Effects of Inclusion of Fresh Forage in the Diet for Lactating Buffaloes on Volatile Organic Compounds of Milk and Mozzarella Cheese
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Experimental Design, Animals, Diets and Cheese Production
4.2. Milk and Mozzarella Chemical Analysis
4.3. Milk and Mozzarella Volatile Organic Compound Analysis
4.4. Statistical Analysis of Data
Ethics Statements
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Masucci, F.; De Rosa, G.; Barone, C.M.A.; Napolitano, F.; Grasso, F.; Uzun, P.; Di Francia, A. Effect of group size and maize silage dietary levels on behaviour, health, carcass and meat quality of Mediterranean buffaloes. Animal 2016, 10, 531–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sannino, M.; Faugno, S.; Crimaldi, M.; Di Francia, A.; Ardito, L.; Serrapica, F.; Masucci, F. Effects of an automatic milking system on milk yield and quality of Mediterranean buffaloes. J. Dairy Sci. 2018, 101, 8308–8312. [Google Scholar] [CrossRef] [PubMed]
- Serrapica, F.; Masucci, F.; Romano, R.; Santini, A.; Manzo, N.; Seidavi, A.; Omri, B.; Salem, A.Z.M.; Di Francia, A. Peas may be a candidate crop for integrating silvoarable systems and dairy buffalo farming in southern Italy. Agroforest Syst. 2018. [Google Scholar] [CrossRef]
- Moio, L.; Dekimpe, J.; Etievant, P.; Addeo, F. Neutral volatile compounds in the raw milks from different species. J. Dairy Res. 1993, 60, 199–213. [Google Scholar] [CrossRef]
- Cadwallader, K.R.; Singh, T.K. Flavours and Off-Flavours in Milk and Dairy Products. In Advanced Dairy Chemistry: Volume 3: Lactose, Water, Salts and Minor Constituents; McSweeney, P., Fox, P.F., Eds.; Springer: New York, NY, USA, 2009; pp. 631–690. [Google Scholar]
- Moio, L.; Langlois, D.22; Etievant, P.X.; Addeo, F. Powerful odorants in water buffalo and bovine mozzarella cheese by use of extract dilution sniffing analysis. Ital. J. Food Sci. 1993, 5, 227–237. [Google Scholar]
- Honkanen, E.; Karvonen, P.; Virtanen, A.I. Studies on the transfer of some flavour compounds to milk. Acta Chemica Scandinavica 1964, 18, 612–618. [Google Scholar] [CrossRef]
- Viallon, C.; Martin, B.; Verdier-Metz, I.; Pradel, P.; Garel, J.-P.; Coulon, J.-B.; Berdagué, J.-L. Transfer of monoterpenes and sesquiterpenes from forages into milk fat. Lait 2000, 80, 635–641. [Google Scholar]
- Dougherty, R.W.; Shipe, W.F.; Gudnason, G.V.; Ledford, R.A.; Peterson, R.D.; Scarpellino, R. Physiological Mechanisms Involved in Transmitting Flavors and Odors to Milk. I. Contribution of Eructated Gases to Milk Flavor1. J. Dairy Sci. 1962, 45, 472–476. [Google Scholar] [CrossRef]
- Shipe, W.F.; Ledford, R.A.; Peterson, R.D.; Scanlan, R.A.; Geerken, H.F.; Dougherty, R.W.; Morgan, M.E. Physiological Mechanisms Involved in Transmitting Flavors and Odors to Milk. II. Transmission of Some Flavor Components of Silage1. J. Dairy Sci. 1962, 45, 477–480. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Shingfield, K.J.; Lee, M.R.F.; Scollan, N.D. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Anim. Feed Sci. Tech. 2006, 131, 168–206. [Google Scholar] [CrossRef]
