Chemometrics-Assisted Identification of Anti-Inflammatory Compounds from the Green Alga Klebsormidium flaccidum var. zivo
Abstract
:1. Introduction
2. Results and Discussion
2.1. Anti-Inflammatory Activities of Extracts and Column Fractions
2.2. Chemical Profiling of Small-Molecule Compounds by UHPLC-qMS-DAD
2.3. Determination of Anti-Inflammatory Markers by Chemometric Analysis
2.4. Isolation and Anti-Inflammatory Testing of Purified Compounds
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Extraction of Algal Biomass
3.4. Fractionation of Ethyl Acetate Extract
3.5. Chemical Profiling of Column Fractions by UHPLC-qMS-DAD
3.6. Chemometric Analysis
3.7. Isolation of Anti-Inflammatory Marker Compounds from Active Column Fractions
3.8. In Vitro Anti-Inflammatory Assays for Inhibition of iNOS and NF-κB
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Biavatti, M.W.; Vieira, P.C.; da Silva, M.F.; Fernandes, J.B.; Albuquerque, A.; Magalhaes, C.M.; Pagnocca, F.C. Chemistry and bioactivity of Raulinoa echinata Cowan, an endemic Brazilian Rutaceae species. Phytomedicine 2010, 8, 121–124. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liang, Q.; Wang, M.; Jeffries, C.; Smithson, D.; Tu, Y.; Boulos, N.; Jacob, M.R.; Shelat, A.A.; Wu, Y. UPLC-MS-ELSD-PDA as a powerful dereplication tool to facilitate compound identification from small-molecule natural product libraries. J. Nat. Prod. 2014, 77, 902–909. [Google Scholar] [CrossRef] [Green Version]
- Della Corte, A.; Chitarrini, G.; Di Gangi, I.M.; Masuero, D.; Soini, E.; Mattivi, F.; Vrhovsek, U. A rapid LC-MS/MS method for quantitative profiling of fatty acids, sterols, glycerolipids, glycerophospholipids and sphingolipids in grapes. Talanta 2015, 140, 52–61. [Google Scholar] [CrossRef]
- Yao, C.L.; Yang, W.Z.; Si, W.; Shen, Y.; Zhang, N.X.; Chen, H.L.; Pan, H.Q.; Yang, M.; Wu, W.Y.; Guo, D.A. An enhanced targeted identification strategy for the selective identification of flavonoid O-glycosides from Carthamus tinctorius by integrating offline two-dimensional liquid chromatography/linear ion-trap-Orbitrap mass spectrometry, high-resolution diagnostic product ions/neutral loss filtering and liquid chromatography-solid phase extraction-nuclear magnetic resonance. J. Chromatogr. A 2017, 1491, 87–97. [Google Scholar]
- Qiu, S.; Yang, W.Z.; Yao, C.L.; Qiu, Z.D.; Shi, X.J.; Zhang, J.X.; Hou, J.J.; Wang, Q.R.; Wu, W.Y.; Guo, D.A. Nontargeted metabolomic analysis and "commercial-homophyletic" comparison-induced biomarkers verification for the systematic chemical differentiation of five different parts of Panax ginseng. J. Chromatogr. A 2016, 1453, 78–87. [Google Scholar] [CrossRef]
- Kamal, N.; Viegelmann, C.V.; Clements, C.J.; Edrada-Ebel, R. Metabolomics-guided isolation of anti-trypanosomal metabolites from the endophytic fungus Lasiodiplodia theobromae. Planta Med. 2017, 83, 565–573. [Google Scholar] [CrossRef] [Green Version]
- Hou, J.J.; Cao, C.M.; Xu, Y.W.; Yao, S.; Cai, L.Y.; Long, H.L.; Bi, Q.R.; Zhen, Y.Y.; Wu, W.Y.; Guo, D.A. Exploring lipid markers of the quality of coix seeds with different geographical origins using supercritical fluid chromatography mass spectrometry and chemometrics. Phytomedicine 2018, 45, 1–7. [Google Scholar] [CrossRef]
- Rindi, F.; Guiry, M.D.; Lopez-Bautista, J.M. Distribution, morphology, and phylogeny of klebsormidium (Klebsormidiales, Charophyceae) in urban environments in Europe (1). J. Phycol. 2008, 44, 1529–1540. [Google Scholar]
