Cerebrosides and Steroids from the Edible Mushroom Meripilus giganteus with Antioxidant Potential
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Mushroom Material
3.2. Extraction and Isolation
3.3. ORAC Assay
4. Conclusion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Justo, A.; Miettinen, O.; Floudas, D.; Ortiz-Santana, B.; Sjökvist, E.; Lindner, D.; Nakasone, K.; Niemelä, T.; Larsson, K.H.; Ryvarden, L.; et al. A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biol. 2017, 121, 798–824. [Google Scholar] [CrossRef] [PubMed]
- Persoon, C.H. Neuer Versuch einer systematischen Eintheilung der Schwämme. Neues Magazin für die Botanik 1794, 1, 63–80. [Google Scholar]
- Ryvarden, L.; Melo, I. Poroid fungi of Europe. Synop Fung. 2014, 31, 1–455. [Google Scholar]
- Larsen, M.J.; Lombard, F.F. The Status of Meripilus giganteus (Aphyllophorales, Polyporaceae) in North America. Mycologia 1988, 80, 612–621. [Google Scholar] [CrossRef]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.S.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [CrossRef] [Green Version]
- Catenia, F.; Altieri, T.; Zacchigna, M.; Procida, G.; Zilic, J.; Zigon, D.; Cichelli, A. Lipid Metabolites from the Mushroom Meripilus giganteus. Nat. Prod. Commun. 2015, 10, 1833–1838. [Google Scholar] [CrossRef] [Green Version]
- Karaman, M.; Mimica-Dukic, N.; Knezevic, P.; Svircev, Z.; Matavuly, M. Antibacterial properties of selected lignicolous mushrooms and fungi from northern Serbia. Int. J. Med. Mushrooms 2009, 11, 269–279. [Google Scholar] [CrossRef]
- Stojkovic, D.S.; Kovacevic-Grujicic, N.; Reis, F.S.; Davidovic, S.; Barros, L.; Popovic, J.; Petrovic, I.; Pavic, A.; Glamoclija, J.; Ciric, A.; et al. Chemical composition of the mushroom Meripilus giganteus Karst. and bioactive properties of its methanolic extract. LWT Food Sci. Technol. 2017, 79, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Prasenjit, M.; Ashis, N.K.; Dilip, M.K.; Manabendra, P.; Ipsita, K.S.; Sunil, K.B.; Surajit, S.; Bibhash, C.P.; Soumitra, P.; Krishnendu, A.; et al. Structural characterization and antioxidant activity of a glucan from Meripilus giganteus. Carbohyd. Polym. 2017, 157, 1237–1245. [Google Scholar] [CrossRef]
- Lenzi, M.; Cocchi, V.; Novakovic, A.; Karaman, M.; Sakac, M.; Mandic, A.; Pojic, M.; Barbalace, M.C.; Angeloni, C.; Hrelia, P.; et al. Meripilus giganteus ethanolic extract exhibits pro-apoptotic and anti-proliferative effects in leukemic cell lines. BMC Complement. Altern. Med. 2018, 18, 300. [Google Scholar] [CrossRef]
- Takaishi, Y.; Ohashi, T.; Murakami, Y.; Tomimatsu, T. Investigation of the constituents of Inonotus mikadoi. Bull. Inst. Chem. Res. Kyoto Univ. 1987, 65, 134–140. [Google Scholar]
- Huang, R.; Wang, T.; Xie, X.-S.; Ma, K.-X.; Fang, X.-W.; Wu, S.-H. Secondary Metabolites from an Endophytic Fungus Nigrospora sp. Chem. Nat. Compd. 2016, 52, 697–699. [Google Scholar] [CrossRef]