- Esposito, G.; Masucci, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Di Francia, A. Fatty acid and sensory profiles of Caciocavallo cheese as affected by management system. J. Dairy Sci. 2014, 97, 1918–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inglingstad, R.A.; Steinshamn, H.; Dagnachew, B.S.; Valenti, B.; Criscione, A.; Rukke, E.O.; Devold, T.G.; Skeie, S.B.; Vegarud, G.E. Grazing season and forage type influence goat milk composition and rennet coagulation properties. J. Dairy Sci. 2014, 97, 3800–3814. [Google Scholar] [CrossRef] [PubMed]
- Vecchio, R.; Lombardi, A.; Cembalo, L.; Caracciolo, F.; Cicia, G.; Masucci, F.; Di Francia, A. Consumers’ willingness to pay and drivers of motivation to consume omega-3 enriched mozzarella cheese. Brit. Food J. 2016, 118, 2404–2419. [Google Scholar] [CrossRef]
- Marilley, L.; Casey, M.G. Flavours of cheese products: Metabolic pathways, analytical tools and identification of producing strains. Int. J. Food Microbiol. 2004, 90, 139–159. [Google Scholar] [CrossRef]
- Bendall, J.G. Aroma Compounds of Fresh Milk from New Zealand Cows Fed Different Diets. J. Agric. Food Chem. 2001, 49, 4825–4832. [Google Scholar] [CrossRef]
- Toso, B.; Procida, G.; Stefanon, B. Determination of volatile compounds in cows’ milk using headspace GC-MS. J. Dairy Res. 2002, 69, 569–577. [Google Scholar] [CrossRef]
- Stefanon, B.; Procida, G. Effects of including silage in the diet on volatile compound profiles in Montasio cheese and their modification during ripening. J. Dairy Res. 2004, 71, 58–65. [Google Scholar] [CrossRef]
- Coppa, M.; Ferlay, A.; Monsallier, F.; Verdier-Metz, I.; Pradel, P.; Didienne, R.; Farruggia, A.; Montel, M.C.; Martin, B. Milk fatty acid composition and cheese texture and appearance from cows fed hay or different grazing systems on upland pastures. J. Dairy Sci. 2011, 94, 1132–1145. [Google Scholar] [CrossRef] [Green Version]
- Villeneuve, M.-P.; Lebeuf, Y.; Gervais, R.; Tremblay, G.F.; Vuillemard, J.C.; Fortin, J.; Chouinard, P.Y. Milk volatile organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage. J. Dairy Sci. 2013, 96, 7181–7194. [Google Scholar] [CrossRef]
- Penchev, P.I.; Ilieva, Y.; Ivanova, T.; Kalev, R. Fatty acid composition of buffalo and bovine milk as affected by roughage source – silage versus hay. Emir. J. Food Agr. 2016, 28, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Serrapica, F.; Uzun, P.; Masucci, F.; Napolitano, F.; Braghieri, A.; Genovese, A.; Sacchi, R.; Romano, R.; Barone, C.M.A.; Di Francia, A. Hay or silage? How the forage preservation method changes the volatile compounds and sensory properties of Caciocavallo cheese. J. Dairy Sci. 2020, 103, 1391–1403. [Google Scholar] [CrossRef] [PubMed]
- Cifuni, G.F.; Pizzillo, M.; Claps, S.; Napoli, D.; Mazzi, M.; Rubino, R. Effect of feeding systems on aromatic characteristics of buffalo mozzarella cheese. Ital. J. Anim. Sci. 2007, 6, 1147–1149. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, G.; Charrier, X.; Hébert, Y. Nitrogen uptake capacities of maize and sorghum crops in different nitrogen and water supply conditions. Agronomie 1996, 16, 231–246. [Google Scholar] [CrossRef] [Green Version]
- Farré, I.; Faci, J.M. Comparative response of maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) to deficit irrigation in a Mediterranean environment. Agr. Water Manage. 2006, 83, 135–143. [Google Scholar]