- Liu, J.Z.; Vanormelingen, P.; Vyverman, W. Fatty acid profiles of four filamentous green algae under varying culture conditions. Bioresour. Technol. 2016, 200, 1080–1084. [Google Scholar] [CrossRef]
- Brickel, J.A.; Matulka, R.A.; Steffek, A.E. KALGAE™ (Klebsormidium flaccidum var. ZIVO) dried algal biomass - 90-day dietary toxicity study and genotoxicity studies. Toxicol. Rep. 2018, 5, 959–969. [Google Scholar] [CrossRef]
- Li, N.; Khan, S.I.; Qiu, S.; Li, X.-C. Synthesis and anti-inflammatory activities of phloroglucinol-based derivatives. Molecules 2018, 23, 3232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, L.X.; Gerde, J.A.; Lee, S.L.; Wang, T.; Harrata, K.A. Microalgae lipid characterization. J. Agric. Food Chem. 2015, 63, 1773–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Q.; Cao, W.D.; Zhou, X.X.; Xie, Y.H.; Wang, S.W. Anti-thrombotic effects of α-linolenic acid isolated from Zanthoxylum bungeanum Maxim seeds. BMC Complem. Altern. Med. 2014, 14, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Tan, P.J.; Appleton, D.R.; Mustafa, M.R.; Lee, H.B. Rapid identification of cyclic tetrapyrrolic photosensitisers for photodynamic therapy using on-line hyphenated LC-PDA-MS coupled with photo-cytotoxicity assay. Phytochem. Anal. 2011, 23, 52–59. [Google Scholar] [CrossRef]
- Pop, R.M.; Weesepoel, Y.; Socaciu, C.; Pintea, A.; Vincken, J.P.; Gruppen, H. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chem. 2014, 147, 1–9. [Google Scholar] [CrossRef]
- Murakami, N.; Shirahashi, H.; Nagatsu, A.; Sakakibara, J. Two unsaturated 9R-hydroxy fatty acids from the Cyanobacterium Anabaena flosaquae. Lipids 1992, 27, 776–778. [Google Scholar] [CrossRef]
- Dabur, R.; Mittal, A. Detection and qualitative analysis of fatty acid amides in the urine of alcoholics using HPLC-QTOF-MS. Alcohol 2016, 52, 71–78. [Google Scholar] [CrossRef]
- Dang, Y.Y.; Zhang, H.; Xiu, Z.L. Three-liquid-phase extraction and separation of capsanthin and capsaicin from Capsicum annum L. Czech. J. Food Sci. 2014, 32, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.N.; Ishita, I.J.; Jin, S.E.; Choi, R.J.; Lee, C.M.; Kim, Y.S.; Jung, H.A.; Choi, J.S. Anti-inflammatory activity of edible brown alga Saccharina japonica and its constituents pheophorbide a and pheophytin a in LPS-stimulated RAW 264.7 macrophage cells. Food Chem. Toxicol. 2013, 55, 541–548. [Google Scholar] [CrossRef]
- Banskota, A.H.; Gallant, P.; Stefanova, R.; Melanson, R.; O’Leary, S.J.B. Monogalactosyldiacylglycerols, potent nitric oxide inhibitors from the marine microalga Tetraselmis chui. Nat. Prod. Res. 2012, 27, 1084–1090. [Google Scholar] [CrossRef]
- Wang, R.; Furumoto, T.; Motoyama, K.; Okazaki, K.; Kondo, A.; Fukui, H. Possible antitumor promoters in Spinacia oleracea (Spinach) and comparison of their contents among cultivars. Biol. Pharm. Bull. 2002, 66, 248–254. [Google Scholar]
- Fang, Z.; Jeong, S.Y.; Jung, H.A.; Choi, J.S.; Min, B.S.; Woo, M.H. Capsofulvesins A-C, cholinesterase inhibitors from Capsosiphon fulvescens. Chem. Pharm. Bull. 2013, 60, 1351–1358. [Google Scholar] [CrossRef] [Green Version]
- Banskota, A.H.; Stefanova, R.; Gallant, P.; Osborne, J.A.; Melanson, R.; O’Leary, S.J.B. Nitric oxide inhibitory activity of monogalactosylmonoacylglycerols from a freshwater microalgae Chlorella sorokiniana. Nat. Prod. Res. 2013, 27, 1028–1031. [Google Scholar] [CrossRef]