- Mori, K.; Masuda, Y. Synthesis and stereochemistry of ceramide B,(2S,3R,4E,6R)-N-(30-hydroxytriacontanoyl)-6-hydroxy-4-sphingenine, a new ceramide in human epidermis. Tetrahedron Lett. 2003, 44, 9197–9200. [Google Scholar] [CrossRef]
- Qi, J.; Ojika, M.; Sakagami, Y. Neuritogenic cerebrosides from an edible Chinese mushroom. Part 2: Structures of two additional termitomycesphins and activity enhancement of an inactive cerebroside by hydroxylation. Bioorg. Med. Chem. 2001, 9, 2171–2177. [Google Scholar] [CrossRef]
- Takaishi, Y.; Uda, M.; Ohashi, T.; Nakano, K.; Murakami, K.; Tomimatsu, T. Glycosides of ergosterol derivatives from Hericum erinacens. Phytochemistry 1991, 30, 4117–4120. [Google Scholar] [CrossRef]
- Niisuke, K.; Boeglin, W.E.; Murray, J.J.; Schneider, C.; Brash, A.R. Biosynthesis of a linoleic acid allylic epoxide: Mechanistic comparison with its chemical synthesis and leukotriene A biosynthesis. J. Lipid Res. 2009, 50, 1448–1455. [Google Scholar] [CrossRef] [Green Version]
- Striegler, S.; Haslinger, E. Cerebrosides from Fomitopsis pinicola. Monatsh. Chem. 1996, 127, 755–761. [Google Scholar] [CrossRef]
- Andrieux, J.; Barton, D.H.R.; Patin, H. Rhodium-catalysed isomerisation of some unsaturated organic substrates. J. Chem. Soc. Perkin Trans. 1977, 1, 359–363. [Google Scholar] [CrossRef]
- Field, J.A.; Verhagen, F.J.M.; de Jong, E. Natural organohalogen production by Basidiomycetes. Trends Biotechnol. 1995, 13, 451–456. [Google Scholar] [CrossRef]
- Tlili, A.; Schranck, J. The application of dichloromethane and chloroform as reagents in organic synthesis. In Solvents as Reagents in Organic Synthesis: Reactions and Applications; Wu, X.-F., Ed.; Wiley-VCH Verlag: Weinheim, Germany, 2018. [Google Scholar] [CrossRef]
- Zaüner, S.; Zähringer, U.; Lindner, B.; Warnecke, D.; Sperling, P. Identification and functional characterization of the 2-hydroxy fatty N-acyl-Δ3(E)-desaturase from Fusarium graminearum. J. Biol. Chem. 2008, 283, 36734–36742. [Google Scholar] [CrossRef] [Green Version]
- Duarte, R.S.; Polycarpo, C.R.; Wait, R.; Hartmann, R.; Bergter, E.B. Structural characterization of neutral glycosphingolipids from Fusarium species. Biochim. Biophys. Acta 1998, 1390, 186–196. [Google Scholar] [CrossRef]
- Fogedal, M.; Mickos, H.; Norberg, T. Isolation of N-2′-hydroxydecanoyl-1-O-β-d-glucopyranosyl-9-methyl-4,8-d-erythro-sphingadienine from fruiting bodies of two Basidiomycetes fungi. Glycoconj. J. 1986, 3, 233–237. [Google Scholar] [CrossRef]
- Kawai, G. Molecular species of cerebrosides in fruiting bodies of Lentinus edodes and their biological activity. Biochim. Biophys. Acta 1989, 1001, 185–190. [Google Scholar] [CrossRef]