- Uzun, P.; Masucci, F.; Serrapica, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Esposito, G.; Di Francia, A. The inclusion of fresh forage in the lactating buffalo diet affects fatty acid and sensory profile of mozzarella cheese. J. Dairy Sci. 2018, 101, 6752–6761. [Google Scholar] [CrossRef]
- Buccioni, A.; Minieri, S.; Conte, G.; Benvenuti, D.; Pezzati, A.; Antongiovanni, M.; Rapaccini, S.; Mele, M. Changes in conjugated linoleic acid and C18:1 isomers profile during the ripening of Pecorino Toscano cheese produced with raw milk. Ital. J. Anim. Sci. 2012, 11, e75. [Google Scholar] [CrossRef] [Green Version]
- Buccioni, A.; Rapaccini, S.; Antongiovanni, M.; Minieri, S.; Conte, G.; Mele, M. Conjugated linoleic acid and C18:1 isomers content in milk fat of sheep and their transfer to Pecorino Toscano cheese. Inter. Dairy J. 2010, 20, 190–194. [Google Scholar] [CrossRef]
- Addis, M.; Cabiddu, A.; Pinna, G.; Decandia, M.; Piredda, G.; Pirisi, A.; Molle, G. Milk and Cheese Fatty Acid Composition in Sheep Fed Mediterranean Forages with Reference to Conjugated Linoleic Acid cis-9,trans-11. J. Dairy Sci. 2005, 88, 3443–3454. [Google Scholar] [CrossRef] [Green Version]
- Moio, L.; Piombino, P.; Addeo, F. Odour-impact compounds of Gorgonzola cheese. J. Dairy Res. 2000, 67, 273–285. [Google Scholar] [CrossRef]
- Suriyaphan, O.; Drake, M.; Chen, X.Q.; Cadwallader, K.R. Characteristic Aroma Components of British Farmhouse Cheddar Cheese. J. Agric. Food Chem. 2001, 49, 1382–1387. [Google Scholar] [CrossRef]
- Lecanu, L.; Ducruet, V.; Jouquand, C.; Gratadoux, J.J.; Feigenbaum, A. Optimization of Headspace Solid-Phase Microextraction (SPME) for the Odor Analysis of Surface-Ripened Cheese. J. Agric. Food Chem. 2002, 50, 3810–3817. [Google Scholar] [CrossRef] [PubMed]
- Cornu, A.; Rabiau, N.; Kondjoyan, N.; Verdier-Metz, I.; Pradel, P.; Tournayre, P.; Berdagué, J.L.; Martin, B. Odour-active compound profiles in Cantal-type cheese: Effect of cow diet, milk pasteurization and cheese ripening. Inter.l Dairy J. 2009, 19, 588–594. [Google Scholar] [CrossRef]
- Singh, T.K.; Drake, M.A.; Cadwallader, K.R. Flavor of Cheddar Cheese: A Chemical and Sensory Perspective. Compr. Rev. Food Sci. Food Safety 2003, 2, 166–189. [Google Scholar] [CrossRef]
- Martin, B.; Verdier-Metz, I.; Buchin, S.; Hurtaud, C.; Coulon, J.B. How do the nature of forages and pasture diversity influence the sensory quality of dairy livestock products? Animal Science 2005, 81, 205–212. [Google Scholar] [CrossRef]
- Rychlik, M.; Schieberle, P.; Grosch, W. Compilation of Odor Thresholds, Odor Qualities and Retention Indices of Key Food Odorants; Institut für Lebensmittelchemie der Technischen Universität München und Deutsche Forschungsanstalt für Lebensmittelchemie: Munich, Germany, 1998; p. 63. [Google Scholar]
- Frank, D.C.; Owen, C.M.; Patterson, J. Solid phase microextraction (SPME) combined with gas-chromatography and olfactometry-mass spectrometry for characterization of cheese aroma compounds. LWT - Food Sci. Tech. 2004, 37, 139–154. [Google Scholar] [CrossRef]
- Available online: http://www.leffingwell.com/odorthre.htm (accessed on 23 February 2020).
- Moio, L.; Addeo, F. Grana Padano cheese aroma. J. Dairy Res. 1998, 65, 317–333. [Google Scholar] [CrossRef]
