Fe1−xS Modified TiO2 NPs Embedded Carbon Nanofiber Composite via Electrospinning: A Potential Electrode Material for Supercapacitors
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Synthesis of Fe1−xS-TiO2/CNFs Composite
2.3. Characterization
2.4. Electrochemical Studies
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pant, B.; Park, M.; Ojha, G.P.; Park, J.; Kuk, Y.-S.; Lee, E.-J.; Kim, H.-Y.; Park, S.-J. Carbon nanofibers wrapped with zinc oxide nano-flakes as promising electrode material for supercapacitors. J. Colloid Interface Sci. 2018, 522, 40–47. [Google Scholar] [CrossRef]
- Lee, D.G.; Kim, B.-H. MnO2 decorated on electrospun carbon nanofiber/graphene composites as supercapacitor electrode materials. Synth. Metals 2016, 219, 115–123. [Google Scholar] [CrossRef]
- Lin, S.-C.; Lu, Y.-T.; Chien, Y.-A.; Wang, J.-A.; Chen, P.-Y.; Ma, C.-C.M.; Hu, C.-C. Asymmetric supercapacitors based on electrospun carbon nanofiber/sodium-pre-intercalated manganese oxide electrodes with high power and energy densities. J. Power Sources 2018, 393, 1–10. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Park, S.-J. TiO2 NPs Assembled into a Carbon Nanofiber Composite Electrode by a One-Step Electrospinning Process for Supercapacitor Applications. Polymers 2019, 11, 899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afif, A.; Rahman, S.M.H.; Tasfiah Azad, A.; Zaini, J.; Islan, M.A.; Azad, A.K. Advanced materials and technologies for hybrid supercapacitors for energy storage – A review. J. Energy Storage 2019, 25, 100852. [Google Scholar] [CrossRef]
- Ojha, G.P.; Pant, B.; Park, S.-J.; Park, M.; Kim, H.-Y. Synthesis and characterization of reduced graphene oxide decorated with CeO2-doped MnO2 nanorods for supercapacitor applications. J. Colloid Interface Sci. 2017, 494, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Ramadoss, A.; Kim, G.-S.; Kim, S.J. Fabrication of reduced graphene oxide/TiO2 nanorod/reduced graphene oxide hybrid nanostructures as electrode materials for supercapacitor applications. CrystEngComm 2013, 15, 10222–10229. [Google Scholar] [CrossRef]
- Heng, I.; Lai, C.W.; Juan, J.C.; Numan, A.; Iqbal, J.; Teo, E.Y.L. Low-temperature synthesis of TIO2 nanocrystals for high performance electrochemical supercapacitors. Ceramics Int. 2019, 45, 4990–5000. [Google Scholar] [CrossRef]
- Yang, S.; Li, Y.; Sun, J.; Cao, B. Laser induced oxygen-deficient TiO2/graphene hybrid for high-performance supercapacitor. J. Power Sources 2019, 431, 220–225. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Chang, C.-C.; Chen, W.-Y.; Hung, W.-M. Electrochemical capacitance from carbon nanotubes decorated with titanium dioxide nanoparticles in acid electrolyte. J. Phys. Chem. Solids 2009, 70, 916–921. [Google Scholar] [CrossRef]
- Verma, S.; Sinha-Ray, S.; Sinha-Ray, S. Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review. Polymers 2020, 12, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zeng, Z.; Bloom, B.; Waldeck, D.H.; Wei, J. Stable Low-Current Electrodeposition of α-MnO2 on Superaligned Electrospun Carbon Nanofibers for High-Performance Energy Storage. Small 2018, 14, 1703237. [Google Scholar] [CrossRef] [PubMed]