- Arigi, E.; Singh, S.; Kahlili, A.H.; Winter, H.C.; Goldstein, I.J.; Levery, S.B. Characterization of neutral and acidic glycosphingolipids from the lectin-producing mushroom, Polyporus squamosus. Glycobiology 2007, 17, 754–766. [Google Scholar] [CrossRef] [Green Version]
- Kawai, G.; Ikeda, Y. Structure of biologically active and inactive cerebrosides prepared from Schizophyllum commune. J. Lipid Res. 1985, 26, 338–343. [Google Scholar]
- Meng, T.-X.; Ishikawa, H.; Shimizu, K.; Ohga, S.; Kondo, R. A glucosylceramide with antimicrobial activity from the edible mushroom Pleurotus citrinopileatus. J. Wood Sci. 2012, 58, 81–86. [Google Scholar] [CrossRef]
- Diyabalanage, T.; Mulabagal, V.; Mills, G.; DeWitt, D.L.; Nair, M.G. Health-beneficial qualities of the edible mushroom, Agrocybe aegerita. Food Chem. 2008, 108, 97–102. [Google Scholar] [CrossRef]
- Li, W.; Lee, S.; Jang, H.; Ma, J.; Kim, Y. Antioxidant and Anti-Osteoporotic Activities of Aromatic Compounds and Sterols from Hericium erinaceum. Molecules 2017, 22, 108. [Google Scholar] [CrossRef]
- Athanasakis, G.; Aligiannis, N.; Gonou-Zagou, Z.; Skaltsounis, A.-L.; Fokialakis, N. Antioxidant Properties of the Wild Edible Mushroom Lactarius salmonicolor. J. Med. Food 2013, 16, 760–764. [Google Scholar] [CrossRef]
- Lu, Q.-Q.; Tian, J.-M.; Wei, J.; Gao, J.-M. Bioactive metabolites from the mycelia of the basidiomycete Hericium erinaceum. Nat. Prod. Res. 2014, 28, 1288–1292. [Google Scholar] [CrossRef]
- Mielnik, M.B.; Rzeszutek, A.; Triumf, E.C.; Egelandsdal, B. Antioxidant and other quality properties of reindeer muscle from two different Norwegian regions. Meat Sci. 2011, 89, 526–532. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 1, 3–7 are available from the authors. |
cmpd | 1 | 2 | 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
13C | 1H | mult. (J, Hz) | 13C | 1H | mult. (J, Hz) | 13C | 1H | mult. (J, Hz) | |
(δ, ppm) | (δ, ppm) | (δ, ppm) | |||||||
1 a | 69.8 | 4.10 | dt (10.2, 6.1) | 69.9 | 4.11 | dt (10.3, 6.4) | 69.9 | 4.12 | m |
1 b | 69.8 | 3.72 | dd (10.2, 3.5) | 69.9 | 3.72 | m | 69.9 | 3.71 | dd (10.4, 3.6) |
2 | 54.8 | 3.99 | m | 54.7 | 4.00 | m | 54.7 | 3.99 | m |
3 | 73.1/73.1 * | 4.17/4.17 | t (7.0) | 72.9 | 4.16 | t (7.6) | 73.0 | 4.13 | m |
4 | 131.19/131.29 * | 5.53 | m | 132.3 | 5.54 | dd (15.4, 7.2) | 131.2 | 5.48 | dd (15.5, 7.5) |
5 | 134.95/135.04 * | 5.76 | m | 133.7 | 5.72 | dt (15.4, 7.2) | 134.8 | 5.74 | dtd (15.4, 6.6, 0.7) |
6 a | 31.0 | 2.06 | m | 31.4 | 2.11 | m | 28.8 | 2.07 | m |
6 b | 31.0 | 2.31 | m | 31.4 | 2.39 | m | |||
7 a | 31.6 | 1.65 | m | 32.9 | 1.64 | m | 34.0 | 2.05 | m |
7 b | 31.6 | 1.32 | m | 32.9 | 2.11 | m | |||
8 | 74.8/75.0 * | 3.47 | dd (10.3, 5.5) | 70.8 | 3.74 | m | 125.0 | 5.14 | tq (6.7, 1.0) |
9 | 80.2 | 75.6 | 136.9 | ||||||
10 a | 35.2 | 1.62 | m | 40.9 | 1.64 | m | 40.9 | 1.97 | t (7.5) |
10 b | 35.2 | 1.49 | m | 40.9 | 1.59 | m | |||
11 | 24.0 | 1.32 | m | 24.1 | 1.38 | m | 29.3 | 1.39 | m |
