | 0.012 ± 0.001 |
Ca | 159 ± 3 | 156 ± 2 | 153 ± 0 | 170 ± 4 | 332 ± 8 | 144 ± 1 | 290 ± 7 | 67.2 ± 1.2 |
Cd | <0.0003 a | <0.0003 a | <0.0003 a | <0.0003 a | <0.0003 a | <0.0003 a | <0.0003 a | <0.0003 a |
Co | <0.0007 a | <0.0007 a | <0.0007 a | <0.0007 a | <0.0007 a | <0.0007 a | 0.035 ± 0.008 | 0.034 ± 0.003 |
Cr | <0.0005 a | <0.0005 a | <0.0005 a | <0.0005 a | <0.0005 a | <0.0005 a | <0.0005 a | <0.0005 a |
Cu | 0.429 ± 0.036 | 0.391 ± 0.014 | 0.438 ± 0.037 | 0.403 ± 0.026 | 0.315 ± 0.010 | 0.375 ± 0.011 | 0.412 ± 0.004 | 0.113 ± 0.007 |
Fe | 3.87 ± 0.18 | 3.69 ± 0.23 | 3.58 ± 0.01 | 3.34 ± 0.06 | 2.00 ± 0.18 | 3.48 ± 0.11 | 3.57 ± 0.17 | 1.68 ± 0.09 |
Mg | 32.1 ± 1.3 | 34.7 ± 0.9 | 30.3 ± 0.0 | 35.7 ± 1.2 | 52.4 ± 2.2 | 29.2 ± 0.3 | 54.4 ± 0.2 | 26.3 ± 0.7 |
Mn | 0.723 ± 0.020 | 0.732 ± 0.061 | 0.739 ± 0.066 | 0.677 ± 0.052 | 0.505 ± 0.018 | 0.694 ± 0.045 | 1.31 ± 0.04 | 0.430 ± 0.011 |
Mo | 0.055 ± 0.003 | 0.052 ± 0.007 | 0.041 ± 0.007 | 0.047 ± 0.003 | 0.044 ± 0.025 | 0.037 ± 0.009 | 0.038 ± 0.005 | 0.032 ± 0.002 |
Ni | 0.063 ± 0.012 | 0.031 ± 0.011 | 0.028 ± 0.003 | 0.044 ± 0.020 | 0.036 ± 0.002 | 0.054 ± 0.005 | <0.003 a | <0.003 a |
P | 174 ± 4 | 160 ± 5 | 182 ± 5 | 172 ± 9 | 269 ± 15 | 156 ± 9 | 214 ± 11 | 56.1 ± 1.3 |
Pb | <0.008 a | <0.008 a | <0.008 a | <0.008 a | <0.008 a | <0.008 a | <0.008 a | <0.008 a |
Sr | 0.062 ± 0.007 | 0.070 ± 0.003 | 0.085 ± 0.009 | 0.079 ± 0.005 | 0.135 ± 0.015 | 0.067 ± 0.007 | 0.076 ± 0.003 | 0.042 ± 0.005 |
Ti | 0.014 ± 0.004 | 0.007 ± 0.001 | 0.006 ± 0.001 | 0.006 ± 0.002 | 0.009 ± 0.010 | 0.006 ± 0.002 | 0.005 ± 0.002 | 0.004 ± 0.002 |
V | <0.0008 a | <0.0008 a | <0.0008 a | <0.0008 a | <0.0008 a | <0.0008 a | <0.0008 a | <0.0008 a |
Zn | 2.56 ± 0.03 | 2.73 ± 0.28 | 2.43 ± 0.09 | 2.38 ± 0.21 | 2.33 ± 0.09 | 1.99 ± 0.14 | 4.85 ± 0.09 | 1.21 ± 0.03 |
Experimental | Declared | Experimental | Declared | Experimental | Declared | Experimental | Declared | Experimental | Declared | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ND1 | ND2 | ND3 | ND4 | ND1-ND4 | ND5 | ND5 | ND6 | ND6 | ND7 | ND7 | ND8 | ND8 | |
Ca | 159 | 156 | 153 | 170 | 174 | 332 | 350 | 144 | 174 | 290 | 225 | 67.2 | 53 |
Cu | 0.429 | 0.391 | 0.438 | 0.403 | 0.43 | 0.315 | 0.35 | 0.375 | 0.43 | 0.412 | 0.68 | 0.113 | 0.18 |
Cr | <0.0005 | <0.0005 | <0.0005 | <0.0005 | 0.014 | <0.0005 | 0.013 | <0.0005 | 0.014 | <0.0005 | 0.012 | <0.0005 | 0.012 |
Fe | 3.87 | 3.69 | 3.58 | 3.34 | 3.8 | 2.00 | 2.1 | 3.48 | 3.8 | 3.57 | 3.0 | 1.68 | 1.6 |
Mg | 32.1 | 34.7 | 30.3 | 35.7 | 33 | 52.4 | 55 | 29.2 | 33 | 54.4 | 42 | 26.3 | 23 |
Mn | 0.723 | 0.732 | 0.739 | 0.677 | 0.80 | 0.505 | 0.63 | 0.694 | 0.80 | 1.31 | 1.30 | 0.430 | 0.33 |
