Blood and Plasma Volumetric Absorptive Microsampling (VAMS) Coupled to LC-MS/MS for the Forensic Assessment of Cocaine Consumption
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sampling and Pretreatment Procedure Development
2.2. Method Validation
2.2.1. Linearity
2.2.2. Process Efficiency, Precision, Matrix Effect and Carry-Over
2.2.3. Stability
2.2.4. Selectivity
2.3. Analysis of Real Samples and Accuracy
2.4. Comparison to Fluid Blood/Plasma Samples
3. Materials and Methods
3.1. Chemicals and Standard Solutions
3.2. LC-MS/MS Instrumentation and Conditions
3.3. Compliance with Ethical Standards
3.4. Microsampling: VAMS
3.5. Microsample Pretreatment: DPX
3.6. Method Validation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations Office on Drugs and Crime. World Drug Report 2019, Booklet 2; United Nations: Vienna, Austria, 2019; pp. 10–18. [Google Scholar]
- United Nations Office on Drugs and Crime, Statistics and Data—Annual Prevalence of the Use of Drugs by Region and Globally. Available online: https://dataunodc.un.org/drugs/prevalence_regional-2017 (accessed on 2 December 2019).
- Kim, S.T.; Park, T. Acute and chronic effects of cocaine on cardiovascular health. Int. J. Mol. Sci. 2019, 20, 584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, A.J.; Rehm, J.; Fischer, B. Health outcomes associated with crack-cocaine use: Systematic review and meta-analyses. Drug Alcohol Depen. 2017, 180, 401–416. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Uggen, C. Dealers, thieves, and the common determinants of drug and nondrug illegal earnings. Criminology 2012, 50, 1057–1087. [Google Scholar] [CrossRef]
- Cornish, J.W.; O’Brien, C.P. Crack cocaine abuse: An epidemic with many public health consequences. Ann. Rev. Pub. Health 1996, 17, 259–273. [Google Scholar] [CrossRef] [PubMed]
- Macdonald, S.; Mann, R.; Chipman, M.; Pakula, B.; Erickson, P.; Hathaway, A.; Macintyre, P. Driving behavior under the influence of cannabis or cocaine. Traffic Inj. Prev. 2008, 9, 190–194. [Google Scholar] [CrossRef] [PubMed]
- World Anti-Doping Agency. The World Anti-Doping Code International Standard, Prohibited List January 2019; World Anti-Doping Agency: Lausanne, Switzerland, 2018; p. 7. [Google Scholar]
- Meyer, M.R.; Schütz, A.; Maurer, H.H. Contribution of human esterases to the metabolism of selected drugs of abuse. Toxicol. Lett. 2015, 232, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Matsubara, K.; Kagawa, M.; Fukui, Y. In vivo and in vitro studies on cocaine metabolism: Ecgonine methyl ester as a major metabolite of cocaine. Forensic Sci. Int. 1984, 26, 169–180. [Google Scholar] [CrossRef]
- Cone, E.J.; Tsadik, A.; Oyler, J.; Darwin, W.D. Cocaine metabolism and urinary excretion after different routes of administration. Ther. Drug Monit. 1998, 20, 556–560. [Google Scholar] [CrossRef]
- Fiorentin, T.R.; Scherer, J.N.; Marcelo, M.C.A.; Sousa, T.R.V.; Pechansky, F.; Ferrao, M.F.; Limberger, R.P. Comparison of cocaine/crack biomarkers concentrations in oral fluid, urine and plasma simultaneously collected from drug users. J. Anal. Toxicol. 2018, 42, 69–76. [Google Scholar] [CrossRef]
- Protti, M.; Rudge, J.; Sberna, A.E.; Gerra, G.; Mercolini, L. Dried haematic microsamples and LC–MS/MS for the analysis of natural and synthetic cannabinoids. J. Chromatogr. B 2017, 1044–1045, 77–86. [Google Scholar] [CrossRef]