12–15′ | 30.9 | 1.30 | m | 30.9 | 1.29 | m | 30.5 | 1.29 | m |
16 | 33.2 | 1.28 | m | 33.2 | 1.29 | m | 33.2 | 1.31 | m |
17 | 23.9 | 1.32 | m | 24.0 | 1.32 | m | 23.9 | 1.31 | m |
18 | 14.6 | 0.90 | t (6.9) | 14.6 | 0.90 | t (6.9) | 14.6 | 0.90 | t (7.1) |
19 | 18.6 | 1.06 | s | 22.4 | 1.20 | s | 16.3 | 1.59 | d (1.0) |
20 | 49.6 | 3.17 | s | ||||||
1′ | 177.4 | 177.4 | 177.3 | ||||||
2′ | 73.2 | 3.99 | m | 73.2 | 3.99 | m | 73.2 | 3.98 | m |
3′ a | 36.0 | 1.72 | m | 36.0 | 1.72 | m | 36.0 | 1.71 | m |
3′ b | 36.0 | 1.55 | m | 36.0 | 1.55 | m | 36.0 | 1.55 | m |
4′ | 26.4 | 1.42 | m | 26.4 | 1.42 | m | 26.3 | 1.40 | m |
5′–13′ | 30.9 | 1.30 | m | 30.6 | 1.31 | m | 30.7 | 1.31 | m |
14′ | 33.2 | 1.28 | m | 33.2 | 1.29 | m | 33.2 | 1.29 | m |
15′ | 23.9 | 1.32 | m | 23.9 | 1.32 | m | 23.9 | 1.31 | m |
16′ | 14.6 | 0.90 | t (6.9) | 14.6 | 0.90 | t (6.9) | 14.6 | 0.90 | t (7.1) |
1″ | 104.9 | 4.27 | d (7.9) | 104.9 | 4.27 | d (7.8) | 104.9 | 4.26 | d (7.8) |
2″ | 75.1 | 3.19 | t (8.3) | 75.1 | 3.19 | t (8.4) | 75.1 | 3.19 | dd (9.3, 7.8) |
3″ | 78.0 | 3.35 | m | 78.1 | 3.36 | m | 78.0 | 3.35 | m |
4″ | 71.7 | 3.28 | m | 71.7 | 3.28 | m | 78.1 | 3.27 | m |
5″ | 78.1 | 3.28 | m | 78.1 | 3.27 | m | 71.7 | 3.27 | m |
6″ a | 62.8 | 3.66 | m | 62.8 | 3.66 | m | 62.8 | 3.67 | dd (11.9, 5.5) |
6″ b | 62.8 | 3.87 | d (11.8) | 62.8 | 3.87 | d (11.8) | 62.8 | 3.86 | dd (11.9, 1.2) |
Compound | ORAC Antioxidant Activity (mmol TE/g) |
---|---|
1 | 1.81 ± 0.34 |
2 | 2.50 ± 0.29 |
3 | 1.69 ± 0.20 |
4 | 1.12 ± 0.06 |
5 | 4.94 ± 0.37 |
6 | 1.94 ± 0.08 |
7 | 1.65 ± 0.03 |
8 | 1.90 ± 0.05 |
9 | 4.27 ± 0.05 |
Ascorbic acid | 6.96 ± 0.57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sárközy, A.; Béni, Z.; Dékány, M.; Zomborszki, Z.P.; Rudolf, K.; Papp, V.; Hohmann, J.; Ványolós, A. Cerebrosides and Steroids from the Edible Mushroom Meripilus giganteus with Antioxidant Potential. Molecules 2020, 25, 1395. https://doi.org/10.3390/molecules25061395
Sárközy A, Béni Z, Dékány M, Zomborszki ZP, Rudolf K, Papp V, Hohmann J, Ványolós A. Cerebrosides and Steroids from the Edible Mushroom Meripilus giganteus with Antioxidant Potential. Molecules. 2020; 25(6):1395. https://doi.org/10.3390/molecules25061395
Chicago/Turabian StyleSárközy, András, Zoltán Béni, Miklós Dékány, Zoltán Péter Zomborszki, Kinga Rudolf, Viktor Papp, Judit Hohmann, and Attila Ványolós. 2020. "Cerebrosides and Steroids from the Edible Mushroom Meripilus giganteus with Antioxidant Potential" Molecules 25, no. 6: 1395. https://doi.org/10.3390/molecules25061395
APA StyleSárközy, A., Béni, Z., Dékány, M., Zomborszki, Z. P., Rudolf, K., Papp, V., Hohmann, J., & Ványolós, A. (2020). Cerebrosides and Steroids from the Edible Mushroom Meripilus giganteus with Antioxidant Potential. Molecules, 25(6), 1395. https://doi.org/10.3390/molecules25061395