Simplification of Natural β-Carboline Alkaloids to Obtain Indole Derivatives as Potent Fungicides against Rice Sheath Blight
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
2.2.1. In Vitro Fungicidal Activity against R. Solani
2.2.2. In Vivo Protective and Curative Effects against Rice Sheath Blight
2.2.3. Effect of 55 on the Hyphae Morphology of R. Solani
2.3. Preliminary Mechanism of Compound 55 against R. Solani
2.3.1. Effect of 55 on the Hyphae Morphology of R. Solani
2.3.2. Effect of 55 on the Endogenous ROS Production and Cell Membrane Permeability
2.3.3. Effect of 55 on the Mitochondrial Membrane Potential (MMP)
2.3.4. Effect of 55 on the Nuclear Morphology
3. Materials and Methods
3.1. Chemistry
3.2. Biological Assay
3.2.1. In Vitro and in Vivo Fungicidal Activity against R. Solani
3.2.2. Inhibition of Compound 55 on the Sclerotia Formation and Germination of R. Solani
3.3. Morphology Observation of R. Solani Hyphae
3.4. Reactive Oxygen Species (ROS) Generation
3.5. Mitochondrial Membrane Potential (MMP)
3.6. Karyological Analysis
3.7. Detection of Cell Membrane Permeability
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Groth, D.E. Azoxystrobin rate and timing effects on rice sheath blight incidence and severity and rice grain and milling yields. Plant Dis. 2005, 89, 1171–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, F.N.; Rush, M.C. Rice sheath blight: A major rice disease. Plant Dis. 1983, 67, 829–832. [Google Scholar] [CrossRef]
- Marchetti, M.A. Potential impact of sheath blight on yield and milling quality of short-statured rice lines in the Southern United States. Plant Dis. 1983, 67, 162–165. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhang, Y.; Wang, C.; Liu, S.; Liao, X. Effects and inhibition mechanism of phenazine-1-carboxamide on the mycelial morphology and ultrastructure of Rhizoctonia solani. Pestic. Biochem. Phys. 2018, 147, 32–39. [Google Scholar] [CrossRef]
- Boukaew, S.; Klinmanee, C.; Prasertsan, P. Potential for the integration of biological and chemical control of sheath blight disease caused by Rhizoctonia solani on rice. World J. Microb. Biot. 2013, 29, 1885–1893. [Google Scholar] [CrossRef] [PubMed]
- Mew, T.W. Applying rice seed-associated antagonistic bacteria to manage rice sheath blight in developing countries. Plant Dis. 2004, 88, 557–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.Q.; Liu, Y.H.; Ma, X.Y.; Feng, Z.; Ma, Z.H. Characterization of sensitivity of Rhizoctonia solani, causing rice sheath blight, to mepronil and boscalid. Crop Prot. 2009, 28, 381–386. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [Green Version]
- Rosell, G.; Quero, C.; Coll, J.; Guerrero, A. Biorational insecticides in pest management. J. Pestic. Sci. 2008, 33, 103–121. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, S. Function-Oriented Synthesis: How to design simplified analogues of antibacterial nucleoside natural products? Chem. Rec. 2016, 16, 1106–1115. [Google Scholar] [CrossRef]