- Curioni, P.M.G.; Bosset, J.O. Key odorants in various cheese types as determined by gas chromatography-olfactometry. Int. Dairy J. 2002, 12, 959–984. [Google Scholar] [CrossRef]
- Daun, H. Produce colour and apparence. In Produce Degradation: Pathways and Prevention; CRC Press: Boca Raton, FL, USA, 2005; pp. 191–219. [Google Scholar]
- Sádecká, J.; Kolek, E.; Pangallo, D.; Valík, L.; Kuchta, T. Principal volatile odorants and dynamics of their formation during the production of May Bryndza cheese. Food Chem. 2014, 150, 301–306. [Google Scholar] [CrossRef]
- Urbach, G. Effect of Feed on Flavor in Dairy Foods. J. Dairy Sci. 1990, 73, 3639–3650. [Google Scholar] [CrossRef]
- Ortigosa, M.; Torre, P.; Izco, J.M. Effect of Pasteurization of Ewe’s Milk and Use of a Native Starter Culture on the Volatile Components and Sensory Characteristics of Roncal Cheese. J. Dairy Sci. 2001, 84, 1320–1330. [Google Scholar] [CrossRef]
- Moio, L.; Dekimpe, J.; Etievant, P.X.; Addeo, F. Neutral volatile compounds of water buffalo milk. Ital. J. food Sci. 1993, 5, 43–56. [Google Scholar]
- Moio, L.; Dekimpe, J.; Etievant, P.X.; Addeo, F. Volatile flavour compounds of water buffalo Mozzarella cheese. Ital. J. Food Sci. 1993, 5, 57–68. [Google Scholar]
- Uzun, P.; Serrapica, F.; Masucci, F.; Barone, C.M.A.; Yildiz, H.; Grasso, F.; Di Francia, A. Diversity of traditional Caciocavallo cheeses produced in Italy. Inter. J. Dairy Tech. 2020, 73, 234–243. [Google Scholar] [CrossRef]
- Frankel, E.N. Lipid oxidation: Mechanisms, products and biological significance. J. Am. Oil Chem. Soc. 1984, 61, 1908–1917. [Google Scholar] [CrossRef]
- Chazal, M.P.; Chilliard, Y.; Coulon, J.B. Effect of nature of forage on spontaneous lipolysis in milk from cows in late lactation. J. Dairy Res. 1987, 54, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Chilliard, Y. Variations physiologiques des activités lipasiques et de la lipolyse spontanée dans les laits de vache, de chèvre et de femme: Revue bibliographique (suite). Lait 1982, 62, 126–154. [Google Scholar] [CrossRef]
- Kalač, P.; Samková, E. The effects of feeding various forages on fatty acid composition of bovine milk fat: A review. Czech. J. Anim. Sci. 2010, 55, 521–537. [Google Scholar] [CrossRef] [Green Version]
- Kalač, P. The effects of silage feeding on some sensory and health attributes of cow’s milk: A review. Food Chem. 2011, 125, 307–317. [Google Scholar] [CrossRef]
- Moio, L.; Semon, E.; Quere, J.L. 3-hydroxy-5-methyl-2-hexanone - a new compound characterized by a melted cheese flavour in dairy products. Ital. J. food Sci. 1994, 6, 441–447. [Google Scholar]
- Bouton, Y.; Grappin, R. Comparaison de la qualité de fromages à pâte pressée cuite fabriqués à partir de lait cru ou microfiltré. Lait 1995, 75, 31–44. [Google Scholar] [CrossRef] [Green Version]
- McSweeney, P.L.H.; Sousa, M.J. Biochemical pathways for the production of flavour compounds in cheeses during ripening: A review. Lait 2000, 80, 293–324. [Google Scholar] [CrossRef]
- Molimard, P.; Spinnler, H.E. Review: Compounds Involved in the Flavor of Surface Mold-Ripened Cheeses: Origins and Properties. J. Dairy Sci. 1996, 79, 169–184. [Google Scholar] [CrossRef]