- Ikkurthi, K.D.; Srinivasa Rao, S.; Jagadeesh, M.; Reddy, A.E.; Anitha, T.; Kim, H.-J. Synthesis of nanostructured metal sulfides via a hydrothermal method and their use as an electrode material for supercapacitors. New J. Chem. 2018, 42, 19183–19192. [Google Scholar] [CrossRef]
- Rui, X.; Tan, H.; Yan, Q. Nanostructured metal sulfides for energy storage. Nanoscale 2014, 6, 9889–9924. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, S.; Li, Y.; Jacob, R.J.; Kuang, Y.; Liu, B.; Wang, Y.; Pastel, G.; Salamanca-Riba, L.G.; Zachariah, M.R.; et al. FeS2 Nanoparticles Embedded in Reduced Graphene Oxide toward Robust, High-Performance Electrocatalysts. Adv. Energy Mater. 2017, 7, 1700482. [Google Scholar] [CrossRef]
- Karade, S.S.; Dwivedi, P.; Majumder, S.; Pandit, B.; Sankapal, B.R. First report on a FeS-based 2 V operating flexible solid-state symmetric supercapacitor device. Sustainable Energy Fuels 2017, 1, 1366–1375. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Q.; Mi, M.; Kong, W.; Ge, Y.; Ma, J.; Hu, J. Fe1-xS/reduced graphene oxide composite as anode material for aqueous rechargeable Ni/Fe batteries. J. Alloys Comp. 2019, 800, 99–106. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, Y.; Zhao, Z.; Yuan, C.; Lou, X.W. A Ternary Fe1−xS@Porous Carbon Nanowires/Reduced Graphene Oxide Hybrid Film Electrode with Superior Volumetric and Gravimetric Capacities for Flexible Sodium Ion Batteries. Adv. Energy Mater. 2019, 9, 1803052. [Google Scholar] [CrossRef]
- Zhu, Y.; Fan, X.; Suo, L.; Luo, C.; Gao, T.; Wang, C. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries. ACS Nano 2016, 10, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
- Pant, B.; Pant, H.R.; Park, M.; Liu, Y.; Choi, J.-W.; Barakat, N.A.M.; Kim, H.-Y. Electrospun CdS–TiO2 doped carbon nanofibers for visible-light-induced photocatalytic hydrolysis of ammonia borane. Cata. Commun. 2014, 50, 63–68. [Google Scholar] [CrossRef]
- Wetchakun, N.; Incessungvorn, B.; Wetchakun, K.; Phanichphant, S. Influence of calcination temperature on anatase to rutile phase transformation in TiO2 nanoparticles synthesized by the modified sol–gel method. Mater. Lett. 2012, 82, 195–198. [Google Scholar] [CrossRef]
- Wang, H.; Huang, X.; Li, W.; Gao, J.; Xue, H.; Li, R.K.Y.; Mai, Y.-W. TiO2 nanoparticle decorated carbon nanofibers for removal of organic dyes. Colloids Sur. A Physicochem. Eng. Aspects 2018, 549, 205–211. [Google Scholar] [CrossRef]
- Pant, B.; Barakat, N.A.M.; Pant, H.R.; Park, M.; Saud, P.S.; Kim, J.-W.; Kim, H.-Y. Synthesis and photocatalytic activities of CdS/TiO2 nanoparticles supported on carbon nanofibers for high efficient adsorption and simultaneous decomposition of organic dyes. J. Colloid Interface Sci. 2014, 434, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Pant, B.; Pant, H.R.; Barakat, N.A.M.; Park, M.; Jeon, K.; Choi, Y.; Kim, H.-Y. Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities. Ceramics Int. 2013, 39, 7029–7035. [Google Scholar] [CrossRef]