- Kartal, M.; Altun, M.L.; Kurucu, S. HPLC method for the analysis of harmol, harmalol, harmine and harmaline in the seeds of Peganum harmala L. J. Pharmaceut. Biomed. 2003, 31, 263–269. [Google Scholar] [CrossRef]
- Song, H.; Liu, Y.; Liu, Y.; Wang, L.; Wang, Q. Synthesis and antiviral and fungicidal activity evaluation of β-carboline, dihydro-β-carboline, tetrahydro-β-carboline alkaloids, and their derivatives. J. Agric. Food Chem. 2014, 62, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.B.; Chen, S.H.; Zhu, S.W.; Luo, J.J.; Zhang, Y.M.; Weng, Q.F. Synthesis and fungicidal activity of β-carboline alkaloids and their derivatives. Molecules 2015, 20, 13941–13957. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Mubarak, M.S.; Amin, S. Antifungal potential of alkaloids as an emerging therapeutic target. Curr. Drug Targets 2017, 18, 1825–1835. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Zeng, Y.; Jiang, Z.Y.; Shu, B.S.; Sethuraman, V.; Zhong, G.H. Design, synthesis, fungicidal property and QSAR studies of novel β-carbolines containing urea, benzoylthiourea and benzoylurea for the control of rice sheath blight. Pest Manag. Sci. 2018, 74, 1736–1746. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Jiang, Z.Y.; Zhu, Q.; Zhong, G.H. Discovery of β-carboline oxadiazole derivatives as fungicidal agents against rice sheath blight. J. Agric. Food Chem. 2018, 66, 9598–9607. [Google Scholar] [CrossRef]
- Xi, J.M.; Zhang, Z.J.; Zhu, Q.; Zhong, G.H. Evolution from natural β-carboline alkaloids to obtain 1,2,4,9-tetrahydro-3-thia-9-aza-fluorene derivatives as potent fungicidal agents against Rhizoctonia solani. Int. J. Mol. Sci. 2018, 19, 4044. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.P.; Singh, O.M. Recent progress in biological activities of indole and indole alkaloids. Mini-Rev. Med. Chem. 2018, 18, 9–25. [Google Scholar] [CrossRef]
- Mistry, S.N.; Shonberg, J.; Draperjoyce, C.J.; Klein, H.C.; Michino, M.; Shi, L.; Christopoulos, A.; Capuano, B.; Scammells, P.J.; Lane, J.R. Discovery of a novel class of negative allosteric modulator of the dopamine D2 receptor through fragmentation of a bitopic ligand. J. Med. Chem. 2015, 58, 6819–6843. [Google Scholar] [CrossRef]
- Jiang, H.; Zhuang, D.M.; Huang, Y.; Cao, X.; Yao, J.; Li, J.; Wang, J.Y.; Zhang, C.; Jiang, B. Design, synthesis, and biological evaluation of novel trifluoromethyl indole derivatives as potent HIV-1 NNRTIs with an improved drug resistance profile. Org. Biomol. Chem. 2014, 12, 3446–3458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.J.; Zhang, J.J.; Jiang, Z.Y.; Zhong, G.H. Design, synthesis and bioactivity evaluation of novel β-carboline 1,3,4-oxadiazole derivatives. Molecules 2017, 22, 1811. [Google Scholar] [CrossRef] [Green Version]
- Tomakinian, T.; Guillot, R.; Kouklovsky, C.; Vincent, G. Direct oxidative coupling of N-acetyl indoles and phenols for the synthesis of benzofuroindolines related to phalarine. Angew Chem. Int. Edit. 2014, 53, 11881–11885. [Google Scholar] [CrossRef] [PubMed]
