Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Berries Sugar, Protein, and Fat Content
2.2. Total and Individual Content of Phenolic Compounds
2.2.1. Total Content of Phenolic Compounds
2.2.2. Flavonoids
2.2.3. Individual Phenolic and Flavonoid Content
2.3. Carotenoid Content
2.4. Antioxidant Potential
2.5. Antimicrobial Activity
3. Materials and methods
3.1. Plant Material
3.2. Chemicals
3.3. Determination of Sugars
3.3.1. Preparation of Extracts
3.3.2. Determination of Sugars by the HPLC Method
3.4. Total Protein and Fat Content
3.5. Total and Individual Content of Phenolic Compounds
3.5.1. Preparation of extracts
3.5.2. Total Phenolic Content
3.5.3. Flavonoids
3.5.4. Individual Polyphenolic Compounds
3.6. Determination of Carotenoid Composition
3.6.1. Preparation of Extracts
3.6.2. Carotenoid Quantification by RP–PAD–HPLC
3.7. Antioxidant Activity
3.7.1. Determination of DPPH Scavenging Activity
3.7.2. ABTS Radical Scavenging Activity
3.8. Antimicrobial Activity
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Swenson, U.; Bartish, I.V. Taxonomic synopsis of Hippophae (Elaeagnaceae). Nord. J. Bot. 2002, 22, 369–374. [Google Scholar] [CrossRef]
- Teleszko, M.; Wojdyło, A.; Rudzińska, M.; Oszmiański, J.; Golis, T. Analysis of Lipophilic and Hydrophilic Bioactive Compounds Content in Sea Buckthorn (Hippophaë rhamnoides L.) Berries. J. Agric. Food Chem. 2015, 63, 4120–4129. [Google Scholar] [CrossRef] [PubMed]
- Suomela, J.-P.; Ahotupa, M.; Yang, B.; Vasankari, T.; Kallio, H. Absorption of Flavonols Derived from Sea Buckthorn (Hippophaë rhamnoides L.) and Their Effect on Emerging Risk Factors for Cardiovascular Disease in Humans. J. Agric. Food Chem. 2006, 54, 7364–7369. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Ding, X.; Gu, W. Radical-scavenging proanthocyanidins from sea buckthorn seed. Food Chem. 2007, 102, 168–177. [Google Scholar] [CrossRef]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Michel, T.; Destandau, E.; Le Floch, G.; Lucchesi, M.E.; Elfakir, C. Antimicrobial, antioxidant and phytochemical investigations of sea buckthorn (Hippophaë rhamnoides L.) leaf, stem, root and seed. Food Chem. 2012, 131, 754–760. [Google Scholar] [CrossRef]
- Jain, M.; Ganju, L.; Katiyal, A.; Padwad, Y.; Mishra, K.P.; Chanda, S.; Karan, D.; Yogendra, K.M.S.; Sawhney, R.C. Effect of Hippophae rhamnoides leaf extract against Dengue virus infection in human blood-derived macrophages. Phytomedicine 2008, 15, 793–799. [Google Scholar] [CrossRef]
- Geetha, S.; Sai Ram, M.; Singh, V.; Ilavazhagan, G.; Sawhney, R. Anti-oxidant and immunomodulatory properties of seabuckthorn (Hippophae rhamnoides)—An in vitro study. J. Ethnopharmacol. 2002, 79, 373–378. [Google Scholar] [CrossRef]
- Ganju, L.; Padwad, Y.; Singh, R.; Karan, D.; Chanda, S.; Chopra, M.K.; Bhatnagar, P.; Kashyap, R.; Sawhney, R.C. Anti-inflammatory activity of Seabuckthorn (Hippophae rhamnoides) leaves. Int. Immunopharmacol. 2005, 5, 1675–1684. [Google Scholar] [CrossRef]