- Manzo, E.; Ciavatta, M.L.; Pagano, D.; Fontana, A. An efficient and versatile chemical synthesis of bioactive glycol-glycerolipids. Tetrahedron Lett. 2012, 53, 879–881. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Wang, X.M.; Wang, H.; Liu, T.X.; Xin, Z.H. Two new noroleanane-type triterpene saponins from the methanol extract of Salicornia herbacea. Food Chem. 2014, 151, 101–109. [Google Scholar] [CrossRef]
- Villalobos Solis, M.I.V.; Patel, A.; Orsat, V.; Singh, J.; Lefsrud, M. Fatty acid profiling of the seed oils of some varieties of field peas (Pisum sativum) by RP-LC/ESI-MS/MS: Towards the development of an oilseed pea. Food Chem. 2013, 139, 986–993. [Google Scholar] [CrossRef]
- Hynninen, P.H.; Sievers, G.Z. Conformations of chlorophylls a and a’ and their magnesium-free derivatives as revealed by circular dichroism and proton magnetic resonance. Naturforsch. B 1981, 36, 1000–1009. [Google Scholar] [CrossRef]
- Wang, N.; Manabe, Y.; Sugawara, T.; Paul, N.A.; Zhao, J. Identification and biological activities of carotenoids from the freshwater alga Oedogonium intermedium. Food Chem. 2018, 242, 247–255. [Google Scholar] [CrossRef]
- Harwood, J.L.; Jones, A.L. Lipid metabolism in algae. Adv. Bot. Res. 1989, 16, 1–53. [Google Scholar]
- Soontornchaiboon, W.; Joo, S.S.; Kim, S.M. Anti-inflammatory effects of violaxanthin isolated from microalga Chlorella ellipsoids in RAW 264.7 macrophages. Biol. Pharm. Bull. 2012, 200, 1080–1084. [Google Scholar]
- Chen, Y.F.; Wang, K.; Zhang, Y.Z.; Zheng, Y.F.; Hu, F.L. In vitro anti-inflammatory effects of three fatty acids from royal jelly. Mediat. Inflamm. 2016, 3583684. [Google Scholar]
- Lopez, D.H.; Fiol-deRoque, M.A.; Noguera-Salva, M.A.; Teres, S.; Campana, F.; Piotto, S.; Castro, J.A.; Mohaibes, R.J.; Escriba, P.V.; Busquets, X. 2-Hydroxy arachidonic acid: A new non-steroidal anti-inflammatory drug. PLoS ONE 2013, 8, e72052. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, M.; Bork, P.M.; Schmitz, M.L.; Rimpler, H.; Frei, B.; Sticher, O. Pheophorbide A from Solanum diflorum interferes with NF-kappa B activation. Planta Med. 2001, 67, 156–157. [Google Scholar] [CrossRef]
- Zhao, J.P.; Khan, S.I.; Wang, M.; Vasquez, Y.; Yang, M.H.; Avula, B.; Wang, Y.H.; Avonto, C.; Smillie, T.J.; Khan, I.A. Octulosonic acid derivatives from Roman chamomile (Chamaemelum nobile) with activities against inflammation and metabolic disorder. J. Nat. Prod. 2014, 77, 509–515. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Compound | m/z (+) a | m/z (-) b | RT c (min) | UVmax (nm) | Location d | Identification/Prediction | Reference |
---|---|---|---|---|---|---|---|
1 | 251 | 295 | 13.18 | \ | Fr. 2 | 7, 10, 13-Hexadecatrienoic acid e | [12] |
2 | 279 | 323 | 15.92 | \ | Fr. 2,3,4,5 | α-Linolenic acid e | [13] |
3 | 305 | 349 | 17.60 | \ | Fr. 2 | 8, 11, 14-Eicosadienoic acid e | [12] |
4 | 281 | 325 | 17.98 | \ | Fr. 2 | -Linoleic acid e | [12] |
5 | 277 | 293 | 11.77 | \ | Fr. 4,5 | Hydroxy-C18:3 FA f | |
6 | 279 | 295 | 13.16 | \ | Fr. 4,5 | Hydroxy-C18:2 FA f | |
7 | 281 | 301 | 14.96 | \ | Fr. 4 | Hydroxy-C18:1 FA f | |
8 | 283 | 299 | 19.74 | \ | Fr. 4 | Hydroxy-C18:0 FA f | |
9 | 305 | 321 | 9.67 | \ | Fr. 6 | Hydroxy-C20:3 FA f | |
10 | 307 | 323 | 10.83 | \ | Fr. 6 | Hydroxy-C20:2 FA f | |
11 | 607 | 605 | 22.51 | 408 | Fr. 6 | Pheophorbide a methyl ester | [14] |
12 | 293 | 309 | 10.47 | \ | Fr. 7 | Dihydroxy-C18:3 FA f | |
13 | 293 | 309 | 10.71 | \ | Fr. 7 | Dihydroxy-C18:3 FA f | |