- Hosono, A.; Elliott, J.A.; McGugan, W.A. Production of Ethylesters by Some Lactic Acid and Psychrotrophic Bacteria1. J. Dairy Sci. 1974, 57, 535–539. [Google Scholar] [CrossRef]
- Collins, E.B. Biosynthesis of Flavor Compounds by Microorganisms. J. Dairy Sci. 1972, 55, 1022–1028. [Google Scholar] [CrossRef]
- Bosset, J.O.; Gauch, R. Comparison of the volatile flavour compounds of six european ‘AOC’ cheeses by using a new dynamic headspace GC-MS method. Int. Dairy J. 1993, 3, 359–377. [Google Scholar] [CrossRef]
- Vanderlip, R.L.; Reeves, H.E. Growth Stages of Sorghum [Sorghum bicolor, (L.) Moench.] 1. Agro. J. 1972, 64, 13–16. [Google Scholar] [CrossRef]
- Uzun, P.; Masucci, F.; Serrapica, F.; Varricchio, M.L.; Pacelli, C.; Claps, S.; Di Francia, A. Use of mycorrhizal inoculum under low fertilizer application: Effects on forage yield, milk production, and energetic and economic efficiency. J. Agr. Sci. 2018, 156, 127–135. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Non starch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Genovese, A.; Marrazzo, A.; De Luca, L.; Romano, R.; Manzo, N.; Masucci, F.; Di Francia, A.; Sacchi, R. Volatile Organic Compound and Fatty Acid Profile of Milk from Cows and Buffaloes Fed Mycorrhizal or Nonmycorrhizal Ensiled Forage. Molecules 2019, 24, 1616. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Diono, R.; Kim, G.Y.; Min, D.B. Optimization of Solid Phase Microextraction Analysis for the Headspace Volatile Compounds of Parmesan Cheese. J. Agric. Food Chem. 2003, 51, 1136–1140. [Google Scholar] [CrossRef]
- Gioacchini, A.M.; Santi, M.D.; Guescini, M.; Brandi, G.; Stocchi, V. Characterization of the volatile organic compounds of Italian ‘Fossa’ cheese by solid-phase microextraction gas chromatography/mass spectrometry. Rapid Commun. Mass Sp. 2010, 24, 3405–3412. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors |
Item | Exp a | Ctl b |
---|---|---|
Ingredients | ||
Maize silage | 15.0 | 18.0 |
Grass silage | 4.0 | 10.0 |
Fresh sorghum | 20.0 | - |
Meadow hay | 2.5 | 4.5 |
Concentrate c | 7.0 | 6.5 |
Mineral and vitamin premix | 0.25 | 0.25 |
Forage to concentrate ratio, %DM | 67.8 | 68.8 |
Chemical composition | ||
Dry matter, kg | 15.5 | 15.0 |
UFL, n/kg DM | 0.86 | 0.84 |
Crude Protein, %DM | 14.85 | 14.16 |
NDF, %DM | 45.09 | 42.17 |
Item | Exp a | Ctl b | SEM | p-Value |
---|---|---|---|---|
Milk yield, kg/head per day | 9.01 | 8.7 | 0.26 | 0.558 |
Milk chemical composition, g/kg | ||||
Fat | 94.1 | 90.6 | 3.33 | 0.24 |
Protein | 52.7 | 50.7 | 1.12 | 0.202 |
Fat/Protein ratio | 1.86 | 1.86 | 0.04 | 0.93 |
Lactose | 47.1 | 47.1 | 0.71 | 0.975 |
Mozzarella chemical composition, g/kg | ||||
Fat | 287.0 | 276.2 | 0.36 | 0.103 |
Protein | 201.3 | 206.9 | 0.67 | 0.587 |
Fat/Protein ratio | 1.43 | 1.34 | 0.06 | 0.37 |
SFA | 75.01 | 79.01 | 0.17 | < 0.001 |
UFA | 24.95 | 20.95 | 0.11 | < 0.001 |
MUFA | 22.41 | 18.9 | 0.17 | < 0.001 |
PUFA | 2.96 | 2.00 | 0.03 | < 0.001 |
Mozzarella odor/flavor intensities c | ||||
Overall odor | 74.80 | 81.45 | 1.74 | 0.022 |
Overall flavor | 57.70 | 65.15 | 2.08 | 0.03 |
Milk | 59.25 | 70.05 | 2.05 | 0.004 |
Butter | 51.75 | 48.90 | 3.12 | 0.533 |
Whey | 17.45 | 24.60 | 2.04 | 0.032 |
Yogurt | 21.35 | 20.60 | 1.70 | 0.762 |