- Wang, C.; Lan, M.; Zhang, Y.; Bian, H.; Yuen, M.-F.; Ostrikov, K.; Jiang, J.; Zhang, W.; Li, Y.Y.; Lu, J. Fe1−xS/C nanocomposites from sugarcane waste-derived microporous carbon for high-performance lithium ion batteries. Green Chem. 2016, 18, 3029–3039. [Google Scholar] [CrossRef]
- Argueta-Figueroa, L.; Torres-Gómez, N.; García-Contreras, R.; Vilchis-Nestor, A.R.; Martínez-Alvarez, O.; Acosta-Torres, L.S.; Arenas-Arrocena, M.C. Hydrothermal synthesis of pyrrhotite (Fex-1S) nanoplates and their antibacterial, cytotoxic activity study. Pro. Natural Sci. Mater. Int. 2018, 28, 447–455. [Google Scholar] [CrossRef]
- Venkateshalu, S.; Goban Kumar, P.; Kollu, P.; Jeong, S.K.; Grace, A.N. Solvothermal synthesis and electrochemical properties of phase pure pyrite FeS2 for supercapacitor applications. Electrochimica Acta 2018, 290, 378–389. [Google Scholar] [CrossRef]
- Khabbaz, M.; Entezari, M.H. Simple and versatile one-step synthesis of FeS2 nanoparticles by ultrasonic irradiation. J. Colloid Interface Sci. 2016, 470, 204–210. [Google Scholar] [CrossRef]
- Middya, S.; Layek, A.; Dey, A.; Ray, P.P. Synthesis of Nanocrystalline FeS2 with Increased Band Gap for Solar Energy Harvesting. J. Mater. Sci. Tech. 2014, 30, 770–775. [Google Scholar] [CrossRef]
- Wang, M.-H.; Xue, H.-G.; Guo, S.-P. In situ hydrothermal synthesis of rGO-wrapped Fe1−xS particles for lithium storage. J. Mater. Res. 2019, 34, 3186–3194. [Google Scholar] [CrossRef]
- Wang, X.; Xiang, Q.; Liu, B.; Wang, L.; Luo, T.; Chen, D.; Shen, G. TiO2 modified FeS Nanostructures with Enhanced Electrochemical Performance for Lithium-Ion Batteries. Sci. Reports 2013, 3, 2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhong, W.; Yang, C.; Pan, Q.; Li, Y.; Wang, G.; Zheng, F.; Xiong, X.; Liu, M.; Zhang, Q. Direct synthesis of FeS/N-doped carbon composite for high-performance sodium-ion batteries. J. Mater. Chem. A 2018, 6, 24702–24708. [Google Scholar] [CrossRef]
- Daubert, J.S.; Lewis, N.P.; Gotsch, H.N.; Mundy, J.Z.; Monroe, D.N.; Dickey, E.C.; Losego, M.D.; Parsons, G.N. Effect of Meso- and Micro-Porosity in Carbon Electrodes on Atomic Layer Deposition of Pseudocapacitive V2O5 for High Performance Supercapacitors. Chem. Mater. 2015, 27, 6524–6534. [Google Scholar] [CrossRef]
- Zhi, M.; Liu, S.; Hong, Z.; Wu, N. Electrospun activated carbon nanofibers for supercapacitor electrodes. RSC Advances 2014, 4, 43619–43623. [Google Scholar] [CrossRef]
- Pant, B.; Park, M.; Park, S.-J. MoS2/CdS/TiO2 ternary composite incorporated into carbon nanofibers for the removal of organic pollutants from water. Inorg. Chem. Commun. 2019, 102, 113–119. [Google Scholar] [CrossRef]
- Pant, B.; Ojha, G.P.; Kim, H.-Y.; Park, M.; Park, S.-J. Fly-ash-incorporated electrospun zinc oxide nanofibers: Potential material for environmental remediation. Environmental Pollution 2019, 245, 163–172. [Google Scholar] [CrossRef]
- Ahmed, F.; Pervez, S.A.; Aljaafari, A.; Alshoaibi, A.; Abuhimd, H.; Oh, J.; Koo, B.H. Fabrication of TiO2-Nanotube-Array-Based Supercapacitors. Micromachines 2019, 10, 742. [Google Scholar] [CrossRef] [Green Version]