14 | 295 | 311 | 11.78 | \ | Fr. 7 | Dihydroxy-C18:2 FA f | |
15 | 295 | 311 | 11.98 | \ | Fr. 7 | Dihydroxy-C18:2 FA f | |
16 | 295 | 311 | 12.16 | \ | Fr. 7 | Dihydroxy-C18:2 FA f | |
17 | 295 | 311 | 12.42 | \ | Fr. 7 | Dihydroxy-C18:2 FA f | |
18 | 568 | \ | 22.95 | 454; 478 | Fr. 6,7 | Zeaxanthin | [15] |
19 | 568 | \ | 23.18 | 448; 474 | Fr. 6,7 | Lutein | [15] |
20 | 277 | 293 | 9.71 | \ | Fr. 8,9 | Hydroxy-C18:3 FA f | |
21 | 277 | 293 | 9.92 | \ | Fr. 8 | (10E,12Z,15Z)-9-hydroxyoctadecadienoic acid | [16] |
22 | 279 | 295 | 11.05 | \ | Fr. 8,9 | (10E,12Z)-9-hydroxyoctadecadienoic acid | [16] |
23 | 278 | \ | 13.12 | \ | Fr. 8 | C18:3 FAA g | |
24 | 280 | \ | 14.98 | \ | Fr. 8 | (9Z,12Z)-octadecadienamide | [17] |
25 | 584 h | \ | 17.59 | 448; 474 | Fr. 8,9 | Capsanthin | [18] |
26 | 593 | 591 | 19.36 | 410 | Fr. 9,10,11 | Pheophorbide a | [19] |
27 | 593 | 591 | 20.32 | 410 | Fr. 9,10,11 | 15-Epimer of Pheophorbide a | [19] |
28 | 607 | 605 | 15.86 | 436 | Fr. 10 | Pheophorbide b | [14] |
29 | 600 h | \ | 16.55 | 438; 466 | Fr. 11,12 | Neoxanthin | [15] |
30 | 600 h | \ | 17.00 | 440; 471 | Fr. 11,12 | Violaxanthin | [15] |
31 | 767 | 789 | 23.29 | \ | Fr. 12,13 | MGDG i(16:4/18:3) | [20] |
32 | 769 | 791 | 24.85 | \ | Fr. 12 | MGDG (16:3/18:3) | [21] |
33 | 609 | 607 | 17.64 | 408 | Fr. 13 | 15-Hydroxy-pheophorbide a j | [14] |
34 | 507 | 529 | 6.99 | \ | Fr. 17 | MGMG k (C16:4) | [22] |
35 | 509 | 531 | 7.66 | \ | Fr. 17 | MGMG (C16:3) | [23] |
36 | 511 | 533 | 8.96 | \ | Fr. 17 | MGMG (C16:2) | [23] |
37 | 537 | 559 | 9.86 | \ | Fr. 17 | MGMG (C18:3) | [24] |
38 | 539 | 561 | 11.24 | \ | Fr. 17 | MGMG (C18:2) | |
39 | 609 | 607 | 18.50 | 408 | Fr. 17,18 | 15-Hydroxy-pheophorbide a j | [14] |
40 | 929 | 951 | 19.90 | \ | Fr. 18 | DGDG l(16:4/18:3) | [12] |
41 | 931 | 953 | 20.89 | \ | Fr. 18 | DGDG (16:3/18:3) | [12] |
42 | 625 | 623 | 17.99 | 400 | Fr. 19,20 | Hydro-pheophorbide-lactone a | [25] |
Compound | iNOS (IC50, µM) | NF-κB (IC50, µM) |
---|---|---|
19 a | 26.4 ± 5.3 | NA b |
21 | 22.4 ± 2.4 | 122.3 ± 20.3 |
26 | 0.24 ± 0.03 | 132.1 ± 3.4 |
31 | 17.4 ± 1.3 | 47.0 ± 6.7 |
Parthenolide | 0.72 ± 0.08 | 3.83 ± 0.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, S.; Khan, S.I.; Wang, M.; Zhao, J.; Ren, S.; Khan, I.A.; Steffek, A.; Pfund, W.P.; Li, X.-C. Chemometrics-Assisted Identification of Anti-Inflammatory Compounds from the Green Alga Klebsormidium flaccidum var. zivo. Molecules 2020, 25, 1048. https://doi.org/10.3390/molecules25051048
Qiu S, Khan SI, Wang M, Zhao J, Ren S, Khan IA, Steffek A, Pfund WP, Li X-C. Chemometrics-Assisted Identification of Anti-Inflammatory Compounds from the Green Alga Klebsormidium flaccidum var. zivo. Molecules. 2020; 25(5):1048. https://doi.org/10.3390/molecules25051048
Chicago/Turabian StyleQiu, Shi, Shabana I. Khan, Mei Wang, Jianping Zhao, Siyu Ren, Ikhlas A. Khan, Amy Steffek, William P. Pfund, and Xing-Cong Li. 2020. "Chemometrics-Assisted Identification of Anti-Inflammatory Compounds from the Green Alga Klebsormidium flaccidum var. zivo" Molecules 25, no. 5: 1048. https://doi.org/10.3390/molecules25051048
APA StyleQiu, S., Khan, S. I., Wang, M., Zhao, J., Ren, S., Khan, I. A., Steffek, A., Pfund, W. P., & Li, X. -C. (2020). Chemometrics-Assisted Identification of Anti-Inflammatory Compounds from the Green Alga Klebsormidium flaccidum var. zivo. Molecules, 25(5), 1048. https://doi.org/10.3390/molecules25051048