Milk | Mozzarella Cheese | ||||||
---|---|---|---|---|---|---|---|
R.T. | Identified Compounds | Exp a | Ctl b | p-Value | Exp a | Ctl b | p-Value |
Acids | 3.32 ± 0.08 | 3.62 ± 0.08 | ** | 1.15 ± 0.11 | 1.28 ± 0.11 | NS | |
2.01 | Acetic acid | ND | 1.63 ± 0.86 | / | ND | ND | |
4.53 | Butanoic acid | 2.55 ± 0.09 | 2.87 ± 0.09 | ** | ND | 0.30 ± 0.05 | / |
9.40 | Hexanoic acid | 3.04 ± 0.1 | 3.2 ± 0.1 | NS | 1.15 ± 0.12 | 1.22 ± 0.12 | NS |
14.31 | Octanoic acid | 2.67 ± 0.11 | 3.1 ± 0.11 | * | ND | ND | |
18.81 | Decanoic acid | 1.97 ± 0.13 | 2.54 ± 0.13 | ** | ND | ND | |
22.85 | Dodecanoic acid (t) | 1.35 ± 0.09 | 2.04 ± 0.09 | *** | ND | ND | |
25.85 | Tetradecanoic acid (t) | 1.48 ± 0.04 | 2.11 ± 0.04 | **** | ND | ND | |
Aldehydes | 1.87 ± 0.16 | 1.77 ± 0.16 | NS | 1.82 ± 0.08 | 1.79 ± 0.08 | NS | |
3.10 | Pentanal | 1.36 ± 0.59 | ND | / | 1.27 ± 0.1 | 1.26 ± 0.1 | NS |
4.95 | Hexanal | 1.80 ± 0.75 | ND | / | 1.62 ± 0.1 | 1.57 ± 0.1 | NS |
12.73 | Nonanal | 1.46 ± 0.08 | 1.77 ± 0.08 | ** | 1.10 ± 0.08 | 1.24 ± 0.08 | NS |
Alcohols | 1.61 ± 0.24 | ND | / | 1.76 ± 0.04 | 1.62 ± 0.04 | * | |
10.72 | 2-Ethyl-1-hexanol (t) | 1.61 ± 0.24 | ND | / | ND | ND | |
1.91 | 1-Propanol (t) | ND | ND | 1.56 ± 0.04 | 1.62 ± 0.04 | NS | |
2.70 | 1-Butanol | ND | ND | 0.85 ± 0.34 | ND | / | |
4.32 | 1-Pentanol | ND | ND | 1.16 ± 0.14 | ND | / | |
Esters | 2.28 ± 0.51 | ND | / | 2.14 ± 0.05 | 2.24 ± 0.05 | NS | |
2.26 | Ethyl acetate | 1.38 ± 0.61 | ND | / | 1.37 ± 0.09 | 1.33 ± 0.09 | NS |
5.00 | Ethyl butanoate | ND | ND | 1.42 ± 0.06 | 1.48 ± 0.06 | NS | |
3.37 | Propyl acetate (t) | 2.23 ± 0.7 | ND | / | 1.63 ± 0.06 | 1.77 ± 0.06 | NS |
5.20 | Propyl propanoate (t) | ND | ND | 1.18 ± 0.05 | 1.31 ± 0.05 | NS | |
7.36 | Propyl butanoate (t) | ND | ND | 1.48 ± 0.02 | 1.60 ± 0.02 | *** | |
Hydrocarbons | 2.25 ± 0.75 | ND | / | 2.17 ± 0.08 | 2.19 ± 0.08 | NS | |
2.12 | Hexane | ND | ND | 1.79±0.14 | 1.76 ± 0.14 | NS | |
4.25 | Toluene | 2.25±0.75 | ND | / | 1.61 ± 0.05 | 1.60 ± 0.05 | NS |
6.57 | p-Xylene (t) | ND | ND | 1.06 ± 0.08 | 1.08 ± 0.08 | NS | |
7.11 | Styrene (t) | ND | ND | 1.28 ± 0.15 | 1.38 ± 0.15 | NS | |
10.76 | Limonene | ND | ND | 1.21 ± 0.08 | 1.18 ± 0.08 | NS | |
Ketones | 2.59 ± 0.07 | 3.12 ± 0.07 | *** | 2.11 ± 0.15 | 2.12 ± 0.15 | NS | |
1.69 | Acetone | 2.50 ± 0.06 | 2.92 ± 0.06 | *** | ND | ND | |
2.13 | 2-Butanone | ND | 2.59 ± 1.44 | / | ND | ND | |
7.16 | 2-Heptanone | 1.70 ± 0.15 | 1.94 ± 0.15 | NS | 1.44 ± 0.13 | 1.49 ± 0.13 | NS |
12.43 | 2-Nonanone | 1.85 ± 0.15 | 1.34 ± 0.15 | NS | 0.80 ± 0.15 | 0.85 ± 0.15 | NS |
2.06 | 2,3-Butanedione | ND | ND | 1.53 ± 0.14 | 1.56 ± 0.14 | NS | |
3.07 | 2,3-Pentanedione | ND | ND | ND | 0.94 ± 0.4 | / | |
3.27 | 3-Hydroxy-2-butanone | ND | ND | 1.80 ± 0.16 | 1.71 ± 0.16 | NS |
Identified Compounds | Odor Threshold a | Odor Description a |
---|---|---|
Acids | ||
Acetic acid | 0.022 [20] | Vinegar [6,16,20,31,32,33], vinegar sour [34], sharp [34], pungent [6] |
Butanoic acid | 0.001 [20]–240 [35] | Vomit [31,36], cheese [31,34,36,37], rotten [34], sharp [34], rancid cheesy [6], putrid [6], sweaty [6,36], buttery [37] |
Hexanoic acid | 3000 [35] | Sharp [34], goaty [34,36], pungent [6], blue cheese [6], sour [6] |