- Protti, M.; Catapano, M.C.; Samolsky Dekel, B.G.; Rudge, J.; Gerra, G.; Somaini, L.; Mandrioli, R.; Mercolini, L. Determination of oxycodone and its major metabolites in haematic and urinary matrices: Comparison of traditional and miniaturised sampling approaches. J. Pharm. Biomed. Anal. 2018, 152, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Moretti, M.; Freni, F.; Valentini, B.; Vignali, C.; Groppi, A.; Visonà, S.D.; Osculati, A.M.M.; Morini, L. Determination of antidepressants and antipsychotics in dried blood spots (DBSs) collected from post-mortem samples and evaluation of the stability over a three-month period. Molecules 2019, 24, art. no. 3636. [Google Scholar] [CrossRef] [Green Version]
- Abu-Rabie, P.; Neupane, B.; Spooner, N.; Rudge, J.; Denniff, P.; Mulla, H.; Pandya, H. Validation of methods for determining pediatric midazolam using wet whole blood and volumetric absorptive microsampling. Bioanalysis 2019, 11, 1737–1754. [Google Scholar] [CrossRef] [PubMed]
- Denniff, P.; Parry, S.; Dopson, W.; Spooner, N. Quantitative bioanalysis of paracetamol in rats using volumetric absorptive microsampling (VAMS). J. Pharm. Biomed. Anal. 2015, 108, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Kip, A.E.; Kiers, K.C.; Rosing, H.; Schellens, J.H.M.; Beijnen, J.H.; Dorlo, T.P.C. Volumetric absorptive microsampling (VAMS) as an alternative to conventional dried blood spots in the quantification of miltefosine in dried blood samples. J. Pharm. Biomed. Anal. 2017, 135, 160–166. [Google Scholar] [CrossRef]
- Qu, Y.; Brady, K.; Apilado, R.; O’Malley, T.; Reddy, S.; Chitkara, P.; Ibarra, C.; Alexander, R.V.; Dervieux, T. Capillary blood collected on volumetric absorptive microsampling (VAMS) device for monitoring hydroxychloroquine in rheumatoid arthritis patients. J. Pharm. Biomed. Anal. 2017, 140, 334–341. [Google Scholar] [CrossRef]
- Protti, M.; Mandrioli, R.; Mercolini, L. Perspectives and strategies for anti-doping analysis. Bioanalysis 2019, 11, 149–152. [Google Scholar] [CrossRef] [Green Version]
- Mercolini, L.; Protti, M. Biosampling strategies for emerging drugs of abuse: Towards the future of toxicological and forensic analysis. J. Pharm. Biomed. Anal. 2016, 130, 202–219. [Google Scholar] [CrossRef]
- Xie, I.; Xu, Y.; Anderson, M.; Wang, M.; Xue, L.; Breidinger, S.; Goykhman, D.; Woolf, E.J.; Bateman, K.P. Extractability-mediated stability bias and hematocrit impact: High extraction recovery is critical to feasibility of volumetric adsorptive microsampling (VAMS) in regulated bioanalysis. J. Pharm. Biomed. Anal. 2018, 156, 58–66. [Google Scholar] [CrossRef]
- Protti, M.; Mandrioli, R.; Mercolini, L. Tutorial: Volumetric absorptive microsampling (VAMS). Anal. Chim. Acta 2019, 1046, 32–47. [Google Scholar] [CrossRef]
- Mercolini, L.; Protti, M.; Catapano, M.C.; Rudge, J.; Sberna, A.E. LC-MS/MS and volumetric absorptive microsampling for quantitative bioanalysis of cathinone analogues in dried urine, plasma and oral fluid samples. J. Pharm. Biomed. Anal. 2016, 123, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Barroso, M.; Gallardo, E.; Queiroz, J.A. Bioanalytical methods for the determination of cocaine and metabolites in human biological samples. Bioanalysis 2009, 1, 977–1000. [Google Scholar] [CrossRef] [PubMed]
- Barroso, M.; Gallardo, E. Assessing cocaine abuse using LC-MS/MS measurements in biological specimens. Bioanalysis 2015, 7, 1497–1525. [Google Scholar] [CrossRef] [PubMed]
- Menzies, E.L.; Archer, J.R.H.; Dargan, P.I.; Parkin, M.C.; Yamamoto, T.; Wood, D.M.; Braithwaite, R.A.; Elliott, S.P.; Kicman, A.T. Detection of cocaine and its metabolites in whole blood and plasma following a single dose, controlled administration of intranasal cocaine. Drug Test. Anal. 2019, 11, 1419–1430. [Google Scholar] [CrossRef]
- Dempsey, S.K.; Moeller, F.G.; Poklis, J.L. Rapid Separation and Quantitation of Cocaine and its Metabolites in Human Serum by Differential Mobility Spectrometry-tandem Mass Spectrometry (DMS-MS-MS). J. Anal. Toxicol. 2018, 42, 518–524. [Google Scholar] [CrossRef]
