Antioxidant Content of Frozen, Convective Air-Dried, Freeze-Dried, and Swell-Dried Chokecherries (Prunus virginiana L.)
Abstract
:1. Introduction
2. Results
2.1. Proximal Analysis
2.2. Bioactive Compounds Quantification
2.3. Total Phenolics Content
2.4. Total Flavonoids Content
2.5. Kuromanin Concentration
2.6. Antioxidant Activity
2.7. Antiradical Activity by DPPH (ARA)
2.8. Trolox Equivalent Antioxidant Capacity (TEAC)
3. Discussion
3.1. Proximal Analysis
3.2. Bioactive Compounds Quantification
3.3. Antioxidant Activity
4. Materials and Methods
4.1. Materials
4.1.1. Biological Material
4.1.2. Reagents and Solvents
4.2. Methods
4.2.1. Drying Procedures
Freeze Drying (FD)
Convective Airflow Drying (CAD)
Swell Drying (SD)
4.2.2. Proximal Analysis
4.2.3. Bioactive Compounds Quantification
Methanolic Extracts Preparation
Total Phenolics Content
Total Flavonoids Content
Anthocyanins Content by HPLC
Antiradical Activity by DPPH (ARA)
Trolox Equivalent Antioxidant Capacity (TEAC)
4.2.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blando, F.; Gerardi, C.; Nicoletti, I. Sour cherry (prunus cerasus l) anthocyanins as ingredients for functional foods. J. Biomed. Biotechnol. 2004, 2004, 253–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudonné, S.; Dubé, P.; Anhê, F.F.; Pilon, G.; Marette, A.; Lemire, M.; Harris, C.; Dewailly, E.; Desjardins, Y. Comprehensive analysis of phenolic compounds and abscisic acid profiles of twelve native canadian berries. J. Food Compos. Anal. 2015, 44, 214–224. [Google Scholar] [CrossRef]
- Li, W.; Hosseinian, F.; Hydamaka, A.; Lowry, L.; Beta, T. The potential of manitoba chokecherry as a source of high natural antioxidants. Nat. Preced. 2008. [Google Scholar] [CrossRef]
- NRCS, U. Plant Fact Sheet: Chokecherry (Prunus Virginiana L.); USDA Natural Resources Conservation Service: Manhattan, KS, USA, 2019. [Google Scholar]
- Green, R.C.; Low, N.H. Physicochemical composition of buffaloberry (shepherdia argentea), chokecherry (prunus virginiana) and sea buckthorn (hippophae rhamnoides) fruit harvested in saskatchewan, canada. Can. J. Plant Sci. 2013, 93, 1111, 1143–1153. [Google Scholar] [CrossRef] [Green Version]
- Aladedunye, F.; Przybylski, R.; Niehaus, K.; Bednarz, H.; Matthäus, B. Phenolic extracts from crataegus × mordenensis and prunus virginiana: Composition, antioxidant activity and performance in sunflower oil. LWT-Food Sci. Technol. 2014, 59, 308–319. [Google Scholar] [CrossRef]
- Acuña, U.M.; Atha, D.E.; Ma, J.; Nee, M.H.; Kennelly, E.J. Antioxidant capacities of ten edible north american plants. Phytother. Res. 2002, 16, 63–65. [Google Scholar] [CrossRef]
- Doyle, J.R.; Blais, J.M.; White, P.A. A survey of the traditional food consumption that may contribute to enhanced soil ingestion in a canadian first nation community. Sci. Total Environ. 2012, 424, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Fang, J. Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 2015, 31, 1301–1306. [Google Scholar] [CrossRef]
- Forni, E.; Polesello, A.; Torreggiani, D. Changes in anthocyanins in cherries (prunus avium) during osmodehydration, pasteurization and storage. Food Chem. 1993, 48, 295–299. [Google Scholar] [CrossRef]