Octanoic acid | 3000 [35] | Goaty [6,37], waxy [6,37], soapy [6], musty [6], rancid [6,37], fruity [6], unpleasant [37], fatty [37], body odor [36,37] |
Decanoic acid | 10000 [35] | Waxy-sweet [34], rancid fatty [6] |
Dodecanoic acid | 10000 [35] | |
Tetradecanoic acid | 10000 [35] | |
Aldehydes | ||
Pentanal | 12–42 [38] | Woody [36], bitter oily [36] |
Hexanal | 4.5–5.00 [35] | Green apple [36], grassy [36] |
Nonanal | 1 [35] | Green [5,38,39], animals [5], grass-like [5,38,39], fatty [5,39,40], animal [39,40] |
Alcohols | ||
2-Ethyl-1-hexanol | Spicy [5] | |
1-Propanol | 9000 [37] | Pungent [6] |
1-Butanol | 500 [41] | Medicinal [40], floral [36], fragrant [36], fruity [36], sweet [36], |
1-Pentanol | 4000 [38] | Alcoholic [5], iodoform-like [5] |
Esters | ||
Ethyl acetate | 5000 [35] | Sticky [36], sweet [36] |
Ethyl butanoate | 1 [35] | Sweet [36], fruity [36] |
Propyl acetate | 57 [36] | |
Propyl butanoate | 18–124 [36] | Pineapple [35], sharp [35] |
Propyl propanoate | Sweet [37], fruity [37], pineapple [37], apple [37], banana [37], bilberry [37], cider [37], cranberry [37], durian [37] | |
Hydrocarbons | ||
Hexane | ||
Toluene | Chemical [5,38], solvent [5,38], plastic [31] | |
p-Xylene | ||
Styrene | 730 [36] | Plastic [5,31,38,41], rubber [31] |
Limonene | 0.0002 [20],10 [36] | Fruity [5,31,38], lemon [5,31,38], orange [20], citrus [36] |
Ketones | ||
Acetone | ||
2-Butanone | 500000 [35] | Varnish [5] |
2-Heptanone | 140–3000 [35] | Animals [5], blue cheese [5,38,40,41,42], mouldy [38], spicy [6,40,43], cinnamon [40,43] |
2-Nonanone | 5–200 [35] | Hot milk [5], smoked cheese [5], ketonic [5], varnish [5,38], fruity [31,40,42], floral [34,40,42] |
2,3-Butanedione | 0.000005 [20] | Butter [31,34,36], sweety [34], pastry [20] |
2,3-Pentanedione | Buttery [6], cheesy [6], sweet [6], nutty [6], fruity [6], creamy [6], caramel [6] | |
3-Hydroxy-2-Butanone | 0.0008 [20] | Woody [5,38], mildew [5,38], warm [5,38], buttery [31,36,40,42,43], creamy [43], weak earthy [43] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacchi, R.; Marrazzo, A.; Masucci, F.; Di Francia, A.; Serrapica, F.; Genovese, A. Effects of Inclusion of Fresh Forage in the Diet for Lactating Buffaloes on Volatile Organic Compounds of Milk and Mozzarella Cheese. Molecules 2020, 25, 1332. https://doi.org/10.3390/molecules25061332
Sacchi R, Marrazzo A, Masucci F, Di Francia A, Serrapica F, Genovese A. Effects of Inclusion of Fresh Forage in the Diet for Lactating Buffaloes on Volatile Organic Compounds of Milk and Mozzarella Cheese. Molecules. 2020; 25(6):1332. https://doi.org/10.3390/molecules25061332
Chicago/Turabian StyleSacchi, Raffaele, Andrea Marrazzo, Felicia Masucci, Antonio Di Francia, Francesco Serrapica, and Alessandro Genovese. 2020. "Effects of Inclusion of Fresh Forage in the Diet for Lactating Buffaloes on Volatile Organic Compounds of Milk and Mozzarella Cheese" Molecules 25, no. 6: 1332. https://doi.org/10.3390/molecules25061332
APA StyleSacchi, R., Marrazzo, A., Masucci, F., Di Francia, A., Serrapica, F., & Genovese, A. (2020). Effects of Inclusion of Fresh Forage in the Diet for Lactating Buffaloes on Volatile Organic Compounds of Milk and Mozzarella Cheese. Molecules, 25(6), 1332. https://doi.org/10.3390/molecules25061332