- Fiorentin, T.R.; D’Avila, F.B.; Comiran, E.; Zamboni, A.; Scherer, J.N.; Pechansky, F.; Borges, P.E.M.; Fröehlich, P.E.; Limberger, R.P. Simultaneous determination of cocaine/crack and its metabolites in oral fluid, urine and plasma by liquid chromatography-mass spectrometry and its application in drug users. J. Pharmacol. Toxicol. Methods 2017, 86, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Thibert, V.; Legeay, P.; Chapuis-Hugon, F.; Pichon, V. Molecularly imprinted polymer for the selective extraction of cocaine and its metabolites, benzoylecgonine and ecgonine methyl ester, from biological fluids before LC-MS analysis. J. Chromatogr. B 2014, 949–950, 16–23. [Google Scholar] [CrossRef]
- Sánchez-González, J.; García-Carballal, S.; Cabarcos, P.; Tabernero, M.J.; Bermejo-Barrera, P.; Moreda-Piñeiro, A. Determination of cocaine and its metabolites in plasma by porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2016, 1451, 15–22. [Google Scholar] [CrossRef]
- Feliu, C.; Millart, H.; Guillemin, H.; Vautier, D.; Binet, L.; Fouley, A.; Djerada, Z. Validation of a fast UPLC-MS/MS method for quantitative analysis of opioids, cocaine, amphetamines (and their derivatives) in human whole blood. Bioanalysis 2015, 7, 2685–2700. [Google Scholar] [CrossRef]
- De Lima Feltraco Lizot, L.; da Silva, A.C.C.; Bastiani, M.F.; Hahn, R.Z.; Bulcão, R.; Perassolo, M.S.; Antunes, M.V.; Linden, R. Simultaneous determination of cocaine, ecgonine methyl ester, benzoylecgonine, cocaethylene and norcocaine in dried blood spots by ultra-performance liquid chromatography coupled to tandem mass spectrometry. Forensic Sci. Int. 2019, 298, 408–416. [Google Scholar] [CrossRef]
- Moretti, M.; Visonà, S.D.; Freni, F.; Tomaciello, I.; Vignali, C.; Groppi, A.; Tajana, L.; Osculati, A.M.M.; Morini, L. A liquid chromatography–tandem mass spectrometry method for the determination of cocaine and metabolites in blood and in dried blood spots collected from postmortem samples and evaluation of the stability over a 3-month period. Drug Test. Anal. 2018, 10, 1430–1437. [Google Scholar] [CrossRef] [PubMed]
- Sadler Simões, S.; Castañera Ajenjo, A.; João Dias, M. Dried blood spots combined to an UPLC–MS/MS method for the simultaneous determination of drugs of abuse in forensic toxicology. J. Pharm. Biomed. Anal. 2018, 147, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Alfazil, A.A.; Anderson, R.A. Stability of Benzodiazepines and Cocaine in Blood Spots Stored on Filter Paper. J. Anal. Toxicol. 2008, 32, 511–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambach, L.; Menzies, E.; Parkin, M.C.; Kicman, A.; Archer, J.R.H.; Wood, D.M.; Dargan, P.I.; Stove, C. Quantification of cocaine and cocaine metabolites in dried blood spots from a controlled administration study using liquid chromatography-tandem mass spectrometry. Drug Test. Anal. 2019, 11, 709–720. [Google Scholar] [CrossRef]
- D’Urso, A.; Rudge, J.; Patsalos, P.N.; de Grazia, U. Volumetric Absorptive Microsampling: A New Sampling Tool for Therapeutic Drug Monitoring of Antiepileptic Drugs. Ther. Drug Monit. 2019, 41, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Verheijen, R.B.; Thijssen, B.; Atrafi, F.; Schellens, J.H.M.; Rosing, H.; de Vries, N.; Beijnen, J.H.; Mathijssen, R.H.J.; Steeghs, N.; Huitema, A.D.R. Validation and clinical application of an LC-MS/MS method for the quantification of everolimus using volumetric absorptive microsampling. J. Chromatogr. B 2019, 1104, 234–239. [Google Scholar] [CrossRef]
- Moorthy, G.S.; Vedar, C.; DiLiberto, M.A.; Zuppa, A.F. A patient-centric liquid chromatography-tandem mass spectrometry microsampling assay for analysis of cannabinoids in human whole blood: Application to pediatric pharmacokinetic study. J. Chromatogr. B 2019, 1130–1131, 121828. [Google Scholar] [CrossRef]