- Allaf, T.; Allaf, K. Instant Controlled Pressure Drop (d.I.C.) in Food Processing: From Fundamental to Industrial Applications; Springer New York: New York, NY, USA, 2013. [Google Scholar]
- Barbosa-Cánovas, G.; Altunakar, B.; Mejía-Lorío, D.J. Freezing of Fruits and Vegetables: An Agribusiness Alternative for Rural and Semi-Rural Areas; FAO Agricultural Services Bulletin; FAO: Rome, Italy, 2005. [Google Scholar]
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Walters, R.H.; Bhatnagar, B.; Tchessalov, S.; Izutsu, K.-I.; Tsumoto, K.; Ohtake, S. Next generation drying technologies for pharmaceutical applications. J. Pharm. Sci. 2014, 103, 2673–2695. [Google Scholar] [CrossRef] [PubMed]
- Mounir, S.; Téllez-Pérez, C.; Alonzo-Macías, M.; Allaf, K. Swell-drying. In Instant Controlled Pressure Drop (d.I.C.) in Food Processing; Allaf, T., Allaf, K., Eds.; Springer New York: New York, NY, USA, 2014; pp. 3–43. [Google Scholar]
- AOAC. Official Methods of Analysis of Aoac (Association of Official Analytical Chemists) International (cd-rom), 16th ed.; AOAC International: Gaithersburg, MD, USA, 1996. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M.; Lester, P. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Oomah, B.D.; Cardador-Martínez, A.; Loarca-Piña, G. Phenolics and antioxidative activities in common beans (phaseolus vulgaris l). J. Sci. Food Agric. 2005, 85, 935–942. [Google Scholar] [CrossRef]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef]
- Fukumoto, L.R.; Mazza, G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 2000, 48, 3597–3604. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved abts radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- Santarelli, V.; Neri, L.; Sacchetti, G.; Di Mattia, C.D.; Mastrocola, D.; Pittia, P. Response of organic and conventional apples to freezing and freezing pre-treatments: Focus on polyphenols content and antioxidant activity. Food Chem. 2020, 308, 125570. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdyło, A.; Lech, K. The influence of different the drying methods on chemical composition and antioxidant activity in chokeberries. LWT-Food Sci. Technol. 2016, 66, 484–489. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R. Optimization of a new mobile phase to know the complex and real polyphenolic composition: Towards a total phenolic index using high-performance liquid chromatography. J. Chromatogr. A 2003, 1018, 29–40. [Google Scholar] [CrossRef]
- Mounir, S.; Besombes, C.; Albitar, N.; Allaf, K. Study of instant controlled pressure drop dic treatment in manufacturing snack and expanded granule powder of apple and onion. Dry. Technol. 2011, 29, 331–341. [Google Scholar] [CrossRef]
- Alonzo-Macías, M.; Cardador-Martínez, A.; Mounir, S.; Montejano-Gaitán, G.; Allaf, K. Comparative study of the effects of drying methods on antioxidant activity of dried strawberry (fragaria var. Camarosa). J. Food Res. 2013, 2, 92–107. [Google Scholar]