- Kirchberg, S.; Fröhlich, R.; Studer, A. Stereoselective palladium-catalyzed carboaminoxylations of indoles with arylboronic acids and TEMPO. Angew Chem. Int. Edit. 2009, 48, 4235–4238. [Google Scholar] [CrossRef] [PubMed]
- Batcho, A.D.; Leimgruber, W. Indoles from 2-methylnitrobenzenes by condensation with formamide acetals followed by reduction: 4-benzyloxyindole. Org. Synth. 1985, 63, 214. [Google Scholar] [CrossRef]
- Pennington, L.D.; Moustakas, D.T. The necessary nitrogen atom: A versatile high-impact design element for multiparameter optimization. J. Med. Chem. 2017, 60, 3552–3579. [Google Scholar] [CrossRef]
- Hwang, J.H.; Hwang, I.S.; Liu, Q.H.; Woo, E.R.; Lee, D.G. (+)-Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans. Biochimie 2012, 94, 1784–1793. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 11–87 are available from the authors. |
Compound | R | Percentage Inhibition (%) | EC50 (95%CI c) (μg/mL) | |
---|---|---|---|---|
50 μg/mL | 10 μg/mL | |||
Indole (7) | H | 87.68 ± 1.26 | 26.33 ± 3.64 | 25.56 (23.61–27.66) |
8 | CH3 | 28.65 ± 1.69 | 12.47 ± 2.21 | - d |
9 | Ph | 25.45 ± 5.45 | 10.67 ± 1.79 | - |
10 | COOCH3 | 26.04 ± 1.54 | 9.35 ± 1.33 | - |
11 | cyclopropyl | 29.21 ± 1.63 | 22.47 ± 2.33 | 58.35 (48.45–70.55) |
12 | morpholine | 32.79 ± 3.36 | 2.15 ± 2.46 | 92.19 (78.24–114.69) |
13 | 20.97 ± 3.22 | 0.00 | - | |
14 | 4-Cl-Ph | 51.35 ± 3.57 | 40.22 ± 0.48 | 52.84 (39.46–70.83) |
15 | Me | 55.81 ± 0.74 | 36.08 ± 2.68 | 51.96 (39.78–65.79) |
16 | Et | 57.53 ± 3.64 | 35.01 ± 0.91 | 53.20 (39.11–68.64) |
17 b | iPr | 56.88 ± 0.91 | 32.43 ± 2.73 | 53.43 (43.14–65.59) |
18 | nBu | 44.23 ± 1.97 | 36.51 ± 1.97 | 77.79 (55.81–128.22) |
19 | - | 54.05 ± 1.35 | 20.27 ± 1.35 | 60.22 (51.18–71.11) |
20 | Ac | 56.18 ± 1.79 | 24.94 ± 1.79 | |
21 | 71.75 ± 4.26 | 27.38 ± 2.73 | 40.74 (26.89–54.89) | |
indole-3-carboxylic acid (22) | 20.18 ± 1.79 | 15.95 ± 1.79 | - | |
indole-3-carbinol (23) | 30.67 ± 1.79 | 10.45 ± 1.79 | - | |
indole-3-acetic acid (24) | 44.94 ± 1.79 | 2.25 ± 1.79 | - | |
L-tryptophan (25) | 33.71 ± 1.79 | 22.47 ± 1.79 | - | |
Gramine (26) | 0.00 | 0.00 | - | |
validamycin A | 36.68 ± 1.09 | 18.91 ± 0.49 | 183.00 (162.62–210.66) |
Compound | R | Percentage Inhibition (%) | EC50 (95%CI c) (μg/mL) | |
---|---|---|---|---|
50 μg/mL | 10 μg/mL | |||
27 | 90.84 ± 8.54 | 5.57 ± 2.44 | 32.82 (29.22–36.55) | |
28 b | 73.24 ± 4.39 | 40.66 ± 1.74 | 24.07 (20.57–27.78) | |
29 | Me | 89.54 ± 2.47 | 34.44 ± 3.69 | 21.94 (19.86–24.11) |
30 | Et | 93.55 ± 0.00 | 27.42 ± 1.61 | 22.97 (21.11–24.95) |
31 | nPr | 88.09 ± 1.03 | 33.33 ± 5.45 | 28.25 (13.28–40.70) |
32 | nBu | 84.52 ± 1.03 | 41.07 ± 1.78 | 21.39 (12.27–29.28) |
33 | n-pentyl | 72.60 ± 1.29 | 42.26 ± 1.03 | 31.25 (16.38–44.19) |
34 b | n-hexyl | 63.98 ± 0.93 | 32.26 ± 4.84 | 45.71 (34.83–57.55) |