- Mandrioli, R.; Protti, M.; Mercolini, L. New-generation, non-SSRI antidepressants: Therapeutic Drug Monitoring and pharmacological interactions. Part 1: SNRIs, SMSs, SARIs. Curr. Med. Chem. 2018, 25, 772–792. [Google Scholar] [CrossRef]
- Mandrioli, R.; Protti, M.; Mercolini, L. Evaluation of the pharmacokinetics, safety and clinical efficacy of ziprasidone for the treatment of schizophrenia and bipolar disorder. Exp. Opin. Drug Metab. Toxicol. 2015, 11, 149–174. [Google Scholar] [CrossRef]
- Mandrioli, R.; Mercolini, L. Discontinued anxiolytic drugs (2009–2014). Exp. Opin. Invest. Drugs 2015, 24, 557–573. [Google Scholar] [CrossRef]
- Mandrioli, R.; Protti, M.; Mercolini, L. Novel atypical antipsychotics: Metabolism and Therapeutic Drug Monitoring (TDM). Curr. Drug Metab. 2015, 16, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Duthaler, U.; Suenderhauf, C.; Gaugler, S.; Vetter, B.; Krähenbühl, S.; Hammann, F. Development and validation of an LC-MS/MS method for the analysis of ivermectin in plasma, whole blood, and dried blood spots using a fully automatic extraction system. J. Pharm. Biomed. Anal. 2019, 172, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Mercolini, L.; Mandrioli, R.; Protti, M.; Conca, A.; Albers, L.J.; Raggi, M.A. Dried blood spot testing: A novel approach for the therapeutic drug monitoring of ziprasidone-treated patients. Bioanalysis 2014, 6, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Mercolini, L.; Mandrioli, R.; Gerra, G.; Raggi, M.A. Analysis of cocaine and two metabolites in dried blood spots by liquid chromatography with fluorescence detection: A novel test for cocaine and alcohol intake. J. Chromatogr. B 2010, 1217, 7242–7248. [Google Scholar] [CrossRef]
- Mercolini, L.; Mandrioli, R.; Sorella, V.; Somaini, L.; Giocondi, D.; Serpelloni, G.; Raggi, M.A. Dried blood spots: Liquid chromatography-mass spectrometry analysis of Δ9-tetrahydrocannabinol and its main metabolites. J. Chromatogr. A 2013, 1271, 33–40. [Google Scholar] [CrossRef]
- Protti, M.; Vignali, A.; Sanchez Blanco, T.; Rudge, J.; Bugamelli, F.; Ferranti, A.; Mandrioli, R.; Mercolini, L. Enantioseparation and determination of asenapine in biological fluid micromatrices by HPLC with diode array detection. J. Sep. Sci. 2018, 41, 1257–1265. [Google Scholar] [CrossRef]
- Uchimura, T.; Kato, M.; Saito, T.; Kinoshita, H. Prediction of human blood-to-plasma drug concentration ratio. Biopharm. Drug Dispos. 2010, 31, 286–297. [Google Scholar] [CrossRef]
- Ellefsen, K.N.; da Costa, J.L.; Concheiro, M.; Anizan, S.; Barnes, A.J.; Pirard, S.; Gorelick, D.A.; Huestis, M.A. Cocaine and metabolite concentrations in DBS and venous blood after controlled intravenous cocaine administration. Bioanalysis 2015, 7, 2041–2056. [Google Scholar] [CrossRef]
- European Medicines Agency, Guideline on Bioanalytical Method Validation. Available online: https://www.ema.europa.eu/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 2 December 2019).
- Food and Drug Administration, Bioanalytical Method Validation—Guidance for Industry. Available online: https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070107.pdf (accessed on 2 December 2019).
- World Anti-Doping Agency, International Standard for Laboratories. Available online: https://www.wada-ama.org/sites/default/files/resources/files/isl_nov2019.pdf (accessed on 2 December 2019).
- International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Validation of Analytical Procedures: Text and Methodology Q2(R1). Available online: https://database.ich.org/sites/default/files/Q2_R1__Guideline.pdf (accessed on 2 December 2019).