Mo | 0.055 | 0.052 | 0.041 | 0.047 | 0.024 | 0.044 | 0.020 | 0.037 | 0.024 | 0.038 | 0.019 | 0.032 | 0.010 |
P | 174 | 160 | 182 | 172 | 174 | 269 | 300 | 156 | 174 | 214 | 182 | 56.1 | 47 |
Zn | 2.56 | 2.73 | 2.43 | 2.38 | 2.9 | 2.33 | 2.4 | 1.99 | 2.9 | 4.85 | 4.5 | 1.21 | 1.2 |
RDA, mg/day [18,19] | TUUL, mg/day [20,21] | Nutritional Norms Fulfillment Related to Consumption of 2 Bottles of NDs, % | ||
---|---|---|---|---|
Calculated for RDA | Calculated for TUUL | |||
B | - | 11–20 | - | 3.08 (ND3)–18.2 (ND1) |
Ca | 1000–1300 | 2500 | 20.7 (ND8)–116 (ND7) | 10.8 (ND8)–46.3 (ND7) |
Cu | 0.9–1.3 | 8–10 | 34.8 (ND8)–183 (ND7) | 4.52 (ND8)–20.6 (ND7) |
Fe | 10–27 | 40–45 | 18.5 (ND5)–143 (ND7) | 11.1 (ND5)–35.7 (ND7) |
Mg | 310–420 | 350 | 17.4 (ND6)–70.2 (ND7) | 20.9 (ND6)–62.2 (ND7) |
Mn | 1.8–2.6 | 6–11 | 48.6 (ND5) – 291 (ND7) | 11.5 (ND5)–87.4 (ND7) |
Mo | 0.045–0.050 | 2 | 0.19 (ND6)–0.34 (ND7) | 4.63 (ND6)–7.64 (ND7) |
Ni | - | 0.6–1.0 | - | 0–26.2 (ND1) |
P | 700–1250 | 3000–4000 | 18.0 (ND8)–122 (ND7) | 5.61 (ND8)–28.5 (ND7) |
Zn | 8–13 | 23–40 | 37.2 (ND8)–242 (ND7) | 12.1 (ND8)–84.3 (ND7) |
Sample | Flavor | Energy, kcal/100 mL | Proteins Contents, g/100 m | Fibers Contents, g/100 mL | Intends |
---|---|---|---|---|---|
ND1 | Neutral | 240 | 9.6 | - | A, B, C, D, E, F, G, H |
ND2 | Vanilla | 240 | 9.6 | - | A, B, C, D, E, F, G, H |
ND3 | Chocolate | 240 | 9.6 | - | A, B, C, D, E, F, G, H |
ND4 | Strawberry | 240 | 9.6 | - | A, B, C, D, E, F, G, H |
ND5 | Strawberry | 240 | 14.4 | - | A, B, C, D, H |
ND6 | Strawberry | 240 | 9.6 | 3.6 | A, B, C, D, E, F, H |
ND7 a | Strawberry | 124 | 9.0 | - | I |
ND8 | Strawberry | 102 | 4.9 | 2.0 | J |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leśniewicz, A.; Kurowska, D.; Pohl, P. Mineral Constituents Profiling of Ready-To-Drink Nutritional Supplements by Inductively Coupled Plasma Optical Emission Spectrometry. Molecules 2020, 25, 851. https://doi.org/10.3390/molecules25040851
Leśniewicz A, Kurowska D, Pohl P. Mineral Constituents Profiling of Ready-To-Drink Nutritional Supplements by Inductively Coupled Plasma Optical Emission Spectrometry. Molecules. 2020; 25(4):851. https://doi.org/10.3390/molecules25040851
Chicago/Turabian StyleLeśniewicz, Anna, Daniela Kurowska, and Paweł Pohl. 2020. "Mineral Constituents Profiling of Ready-To-Drink Nutritional Supplements by Inductively Coupled Plasma Optical Emission Spectrometry" Molecules 25, no. 4: 851. https://doi.org/10.3390/molecules25040851
APA StyleLeśniewicz, A., Kurowska, D., & Pohl, P. (2020). Mineral Constituents Profiling of Ready-To-Drink Nutritional Supplements by Inductively Coupled Plasma Optical Emission Spectrometry. Molecules, 25(4), 851. https://doi.org/10.3390/molecules25040851