- Yang, W.; Alanne, A.-L.; Liu, P.; Kallio, H.; Yang, B. Flavonol Glycosides in Currant Leaves and Variation with Growth Season, Growth Location, and Leaf Position. J. Agric. Food Chem. 2015, 63, 9269–9276. [Google Scholar] [CrossRef]
- Vagiri, M.; Ekholm, A.; Öberg, E.; Johansson, E.; Andersson, S.C.; Rumpunen, K. Phenols and Ascorbic Acid in Black Currants (Ribes nigrum L.): Variation Due to Genotype, Location, and Year. J. Agric. Food Chem. 2013, 61, 9298–9306. [Google Scholar] [CrossRef]
- Yang, B. Sugars, acids, ethyl β-d-glucopyranose and a methyl inositol in sea buckthorn (Hippophaë rhamnoides) berries. Food Chem. 2009, 112, 89–97. [Google Scholar] [CrossRef]
- Tiitinen, K.M.; Yang, B.; Haraldsson, G.G.; Jonsdottir, S.; Kallio, H.P. Fast Analysis of Sugars, Fruit Acids, and Vitamin C in Sea Buckthorn (Hippophaë rhamnoides L.) Varieties. J. Agric. Food Chem. 2006, 54, 2508–2513. [Google Scholar] [CrossRef]
- Yang, B.; Zheng, J.; Kallio, H. Influence of origin, harvesting time and weather conditions on content of inositols and methylinositols in sea buckthorn (Hippophaë rhamnoides) berries. Food Chem. 2011, 125, 388–396. [Google Scholar] [CrossRef]
- Ficzek, G.; Mátravölgyi, G.; Furulyás, D.; Rentsendavaa, C.; Jócsák, I.; Papp, D.; Simon, G.; Végvári, G.; Stéger-Máté, M. Analysis of bioactive compounds of three sea buckthorn cultivars (Hippophaë rhamnoides L. ‘Askola’, ‘Leikora’, and ‘Orangeveja’) with HPLC and spectrophotometric methods. Eur. J. Hortic. Sci. 2019, 84, 31–38. [Google Scholar] [CrossRef]
- Yang, B.; Kallio, H. Composition and physiological effects of sea buckthorn (Hippophaë) lipids. Trends Food Sci. Technol. 2002, 13, 160–167. [Google Scholar] [CrossRef]
- Yang, B.; Kallio, H.P. Fatty Acid Composition of Lipids in Sea Buckthorn (Hippophaë rhamnoides L.) Berries of Different Origins. J. Agric. Food Chem. 2001, 49, 1939–1947. [Google Scholar] [CrossRef]
- Bittová, M.; Krejzová, E.; Roblová, V.; Kubán, P.; Kubáň, V. Monitoring of HPLC profiles of selected polyphenolic compounds in sea buckthorn (Hippophaë rhamnoides L.) plant parts during annual growth cycle and estimation of their antioxidant potential. Cent. Eur. J. Chem. 2014, 12, 1152–1161. [Google Scholar] [CrossRef]
- Ercisli, S.; Orhan, E.; Ozdemir, O.; Sengul, M. The genotypic effects on the chemical composition and antioxidant activity of sea buckthorn (Hippophae rhamnoides L.) berries grown in Turkey. Sci. Hortic. (Amsterdam) 2007, 115, 27–33. [Google Scholar] [CrossRef]
- Korekar, G.; Dolkar, P.; Singh, H.; Srivastava, R.B.; Stobdan, T. Variability and the genotypic effect on antioxidant activity, total phenolics, carotenoids and ascorbic acid content in seventeen natural population of Seabuckthorn (Hippophae rhamnoides L.) from trans-Himalaya. LWT—Food Sci. Technol. 2014, 55, 157–162. [Google Scholar] [CrossRef]
- Guo, R.; Guo, X.; Li, T.; Fu, X.; Liu, R.H. Comparative assessment of phytochemical profiles, antioxidant and antiproliferative activities of Sea buckthorn (Hippophaë rhamnoides L.) berries. Food Chem. 2017, 221, 997–1003. [Google Scholar] [CrossRef]