Sample Availability: No sample is available from the authors. |
Tip Contact Time (s) | Sampling Volume (µL) | Volume Accuracy (% of Theoretical Value) | Volume Precision (Relative Standard Deviation, RSD%) |
---|---|---|---|
1 | 17.06 | 85.3 | 3.0 |
2 | 18.46 | 92.3 | 2.2 |
3 | 19.14 | 95.7 | 1.1 |
5 | 20.02 | 100.1 | 1.3 |
10 | 19.90 | 99.5 | 0.9 |
15 | 19.98 | 99.9 | 0.9 |
20 | 20.20 | 101.0 | 1.0 |
Analyte | Matrix | Linearity Range (ng/mL) | Linearity Equation 1 | r2 | LOQ (ng/mL) | LOD (ng/mL) |
---|---|---|---|---|---|---|
COC | Blood VAMS | 2.0–500 | y = 0.446x + 0.003 | 0.9995 | 2.0 | 0.6 |
Plasma VAMS | 2.0–500 | y = 0.121x + 0.005 | 0.9997 | 2.0 | 0.6 | |
BEG | Blood VAMS | 1.0–500 | y = 0.861x + 0.003 | 0.9992 | 1.0 | 0.3 |
Plasma VAMS | 1.0–500 | y = 0.224x + 0.006 | 0.9996 | 1.0 | 0.3 | |
EME | Blood VAMS | 2.5–500 | y = 0.030x + 0.004 | 0.9993 | 2.5 | 0.8 |
Plasma VAMS | 2.5–500 | y = 0.083x + 0.008 | 0.9995 | 2.5 | 0.8 | |
CET | Blood VAMS | 2.0–500 | y = 0.428x + 0.004 | 0.9991 | 2.0 | 0.6 |
Plasma VAMS | 2.0–500 | y = 0.141x + 0.008 | 0.9994 | 2.0 | 0.6 |
Analyte | Concentration Level (ng/mL) | Matrix | Precision, RSD% 1 | Process Efficiency ± SD, % | Matrix Effect ± SD, % | |
Intraday | Interday | |||||
COC | 2.0 | Blood VAMS | 5.2 | 5.3 | 91 ± 3 | 93 ± 2 |
Plasma VAMS | 4.9 | 5.0 | 93 ± 2 | 94 ± 3 | ||
50 | Blood VAMS | 5.0 | 5.2 | 96 ± 3 | 93 ± 2 | |
Plasma VAMS | 4.6 | 4.9 | 96 ± 4 | 95 ± 1 | ||
500 | Blood VAMS | 4.8 | 5.1 | 95 ± 1 | 95 ± 4 | |
Plasma VAMS | 4.3 | 4.7 | 98 ± 2 | 97 ± 2 | ||
BEG | 1.0 | Blood VAMS | 5.4 | 5.4 | 88 ± 3 | 89 ± 1 |
Plasma VAMS | 5.1 | 5.4 | 90 ± 4 | 91 ± 4 | ||
50 | Blood VAMS | 5.2 | 5.3 | 91 ± 2 | 89 ± 3 | |
Plasma VAMS | 4.9 | 5.0 | 94 ± 1 | 92 ± 4 | ||
500 | Blood VAMS | 4.9 | 5.3 | 93 ± 3 | 91 ± 1 | |
Plasma VAMS | 4.5 | 4.8 | 94 ± 2 | 91 ± 2 | ||
EME | 2.5 | Blood VAMS | 5.3 | 5.8 | 87 ± 4 | 90 ± 4 |
Plasma VAMS | 5.3 | 5.6 | 91 ± 3 | 91 ± 2 | ||
50 | Blood VAMS | 5.6 | 5.6 | 92 ± 2 | 91 ± 3 | |
Plasma VAMS | 5.1 | 5.4 | 93 ± 3 | 93 ± 3 | ||
500 | Blood VAMS | 5.0 | 5.2 | 92 ± 2 | 92 ± 3 | |
Plasma VAMS | 4.8 | 5.1 | 95 ± 2 | 93 ± 4 | ||
CET | 2.0 | Blood VAMS | 5.3 | 5.9 | 86 ± 3 | 89 ± 1 |
Plasma VAMS | 5.1 | 5.6 | 89 ± 3 | 92 ± 2 | ||
50 | Blood VAMS | 4.9 | 5.4 | 89 ± 2 | 91 ± 2 | |
Plasma VAMS | 4.9 | 5.2 | 94 ± 2 | 93 ± 4 | ||
500 | Blood VAMS | 5.0 | 5.4 | 91 ± 3 | 91 ± 1 | |
Plasma VAMS | 4.6 | 4.9 | 94 ± 2 | 94 ± 3 | ||