- Téllez-Pérez, C.; Cardador-Martínez, A.; Mounir, S.; Montejano-Gaitán, J.G.; Sobolik, V.; Allaf, K. Effect of instant controlled pressure drop process coupled to drying and freezing on antioxidant activity of green “poblano” pepper (capsicum annuum l.). Food Nutr. Sci. 2013, 4, 321–334. [Google Scholar]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
- Ou, B.; Bosak, K.N.; Brickner, P.R.; Iezzoni, D.G.; Seymour, E.M. Processed tart cherry products—comparative phytochemical content, in vitro antioxidant capacity and in vitro anti-inflammatory activity. J. Food Sci. 2012, 77, H105–H112. [Google Scholar] [CrossRef]
- Giovanelli, G.; Brambilla, A.; Sinelli, N. Effects of osmo-air dehydration treatments on chemical, antioxidant and morphological characteristics of blueberries. LWT-Food Sci. Technol. 2013, 54, 577–584. [Google Scholar] [CrossRef]
- Šumić, Z.; Tepić, A.; Vidović, S.; Jokić, S.; Malbaša, R. Optimization of frozen sour cherries vacuum drying process. Food Chem. 2013, 136, 55–63. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 2005, 93, 713–718. [Google Scholar] [CrossRef]
Sample Availability: Samples of chokecherries are available from the authors and at the FIAVHI facilities. |
Treatment | Water Content 1 | TPC 2 | TFC 3 |
---|---|---|---|
FR | 83.34 ± 2.09 | 72.81 ± 4.52 a | 7.02 ± 0.40 b,c,d |
FD | 14.83 ± 0.51 | 51.32 ± 2.65 f,g | 7.19 ± 0.34 b,c |
CAD | 11.47 ± 2.47 | 50.29 ± 4.19 f,g | 6.10 ± 0.63 f,g |
SD1 | 12.95 ± 0.20 | 65.57 ± 5.46 b | 6.65 ± 0.33 d,e,f |
SD2 | 12.04 ± 0.81 | 52.29 ± 2.44 e,f | 6.66 ± 0.30 d,e,f |
SD3 | 13.43 ± 2.10 | 57.80 ± 4.07 d,e | 7.16 ± 0.18 b,c |
SD4 | 13.79 ± 0.20 | 63.43 ± 6.53 b,c | 6.86 ± 0.24 c,d,e |
SD5 | 12.44 ± 0.88 | 45.63 ± 3.75 g,h | 7.26 ± 0.32 b |
SD6 | 12.38 ± 0.19 | 52.30 ± 3.82 e,f | 6.68 ± 0.17 d,e |
SD7 | 13.07 ± 1.69 | 53.54 ± 3.02 d,e,f | 6.90 ± 0.23 b,c,d |
SD8 | 12.46 ± 2.14 | 57.37 ± 3.51 d,e | 6.87 ± 0.64 c,d,e |
SD9 | 12.12 ± 1.63 | 43.53 ± 3.13 h | 7.81 ± 0.32 a |
SD10 | 14.20 ± 0.33 | 58.33 ± 11.70 c,d | 6.81 ± 0.06 d,e |
SD11 | 12.47 ± 2.07 | 48.41 ± 4.23 g | 5.88 ± 0.31 h |
SD12 | 10.35 ± 2.47 | 55.41 ± 4.88 d,e,f | 6.29 ± 0.21 f,g |
SD13 | 13.81 ± 0.86 | 53.85 ± 2.16 d,e,f | 6.60 ± 0.22 e,f |
Peak 1 | Peak 2 | Peak 3 | Peak 4 | Peak 5 | Peak 6 | KC | |
---|---|---|---|---|---|---|---|
FR | 66.04 ± 3.02 | 30.53 ± 1.35 | 39.92 ± 1.02 | 758.06 ± 21.39 a | |||
FD | 375.35 ± 3.66 | 250.84 ± 2.58 | 115.85 ± 5.42 | 29.62 ± 2.64 | 517.82 ± 5.24 | 494.47 ± 9.76 | 640.24 ± 35.99 b |
CAD | 204.76 ± 2.11 | 153.09 ± 76.4 | 119.68 ± 26.80 | 53.32 ± 8.81 | 492.64 ± 34.80 | 682.42 ± 105 | 107.99 ± 1.61 j |
SD1 | 103.25 ± 5.97 | 10.10 ± 1.16 | 11.77 ± 1.69 | 55.01 ± 2.32 | 60.85 ± 2.55 | 485.31 ± 112.21 c,d,e | |
SD2 | 85.52 ± 1.38 | 31.92 ± 0.23 | 37.59 ± 2.16 | 350.26 ± 90.91 | |||
SD3 | 120.22 ± 4.92 | 8.41 ± 0.52 | 10.96 ± 0.17 | 51.24 ± 1.25 | 51.92 ± 3.40 | 472.01 ± 82.48 d,e,f | |
SD4 | 102.45 ± 3.07 | 5.80 ± 1.28 | 8.21 ± 0.57 | 45.55 ± 2.24 | 46.61 ± 3.92 | 451.96 ± 80.18 d,e,f | |
SD5 | 80.91 ± 5.35 | 27.97 ± 0.99 | 30.04 ± 2.36 | 305.51 ± 65.89 h,i | |||
SD6 | 71.82 ± 1.50 | 17.03 ± 1.73 | 10.25 ± 7.26 | 260.69 ± 53.70 i | |||