- Rop, O.; Ercişli, S.; Mlcek, J.; Jurikova, T.; Hoza, I. Antioxidant and radical scavenging activities in fruits of 6 sea buckthorn (Hippophae rhamnoides L.) cultivars. Turkish J. Agric. For. 2014, 38, 224–232. [Google Scholar] [CrossRef]
- Arimboor, R.; Kumar, K.S.; Arumughan, C. Simultaneous estimation of phenolic acids in sea buckthorn (Hippophaë rhamnoides) using RP-HPLC with DAD. J. Pharm. Biomed. Anal. 2008, 47, 31–38. [Google Scholar] [CrossRef]
- Sabir, S.M.; Maqsood, H.; Hayat, I.; Khan, M.Q.; Khaliq, A. Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berries of Pakistani origin. J. Med. Food 2005, 8, 518–522. [Google Scholar] [CrossRef]
- Pop, R.M.; Socaciu, C.; Pintea, A.; Buzoianu, A.D.; Sanders, M.G.; Gruppen, H.; Vincken, J.-P. UHPLC/PDA-ESI/MS Analysis of the Main Berry and Leaf Flavonol Glycosides from Different Carpathian Hippophaë rhamnoides L. Varieties. Phytochem. Anal. 2013, 24, 484–492. [Google Scholar] [CrossRef]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Ferreres, F.; Moreno, D.A.; Nowicka, P. UPLC-PDA-Q/TOF-MS profiling of phenolic and carotenoid compounds and their influence on anticholinergic potential for AChE and BuChE inhibition and on-line antioxidant activity of selected Hippophaë rhamnoides L. cultivars. Food Chem. 2020, 309, 125766. [Google Scholar] [CrossRef]
- Zheng, J.; Kallio, H.; Yang, B. Sea Buckthorn (Hippophaë rhamnoides ssp. rhamnoides) Berries in Nordic Environment: Compositional Response to Latitude and Weather Conditions. J. Agric. Food Chem. 2016, 64, 5031–5044. [Google Scholar] [CrossRef]
- Pop, R.M.; Weesepoel, Y.; Socaciu, C.; Pintea, A.; Vincken, J.-P.; Gruppen, H. Carotenoid composition of berries and leaves from six Romanian sea buckthorn (Hippophae rhamnoides L.) varieties. Food Chem. 2014, 147, 1–9. [Google Scholar] [CrossRef]
- Yogendra Kumar, M.S.; Tirpude, R.J.; Maheshwari, D.T.; Bansal, A.; Misra, K. Antioxidant and antimicrobial properties of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves in vitro. Food Chem. 2013, 141, 3443–3450. [Google Scholar] [CrossRef]
- Rösch, D.; Bergmann, M.; Knorr, D.; Kroh, L.W. Structure−Antioxidant Efficiency Relationships of Phenolic Compounds and Their Contribution to the Antioxidant Activity of Sea Buckthorn Juice. J. Agric. Food Chem. 2003, 51, 4233–4239. [Google Scholar] [CrossRef]
- Ma, X.; Laaksonen, O.; Zheng, J.; Yang, W.; Trépanier, M.; Kallio, H.; Yang, B. Flavonol glycosides in berries of two major subspecies of sea buckthorn (Hippophaë rhamnoides L.) and influence of growth sites. Food Chem. 2016, 200, 189–198. [Google Scholar] [CrossRef]
- Campos, M.; Markham, K.R.; Mitchell, K.A.; da Cunha, A.P. An approach to the characterization of bee pollens via their flavonoid/phenolic profiles. Phytochem. Anal. 1997, 8, 181–185. [Google Scholar] [CrossRef]
- Yang, B.; Halttunen, T.; Raimo, O.; Price, K.; Kallio, H. Flavonol glycosides in wild and cultivated berries of three major subspecies of Hippophaë rhamnoides and changes during harvesting period. Food Chem. 2009, 115, 657–664. [Google Scholar] [CrossRef]