35 | cyclopropyl | 87.63 ± 1.86 | 55.38 ± 1.86 | 17.47 (9.85–24.93) |
36 b | cyclobutyl | 76.88 ± 0.93 | 34.95 ± 2.46 | 29.93 (21.62–37.83) |
37 b | cyclopentyl | 76.19 ± 2.73 | 29.38 ± 1.96 | 35.21 (24.04–46.05) |
38 | cyclohexyl | 71.75 ± 0.98 | 41.24 ± 5.1 | 28.25 (13.28–40.70) |
39 | Ph | 79.74 ± 4.08 | 57.43 ± 1.95 | 8.80 (2.29–14.39) |
40 | 2-F-Ph | 87.20 ± 1.01 | 66.26 ± 1.01 | 3.53 (0.91–8.54) |
41 | 2-Cl-Ph | 81.38 ± 1.01 | 71.90 ± 2.55 | 2.15 (0.54–6.01) |
42 | 2-Br-Ph | 79.06 ± 1.74 | 69.77 ± 0.74 | 2.74 (0.51–7.79) |
43 b | 2-CF3-Ph | 74.15 ± 1.10 | 64.74 ± 0.84 | 9.25 (4.65–14.06) |
44 | 3-CF3-Ph | 71.05 ± 0.93 | 51.61 ± 1.61 | 17.81 (2.34–29.25) |
45 | 4-CF3-Ph | 40.68 ± 1.69 | 34.74 ± 1.20 | 85.40 (65.26–127.37) |
46 b | 4-OCF3-Ph | 38.42 ± 3.53 | 26.19 ± 1.03 | 89.06 (77.04–106.52) |
47 | 69.17 ± 2.66 | 52.30 ± 1.01 | 17.70 (7.67–26.35) | |
48 | Me | 100.00 | 75.22 ± 0.78 | 4.12 (2.01–5.28) |
49 | Et | 79.73 ± 1.35 | 53.60 ± 4.74 | 12.68 (7.37–17.31) |
50 | iPr | 80.18 ± 1.56 | 59.01 ± 4.34 | 6.87 (1.00–13.49) |
51 | tBu | 80.80 ± 1.74 | 58.11 ± 1.74 | 17.87 (2.75–31.36) |
52 | 30.11 ± 1.86 | 24.73 ± 1.86 | 129.48 (91.93–278.45) |
Compound | R | Percentage Inhibition (%) | EC50 (95%CI b) (μg/mL) | |
---|---|---|---|---|
50 μg/mL | 10 μg/mL | |||
53 | 4-CH3 | 100 | 76.80±3.15 | 4.99 (4.46–5.50) |
54 | 4-OCH3 | 87.23 ± 2.21 | 50.56 ± 1.33 | 25.30 (16.51–35.74) |
55 | 4-F | 100 | 100 | 0.62 (0.53–0.69) |
56 | 4-Cl | 100 | 100 | 1.25 (0.97–1.51) |
57 | 4-Br | 100 | 58.65 ± 1.93 | 7.96 (6.99–9.07) |
58 | 4-NO2 | 100 | 18.99 ± 2.33 | 16.13 (4.45–30.55) |
59 | 4-CN | 93.26 ± 1.37 | 6.32 ± 1.71 | 45.50 (26.42–81.96) |
60 | 4-CF3 | 100 | 8.86 ± 0.89 | 38.58 (25.45–51.97) |
61 | 4-COOH | 34.83 ± 1.21 | 6.32 ± 1.01 | 66.89 (38.42–94.17) |
62 | 4-COOCH3 | 64.05 ± 6.38 | 0.00 | 46.76 (21.08–79.48) |
63 | 5-CH3 | 100 | 37.44 ± 3.67 | 11.83 (10.84–13.40) |
64 | 5-OCH3 | 54.90 ± 4.88 | 0.00 | 48.10 (44.97–51.55) |
65 | 5-F | 1.15 ± 0.00 | 0.00 | - c |
66 | 5-Cl | 100 | 59.17 ± 8.07 | 7.25 (5.92–8.48) |
67 | 5-Br | 100 | 49.86 ± 0.72 | 7.94 (6.34–9.50) |
68 | 5-NO2 | 97.37 ± 4.55 | 10.22 ± 2.19 | 26.78 (23.47–30.66) |
69 | 5-OH | 0.00 | 0.00 | - |
70 | 5-NH2 | 0.00 | 0.00 | - |
71 | 5-COOH | 33.05 ± 8.00 | 0.00 | 61.92 (52.62–79.08) |
72 | 5-CHO | 59.13 ± 3.23 | 0.00 | 45.37 (41.26–50.23) |
73 | 5-CN | 73.97 ± 1.09 | 1.15 ± 0.00 | 40.72 (38.75–42.68) |
74 | 5-Ac | 9.09 ± 3.66 | 0.00 | - |
75 | 5-OBz | 42.92 ± 3.66 | 0.00 | 53.03 (50.55–56.02) |
76 | 6-OCH3 | 47.64 ± 3.38 | 34.83 ± 1.47 | - |
77 | 6-Cl | 100 | 32.35 ± 2.11 | 12.36 (11.35–13.98) |
78 | 7-OCH3 | 84.25 ± 0.74 | 46.07 ± 0.61 | 28.03 (19.85–37.56) |
79 | 7-Cl | 100 | 53.49 ± 4.61 | 9.71 (9.11–10.47) |
Compound | R | Percentage Inhibition (%) | EC50 (95%CI c) (μg/mL) | |
---|---|---|---|---|
50 μg/mL | 10 μg/mL | |||
80 b | 80.00 ± 1.21 | 40.45 ± 0.72 | 25.32 (13.57–40.45) | |
81 | 83.15 ± 3.66 | 53.93 ± 1.97 | 9.21 (1.57–21.02) | |