- Kuchi, C.; Narayana, A.L.; Hussain, O.M.; Reddy, P.S. Electrospun TiO2 nanofiber electrodes for high performance supercapacitors. Mater. Res. Express 2020, 7, 015098. [Google Scholar] [CrossRef]
- He, X.; Yang, C.P.; Zhang, G.L.; Shi, D.W.; Huang, Q.A.; Xiao, H.B.; Liu, Y.; Xiong, R. Supercapacitor of TiO2 nanofibers by electrospinning and KOH treatment. Mater. Des. 2016, 106, 74–80. [Google Scholar] [CrossRef]
- Tang, K.; Li, Y.; Cao, H.; Su, C.; Zhang, Z.; Zhang, Y. Amorphous-crystalline TiO2/carbon nanofibers composite electrode by one-step electrospinning for symmetric supercapacitor. Electrochimica Acta 2016, 190, 678–688. [Google Scholar] [CrossRef]
- Tolba, G.; Motlak, M.; Bastaweesy, A.M.; Ashour, E.A.; Abdelmoez, W.; El-Newehy, M.; Barakat, N. Synthesis of Novel Fe-doped Amorphous TiO2/C Nanofibers for Supercapacitors Applications. Int. J. Electrochem. Sci. 2015, 10, 3117–3123. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Sample | BET Surface Area (m2/g) | Total Pore Volume (cm3/g) | Mean Pore Diameter (nm) |
---|---|---|---|
TiO2 NFs | 44.507 | 0.07209 | 6.479 |
Fe1−xS-TiO2-CNFs | 291.06 | 0.2402 | 3.3007 |
S.N. | Electrode Material | Fabrication Method | Electrolyte | Specific Capacitance | Stability | Ref. |
---|---|---|---|---|---|---|
1 | TiO2-nanotube-array | Electrochemical anodizaion | LiPF6 1.2 M | 5.12 mF/cm2 at 100 µA/cm2 | 88% | [37] |
2 | TiO2 NFs | Electrospinning | Li2SO4 1 mol L−1 | 75 F/g at 1 mAg−1 | 95% after 5000 cycles | [38] |
3. | KOH-treated TiO2 NFs | Electrospinning | Na2SO4 1 mol L−1 | 65.84 F/g at 1 mV/s | 78% after 10,000 cycles | [39] |
4 | TiO2@CNF | Electrospinning | KOH 6M | 151.5 F/g at 1 A/g | 97.8% after 4000 cycles | [40] |
5 | TiO2-CNFs | Electrospinning | KOH 2 M | 106.57 F/g at 1 A/g | 84% after 2000 cycles | [4] |
6 | Fe-TiO2/CNFs | Electrospinning | KOH 1 M | 137 F/g at 5 mV/s | - | [41] |
7 | Fe1−xS-TiO2/CNFs | Electrospinning | KOH 2 M | 138 F/g at 1 A/g | 83% after 2000 cycles | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pant, B.; Pant, H.R.; Park, M. Fe1−xS Modified TiO2 NPs Embedded Carbon Nanofiber Composite via Electrospinning: A Potential Electrode Material for Supercapacitors. Molecules 2020, 25, 1075. https://doi.org/10.3390/molecules25051075
Pant B, Pant HR, Park M. Fe1−xS Modified TiO2 NPs Embedded Carbon Nanofiber Composite via Electrospinning: A Potential Electrode Material for Supercapacitors. Molecules. 2020; 25(5):1075. https://doi.org/10.3390/molecules25051075
Chicago/Turabian StylePant, Bishweshwar, Hem Raj Pant, and Mira Park. 2020. "Fe1−xS Modified TiO2 NPs Embedded Carbon Nanofiber Composite via Electrospinning: A Potential Electrode Material for Supercapacitors" Molecules 25, no. 5: 1075. https://doi.org/10.3390/molecules25051075
APA StylePant, B., Pant, H. R., & Park, M. (2020). Fe1−xS Modified TiO2 NPs Embedded Carbon Nanofiber Composite via Electrospinning: A Potential Electrode Material for Supercapacitors. Molecules, 25(5), 1075. https://doi.org/10.3390/molecules25051075