- Chen, C.; Xu, X.M.; Chen, Y.; Yu, M.Y.; Wen, F.Y.; Zhang, H. Identification, quantification and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis). Food Chem. 2013, 141, 1573–1579. [Google Scholar] [CrossRef]
- Urcan, A.; Criste, A.; Dezmirean, D.; Mărgăoan, R.; Caeiro, A.; Graça Campos, M. Similarity of Data from Bee Bread with the Same Taxa Collected in India and Romania. Molecules 2018, 23, 2491. [Google Scholar] [CrossRef] [Green Version]
- Kallio, H.; Yang, B.; Peippo, P. Effects of Different Origins and Harvesting Time on Vitamin C, Tocopherols, and Tocotrienols in Sea Buckthorn (Hippophaë rhamnoides) Berries. J. Agric. Food Chem. 2002, 50, 6136–6142. [Google Scholar] [CrossRef]
- Andersson, S.C.; Olsson, M.E.; Johansson, E.; Rumpunen, K. Carotenoids in Sea Buckthorn (Hippophae rhamnoides L.) Berries during Ripening and Use of Pheophytin a as a Maturity Marker. J. Agric. Food Chem. 2009, 57, 250–258. [Google Scholar] [CrossRef]
- Tudor, C.; Bohn, T.; Iddir, M.; Dulf, F.V.; Focşan, M.; Rugină, D.O.; Pintea, A. Sea Buckthorn Oil as a Valuable Source of Bioaccessible Xanthophylls. Nutrients 2019, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Tkacz, K.; Wojdyło, A.; Turkiewicz, I.P.; Bobak, Ł.; Nowicka, P. Anti-Oxidant and Anti-Enzymatic Activities of Sea Buckthorn (Hippophae rhamnoides L.) Fruits Modulated by Chemical Components. Antioxidants 2019, 8, 618. [Google Scholar] [CrossRef] [Green Version]
- Kyriakopoulou, K.; Pappa, A.; Krokida, M.; Detsi, A.; Kefalas, P. Effects of Drying and Extraction Methods on the Quality and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides) Berries and Leaves. Dry. Technol. 2013, 31, 1063–1076. [Google Scholar] [CrossRef]
- Radenkovs, V.; Püssa, T.; Juhnevica-Radenkova, K.; Anton, D.; Seglina, D. Phytochemical characterization and antimicrobial evaluation of young leaf/shoot and press cake extracts from Hippophae rhamnoides L. Food Biosci. 2018, 24, 56–66. [Google Scholar] [CrossRef]
- Lü, J.-M.; Lin, P.H.; Yao, Q.; Chen, C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010, 14, 840–860. [Google Scholar] [CrossRef]
- Upadhyay, N.K.; Yogendra Kumar, M.S.; Gupta, A. Antioxidant, cytoprotective and antibacterial effects of Sea buckthorn (Hippophae rhamnoides L.) leaves. Food Chem. Toxicol. 2010, 48, 3443–3448. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Errata for “Antimicrobial activity of flavonoids” [Int. J. Antimicrob. Agents 26 (2005) 343–356]. Int. J. Antimicrob. Agents 2006, 27, 181. [Google Scholar] [CrossRef]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simões, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013. [Google Scholar] [CrossRef]
- Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic Effect of Quercetin as an Antibiotic Alternative In Vivo and Its Antibacterial Mechanism In Vitro. J. Food Prot. 2018, 81, 68–78. [Google Scholar] [CrossRef]
- Richa Arora Antimicrobial activity of seed, pomace and leaf extracts of sea buckthorn (Hippophae rhamnoides L.) against foodborne and food spoilage pathogens. African J. Biotechnol. 2012, 11, 10424–10430.