82 b | 78.65 ± 0.38 | 49.44 ± 1.09 | 19.31 (4.96–32.77) | |
83 b | 56.18 ± 1.69 | 22.47 ± 1.79 | 48.63 (40.42–57.72) | |
84 b | 71.91 ± 3.27 | 44.94 ± 1.33 | 29.52 (11.04–59.41) | |
85 b | 4-F | 72.03 ± 2.10 | 63.32 ± 0.79 | 2.36 (0.23–8.25) |
86 b | 4-Cl | 69.28 ± 0.79 | 61.48 ± 0.00 | 9.01 (2.85–19.81) |
87 b | 5-Cl | 70.04 ± 0.73 | 65.82 ± 0.00 | 5.31 (3.08–13.34) |
Treatment | Concentration (μg/mL) | Lesion Length a (cm ± SE) | Control Efficacy (%) |
---|---|---|---|
55 | 200 | 0 ** | 100 |
100 | 0 ** | 100 | |
50 | 0 ** | 100 | |
56 | 200 | 0 ** | 100 |
100 | 0 ** | 100 | |
50 | 1.65 ± 1.20 ** | 79.50 | |
66 | 200 | 0 ** | 100 |
100 | 0 ** | 100 | |
50 | 0.43 ± 0.34 ** | 94.66 | |
85 | 200 | 0 ** | 100 |
100 | 0.11 ± 0.12 ** | 98.63 | |
50 | 1.07 ± 0.67 ** | 86.71 | |
86 | 200 | 0.72 ± 0.49 ** | 91.05 |
100 | 1.80 ± 0.84 ** | 77.64 | |
50 | 2.41 ± 0.89 ** | 70.19 | |
87 | 200 | 0.15 ± 0.23 ** | 98.14 |
100 | 0.55 ± 0.35 ** | 93.17 | |
50 | 1.17 ± 0.91 ** | 87.95 | |
validamycin A | 200 | 0 ** | 100 |
100 | 0 ** | 100 | |
50 | 0 ** | 100 | |
control | 0 | 8.05 ± 1.01 |
Treatment | Conc. (μg/mL) | Protective Effect | Curative Effect | ||
---|---|---|---|---|---|
Lesion Length a (cm ± SE) | Control Efficacy (%) | Lesion Length (cm ± SE) | Control Efficacy (%) | ||
55 | 200 | 0.97 ± 0.31 ** | 79.23 | 0.51 ± 0.36 ** | 89.08 |
100 | 1.21 ± 0.70 ** | 74.09 | 1.07 ± 0.46 ** | 77.09 | |
56 | 200 | 1.05 ± 0.41 ** | 77.52 | 0.98 ± 0.40 ** | 79.01 |
66 | 200 | 1.01 ± 0.68 ** | 78.37 | 1.15 ± 0.36 ** | 75.37 |
100 | 1.51 ± 0.61 ** | 67.66 | 1.48 ± 0.42 ** | 68.31 | |
85 | 200 | 1.39 ± 0.71 ** | 70.23 | 1.95 ± 0.35 ** | 58.24 |
100 | 2.06 ± 0.56 ** | 55.89 | 3.62 ± 0.50 ** | 22.48 | |
validamycin A | 200 | 0.99 ± 0.43 ** | 78.80 | 1.13 ± 0.51 ** | 75.80 |
100 | 1.60 ± 0.60 ** | 65.74 | 1.52 ± 0.64 ** | 67.45 | |
control | 0 | 4.67 ± 0.97 | 4.67 ± 0.97 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, J.; Zhang, Z.; Zhu, Q.; Jiang, Z.; Zhong, G. Simplification of Natural β-Carboline Alkaloids to Obtain Indole Derivatives as Potent Fungicides against Rice Sheath Blight. Molecules 2020, 25, 1189. https://doi.org/10.3390/molecules25051189
Zeng J, Zhang Z, Zhu Q, Jiang Z, Zhong G. Simplification of Natural β-Carboline Alkaloids to Obtain Indole Derivatives as Potent Fungicides against Rice Sheath Blight. Molecules. 2020; 25(5):1189. https://doi.org/10.3390/molecules25051189
Chicago/Turabian StyleZeng, Jie, Zhijun Zhang, Qi Zhu, Zhiyan Jiang, and Guohua Zhong. 2020. "Simplification of Natural β-Carboline Alkaloids to Obtain Indole Derivatives as Potent Fungicides against Rice Sheath Blight" Molecules 25, no. 5: 1189. https://doi.org/10.3390/molecules25051189
APA StyleZeng, J., Zhang, Z., Zhu, Q., Jiang, Z., & Zhong, G. (2020). Simplification of Natural β-Carboline Alkaloids to Obtain Indole Derivatives as Potent Fungicides against Rice Sheath Blight. Molecules, 25(5), 1189. https://doi.org/10.3390/molecules25051189