COC-D3 | 50 | Blood VAMS | 4.8 | 4.9 | 95 ± 2 | 94 ± 1 |
Plasma VAMS | 4.3 | 4.5 | 96 ± 3 | 96 ± 1 | ||
BEG-D3 | 50 | Blood VAMS | 5.0 | 5.0 | 92 ± 2 | 91 ± 2 |
Plasma VAMS | 4.6 | 4.7 | 95 ± 2 | 93 ± 2 | ||
EME-D3 | 50 | Blood VAMS | 5.2 | 5.3 | 93 ± 2 | 94 ± 3 |
Plasma VAMS | 4.7 | 5.0 | 95 ± 2 | 95 ± 2 | ||
CET-D3 | 50 | Blood VAMS | 4.5 | 4.7 | 92 ± 3 | 94 ± 2 |
Plasma VAMS | 4.6 | 4.9 | 95 ± 1 | 96 ± 2 |
Subject | Matrix | Concentration Found ± SD (ng/mL) 1 | |||
---|---|---|---|---|---|
COC | BEG | EME | CET | ||
1 | Capillary blood VAMS | 216 ± 8 | 584 ± 12 | 156 ± 6 | / |
2 | Capillary blood VAMS | 153 ± 4 | 376 ±9 | 94 ± 5 | 28 ± 5 |
3 | Capillary blood VAMS | 322 ± 9 | 312 ± 8 | 106 ± 5 | / |
4 | Plasma VAMS | 108 ± 4 | 407 ± 10 | 88 ± 4 | 57 ± 6 |
5 | Plasma VAMS | 19 ± 3 | 193 ± 4 | 13 ± 2 | 39 ± 5 |
6 | Plasma VAMS | 63 ± 3 | 234 ± 8 | 54 ± 3 | / |
Analyte | Q1 (m/z) | Q3 (m/z)1 | Dwell Time (ms) | Cone Voltage (V) | Collision Energy (eV) |
---|---|---|---|---|---|
COC | 304.27 | 82.1 | 200 | 40 | 40 |
182.0 | 35 | ||||
BEG | 290.16 | 82.1 | 200 | 60 | 35 |
168.1 | 25 | ||||
EME | 200.13 | 182.0 | 200 | 35 | 30 |
82.1 | 25 | ||||
CET | 318.24 | 196.1 | 200 | 60 | 35 |
150.1 | 30 | ||||
COC-D3 | 307.26 | 185.1 | 200 | 60 | 30 |
BEG-D3 | 293.25 | 85.1 | 200 | 50 | 30 |
EME-D3 | 203.25 | 185.1 | 200 | 60 | 25 |
CET-D3 | 321.26 | 199.0 | 200 | 60 | 30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandrioli, R.; Mercolini, L.; Protti, M. Blood and Plasma Volumetric Absorptive Microsampling (VAMS) Coupled to LC-MS/MS for the Forensic Assessment of Cocaine Consumption. Molecules 2020, 25, 1046. https://doi.org/10.3390/molecules25051046
Mandrioli R, Mercolini L, Protti M. Blood and Plasma Volumetric Absorptive Microsampling (VAMS) Coupled to LC-MS/MS for the Forensic Assessment of Cocaine Consumption. Molecules. 2020; 25(5):1046. https://doi.org/10.3390/molecules25051046
Chicago/Turabian StyleMandrioli, Roberto, Laura Mercolini, and Michele Protti. 2020. "Blood and Plasma Volumetric Absorptive Microsampling (VAMS) Coupled to LC-MS/MS for the Forensic Assessment of Cocaine Consumption" Molecules 25, no. 5: 1046. https://doi.org/10.3390/molecules25051046
APA StyleMandrioli, R., Mercolini, L., & Protti, M. (2020). Blood and Plasma Volumetric Absorptive Microsampling (VAMS) Coupled to LC-MS/MS for the Forensic Assessment of Cocaine Consumption. Molecules, 25(5), 1046. https://doi.org/10.3390/molecules25051046