- Negi, P.S.; Chauhan, A.S.; Sadia, G.A.; Rohinishree, Y.S.; Ramteke, R.S. Antioxidant and antibacterial activities of various seabuckthorn (Hippophae rhamnoides L.) seed extracts. Food Chem. 2005, 92, 119–124. [Google Scholar] [CrossRef]
- Jeong, J.H.; Lee, J.W.; Kim, K.S.; Kim, J.S.; Han, S.N.; Yu, C.Y.; Lee, J.K.; Kwon, Y.S.; Kim, M.J. Antioxidant and antimicrobial activities of extracts from a medicinal plant, sea buckthorn. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 33–38. [Google Scholar] [CrossRef]
- Bonta, V.; Marghitas, L.A.; Stanciu, O.; Laslo, L.; Dezmirean, D.; Bobis, O. High-performance liquid chromatographic analysis of sugars in Transylvanian honeydew honey. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca-Anim. Sci. Biotechnol. 2008, 65, 229–232. [Google Scholar]
- Fat (Crude) or Ether Extract in Animal Feed. In Official Methods of Analysis of AOAC International; Horwitz, W. (Ed.) AOAC International: Gaithersburg, MD, USA, 2000; Chapter 41; p. 53. [Google Scholar]
- Attard, E. A rapid microtitre plate Folin-Ciocalteu method for the assessment of polyphenols. Open Life Sci. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Mărghitaş, L.A.; Stanciu, O.G.; Dezmirean, D.S.; Bobiş, O.; Popescu, O.; Bogdanov, S.; Campos, M.G. In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania. Food Chem. 2009, 115, 878–883. [Google Scholar] [CrossRef]
- Breithaupt, D.E.; Bamedi, A. Carotenoid Esters in Vegetables and Fruits: A Screening with Emphasis on β-Cryptoxanthin Esters. J. Agric. Food Chem. 2001, 49, 2064–2070. [Google Scholar] [CrossRef]
- Giuffrida, D.; Pintea, A.; Dugo, P.; Torre, G.; Pop, R.M.; Mondello, L. Determination of Carotenoids and their Esters in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) by HPLC-DAD-APCI-MS. Phytochem. Anal. 2012, 23, 267–273. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Velázquez, E.; Tournier, H.; de Buschiazzo, P.M.; Saavedra, G.; Schinella, G. Antioxidant activity of Paraguayan plant extracts. Fitoterapia 2003, 74, 91–97. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggentge, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved Abts Radical. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Sample Availability: Samples of sea buckthorn are available from the authors. |
Variety | Fructose (%) | Glucose (%) | Sucrose (%) | Protein (%) | Fat (%) |
---|---|---|---|---|---|
Golden Abundant | 0.19 ± 0.12 b | 0.35 ± 0.14 a | nd | 0.79 ± 0.12 a | 4.86 ± 0.31 b |
SF6 | 1.10 ± 0.13 a | 0.46 ± 0.22 a | nd | 0.86 ± 0.18 a | 4.61 ± 0.29 b |
Carmen | 0.18 ± 0.25 b | 0.24 ± 0.15 a | 0.095 ± 0.11 | 0.72 ± 0.21 a | 5.71 ± 0.23 a |
Colosal | 0.18 ± 0.12 b | 0.17 ± 0.14 a | nd | 0.75 ± 0.11 a | 4.21 ± 0.35 b |