SD7 | 98.46 ± 4.07 | 4.68 ± 1.10 | 7.16 ± 0.74 | 44.02 ± 1.83 | 45.98 ± 1.82 | 364.55 ± 42.29 g,h | |
SD8 | 109.28 ± 5.11 | 8.93 ± 0.60 | 11.14 ± 1.07 | 53.86 ± 1.39 | 58.75 ± 1.48 | 515.83 ± 75.24 c,d | |
SD9 | 99.48 ± 4.38 | 6.77 ± 1.38 | 8.97 ± 1.94 | 47.89 ± 3.32 | 54.55 ± 4.00 | 558.39 ± 29.59 c | |
SD10 | 104.95 ± 7.72 | 7.84 ± 0.74 | 11.69 ± 0.36 | 51.80 ± 1.67 | 58.67 ± 2.51 | 406.91 ± 50.94 f,g | |
SD11 | 98.65 ± 4.43 | 8.43 ± 0.65 | 10.75 ± 0.59 | 52.30 ± 1.13 | 60.80 ± 3.89 | 404.13 ± 95.59 f,g | |
SD12 | 81.96 ± 5.53 | 1.18 ± 0.84 | 5.35 ± 0.89 | 38.80 ± 1.94 | 45.91 ± 1.95 | 421.65 ± 59.58 e,f,g | |
SD13 | 86.17 ± 5.33 | 2.79 ± 0.29 | 7.69 ± 1.13 | 42.51 ± 1.73 | 50.85 ± 4.32 | 417.52 65.52 e,f,g |
Treatment | ARA (% of DPPH Discoloration) | TEAC (µM eq. of Trolox) |
---|---|---|
FR | 61.38 ± 0.46 a | 436.26 ± 8.34 c,d |
FD | 49.18 ± 1.57 d | 450.55 ± 12.40 b,c |
CAD | 33.97 ± 0.77 g | 111.30 ± 22.74 h |
SD 1 | 62.89 ± 2.88 a | 472.68 ± 5.01 a |
SD 2 | 52.80 ± 1.35 c | 427.66 ± 5.36 d |
SD 3 | 56.24 ± 3.56 b | 430.57 ± 4.44 d |
SD 4 | 54.34 ± 6.09 b,c | 410.47 ± 14.52 e |
SD 5 | 48.65 ± 1.68 d | 340.17 ± 21.90 g |
SD 6 | 51.96 ± 0.85 c | 362.80 ± 3.82 f |
SD 7 | 52.93 ± 1.31 c | 461.30 ± 19.90 a,b |
SD 8 | 48.62 ± 0.45 d | 421.22 ± 2.93 d,e |
SD 9 | 40.64 ± 2.01 f | 376.08 ± 17.82 f |
SD 10 | 42.77 ± 1.38 e,f | 366.84 ± 7.03 f |
SD 11 | 42.68 ± 3.77 e,f | 326.00 ± 22.86 g |
SD 12 | 45.22 ± 0.89 e | 373.93 ± 19.90 f |
SD 13 | 41.89 ± 0.73 f | 325.25 ± 9.99 g |
DIC | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Run | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Pressure, P (MPa) | 0.35 | 0.46 | 0.35 | 0.35 | 0.43 | 0.43 | 0.35 | 0.27 | 0.27 | 0.35 | 0.24 | 0.35 | 0.35 |
Time, t (s) | 16 | 16 | 22 | 16 | 20 | 12 | 16 | 12 | 20 | 16 | 16 | 10 | 16 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Téllez-Pérez, C.; Cardador-Martínez, A.; Tejada-Ortigoza, V.; Soria-Mejía, M.C.; Balderas-León, I.; Alonzo-Macías, M. Antioxidant Content of Frozen, Convective Air-Dried, Freeze-Dried, and Swell-Dried Chokecherries (Prunus virginiana L.). Molecules 2020, 25, 1190. https://doi.org/10.3390/molecules25051190
Téllez-Pérez C, Cardador-Martínez A, Tejada-Ortigoza V, Soria-Mejía MC, Balderas-León I, Alonzo-Macías M. Antioxidant Content of Frozen, Convective Air-Dried, Freeze-Dried, and Swell-Dried Chokecherries (Prunus virginiana L.). Molecules. 2020; 25(5):1190. https://doi.org/10.3390/molecules25051190
Chicago/Turabian StyleTéllez-Pérez, Carmen, Anaberta Cardador-Martínez, Viridiana Tejada-Ortigoza, Marla C. Soria-Mejía, Iván Balderas-León, and Maritza Alonzo-Macías. 2020. "Antioxidant Content of Frozen, Convective Air-Dried, Freeze-Dried, and Swell-Dried Chokecherries (Prunus virginiana L.)" Molecules 25, no. 5: 1190. https://doi.org/10.3390/molecules25051190
APA StyleTéllez-Pérez, C., Cardador-Martínez, A., Tejada-Ortigoza, V., Soria-Mejía, M. C., Balderas-León, I., & Alonzo-Macías, M. (2020). Antioxidant Content of Frozen, Convective Air-Dried, Freeze-Dried, and Swell-Dried Chokecherries (Prunus virginiana L.). Molecules, 25(5), 1190. https://doi.org/10.3390/molecules25051190