Sample | Total Polyphenols (mg GAE/g) | Flavonoids (mg Qe/g) | |
---|---|---|---|
Berries | Golden Abundant | 14.61± 0.41 c | 7.50 ± 0.13 b |
SF6 | 18.66 ± 0.13 a | 9.01 ± 0.23 a | |
Carmen | 10.93 ± 0.38 b | 7.32 ± 0.11 b | |
Colosal | 10.12 ± 0.26 b | 6.57 ± 0.13 c | |
Leaves | Golden Abundant | 48.12 ± 0.48 a | 33.58 ± 0.46 b |
SF6 | 41.60 ± 0.62 b | 36.58 ± 0.18 a | |
Carmen | 42.47 ± 0.53 b | 31.53 ± 0.63 b | |
Colosal | 42.10 ± 0.54 b | 32.59 ± 0.50 b |
LEAVES | ||||||
Compound (mg/100 g) | RT (min) | Max Absorption | GOLDEN ABUNDANT | SF6 | CARMEN | COLOSAL |
Gallic acid | 2.89 | 254 nm | 8.10 ± 0.41 a | 8.90 ± 0.36 a | 0.88 ± 0.45 b | 4.69 ± 0.28 c |
Chlorogenic acid | 6.80 | 326 nm | 3.79 ± 0.19 c | nd | 6.24 ± 0.22 a | 2.62 ± 0.11 b |
Caffeic acid | 7.00 | nd | 2.42 ± 0.16 | nd | nd | nd |
Trans p-cumaric acid | 10.02 | 326 nm | nd | nd | 7.32 ± 0.21 | nd |
ferulic acid | 10.75 | 326 nm | 1.37 ± 0.11 c | 3.50 ± 0.12 a | 0.22 ± 0.05 b | nd |
7-methoxycumarin | 13.03 | 337 nm | nd | 6.10 ± 0.21 c | 21.22 ± 0.65 a | 1.51 ± 0.13 b |
Quercetin-3-galactoside | 15.11 | 360 nm | 91.86 ± 0.87 a | 33.92 ± d | 80.75 ± 0.82 b | 28.37 ± 0.51 c |
Rutin | 15.88 | 360 nm | nd | 25.74 ± 0.25 a | 22.19 ± 0.18 b | 5.84 ± 0.11 c |
Myricetin | 17.37 | 360 nm | nd | 34.13 ± 0.34 a | 19.36 ± 0.21 b | nd |
Quercitrin | 17.70 | 360 nm | 732.8 ± 1.87 a | 592.8 ± 1.65 b | 330.4 ± 1.27 c | 151.5 ± 1.01 d |
Quercetin | 19.19 | 360 nm | nd | 8.69 ± 0.38 | nd | nd |
Luteolin | 21.26 | 360 nm | 1.73 ± 0.21 b | 2.53 ± 0.16 a | nd | nd |
Vitexin | 22.16 | 337 nm | nd | nd | 9.22 ± 0.11 | nd |
Kaempferol | 22.33 | 360 nm | nd | nd | 3.11 ± 0.18 a | 1.50 ± 0.10 b |
Total | 842.11 | 716.33 | 500.92 | 196.01 | ||
BERRIES | ||||||
Compound (mg/100 g) | RT (min) | Channel | GOLDEN ABUNDANT | SF6 | CARMEN | COLOSAL |
Gallic acid | 2.89 | 254 nm | 19.37 ± 0.46 a | 18.08 ± 0.28 a | 6.51 ± 0.12 b | 18.58 ± 0.29 a |
Trans p-cumaric acid | 10.01 | 326 nm | nd | nd | nd | 3.17 ± 0.21 |
Luteolin-7-glucoside | 14.06 | 360 nm | nd | nd | nd | 1.87 ± 0.09 |
Quercetin-3-galactoside | 15.11 | 360 nm | nd | 2.35 ± 0.12 b | 7.52 ± 0.24 a | nd |
Rutin | 15.89 | 360 nm | 13.95 ± 0.21 a | 11.66 ± 0.15 b | 3.31 ± 0.08 c | 14.34 ± 0.31 a |
Quercitrin | 17.71 | 360 nm | 2.95 ± 0.18 c | 2.73 ± 0.04 c | 7.70 ± 0.19 a | 4.48 ± 0.11 b |
Quercetin | 19.19 | 360 nm | 12.20 ± 0.12 a | 12.26 ± 0.34 a | nd | 10.64 ± 0.06 b |
Luteolin | 21.27 | 360 nm | 1.45 ± 0.11 b | 1.67 ± 0.15 b | nd | 4.01 ± 0.08 a |
Vitexin | 22.20 | 360 nm | nd | nd | 14.20 ± 0.24 | nd |
Kaempferol | 22.33 | 360 nm | 1.81 ± 0.08 a | 1.85 ± 0.11 a | 1.33 ± 0.14 a | 1.89 ± 0.02 a |
Total | 51.73 | 35.52 | 40.57 | 58.98 |
Compound | Peak | Max Absorption (nm) | RT (min) | GOLDEN ABUNDANT | SF6 | CARMEN | COLOSAL |
---|---|---|---|---|---|---|---|
mg/100 g | |||||||
Lutein | 1 | 9.2 | 421,445,474 | 1.74 ± 0.04 b | 1.02 ± 0.16 b | 4.74 ± 0.05 a | 0.45 ± 0.07 c |
Zeaxanthin | 2 | 10.3 | 424,449,476 | 16.69 ± 0.64 b | 7.62 ± 0.41 c | 27.78 ± 0.55 a | 4.05 ± 0332 d |
β-Cryptoxanthin | 3 | 38.32 | 425,449,476 | 1.05 ± 0.15 a,b | 0.72 ± 0.19 b,c | 1.16 ± 0.22 a | 0.16 ± 0.05 c |
cis-β-Carotene | 4 | 58.2 | 340,444,468 | 0.36 ± 0.08 a | 0.21 ± 0.16 a | 0.23 ± 0.02 a | 0.80 ± 0.20 a |
β-Carotene | 5 | 61.6 | 425,450,477 | 1.94 ± 0.42 a | 0.94 ± 0.36 b | 1.87 ± 0.33 a | 0.17 ± 0.13 b |
Total | 21.78 | 10.51 | 35.78 | 5.63 |
Sample | DPPH Method (mg Trolox equivalent/g) | TEAC Method (mg Trolox equivalent/g) | |
---|---|---|---|
Berries | Golden Abundant | 39.25 ± 0.41 b | 32.28 ± 2.35 c |
SF6 | 42.25 ± 0.23 a | 36.25 ± 3.24 a | |
Carmen | 36.61 ± 0.52 b | 24.46 ± 2.78 b | |
Colosal | 39.25 ± 0.35 b | 30.18 ± 2.36 c | |
Leaves | Golden Abundant | 138.72 ± 2.76 a | 125.25 ± 3.25 a |
SF6 | 129.59 ± 2.59 a,b | 106.28 ± 2.65 b | |
Carmen | 123.47 ± 1.73 a,c | 102.28 ± 2.56 b | |
Colosal | 133.10 ± 3.21 b,c | 120.58 ± 2.85 a |
MIC (mg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|
Berries | Leaves | |||||||
Microorganism | Golden Abundant | SF6 | Carmen | Colosal | Golden Abundant | SF6 | Carmen | Colosal |
S. aureus | 12.5 ± 1.20 c | 12.5 ± 1.64 c | 25.0 ± 1.86 a | 15.6 ± 1.54 b | 6.20 ± 0.54 b | 6.20 ± 0.54 b | 12.5 ± 1.03 c | 25.0 ± 1.44 a |
B. cereus | 25.0 ± 2.35 b | 25.0 ± 1.95 b | 25.0 ± 2.14 b | 31.2 ± 2.32 a | 12.5 ± 0.86 b | 12.5 ± 1.05 b | 12.5 ± 0.92 b | 25.0 ± 1.28 a |
P. aeruginosa | 12.5 ± 0.87 b | 12.5 ± 1.54 b | 12.5 ± 0.98 b | 15.6 ± 1.15 a | 6.20 ± 0.68 b | 6.20 ± 0.72 b | 6.20 ± 0.76 b | 12.5 ± 1.06 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Criste, A.; Urcan, A.C.; Bunea, A.; Pripon Furtuna, F.R.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties. Molecules 2020, 25, 1170. https://doi.org/10.3390/molecules25051170
Criste A, Urcan AC, Bunea A, Pripon Furtuna FR, Olah NK, Madden RH, Corcionivoschi N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties. Molecules. 2020; 25(5):1170. https://doi.org/10.3390/molecules25051170
Chicago/Turabian StyleCriste, Adriana, Adriana Cristina Urcan, Andrea Bunea, Flavia Roxana Pripon Furtuna, Neli Kinga Olah, Robert H. Madden, and Nicolae Corcionivoschi. 2020. "Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties" Molecules 25, no. 5: 1170. https://doi.org/10.3390/molecules25051170
APA StyleCriste, A., Urcan, A. C., Bunea, A., Pripon Furtuna, F. R., Olah, N. K., Madden, R. H., & Corcionivoschi, N. (2020). Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae Rhamnoides L.) Varieties. Molecules, 25(5), 1170. https://doi.org/10.3390/molecules25051170