A Fast and Validated High Throughput Bar Adsorptive Microextraction (HT-BAµE) Method for the Determination of Ketamine and Norketamine in Urine Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization Procedure
2.2. Validation Assays
2.3. Figures of Merit
3. Materials and Methods
3.1. Chemicals, Sorbents and Samples
3.2. LVI-GC-MS(SIM) Instrumentation
3.3. Pre-Treatment of Urine Samples
3.4. HT-BAµE-µLD Methodology
3.5. Validation of HT-BAμE-μLD/LVI-GC-MS(SIM) Methodology
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dinis-Oliveira, R.J. Metabolism and metabolomics of ketamine: A toxicological approach. Forensic Sci. Res. 2017, 2, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Kuhar, M.J.; Liddle, H. Drugs of Abuse, 1st ed.; Marshall Cavendish Reference: New York, NY, USA, 2012; p. 173. [Google Scholar]
- de Bairros, A.V.; Lanaro, R.; de Almeida, R.M.; Yonamine, M. Determination of ketamine, norketamine and dehydronorketamine in urine by hollow-fiber liquid-phase microextraction using an essential oil as supported liquid membrane. Forensic Sci. Int. 2014, 243, 47–54. [Google Scholar] [CrossRef] [PubMed]
- World Drug Report 2019 (United Nations publication, Sales No. E.19.XI.8). Available online: https://wdr.unodc.org/wdr2019/ (accessed on 20 January 2020).
- Clements, J.A.; Nimmo, W.S. Pharmacokinetics and analgesic effect of ketamine in man. Br. J. Anaesth. 1981, 53, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Karch, S. Pathology of Drug Abuse, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 715–718. [Google Scholar]
- Adamowicz, P.; Kala, M. Urinary excretion rates of ketamine and norketamine following therapeutic ketamine administration: Method and detection window considerations. J. Anal. Toxicol. 2005, 29, 376–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, K.A.; Sklerov, J.; Levine, B.; Jacobs, A.J. Urine concentrations of ketamine and norketamine following illegal consumption. J. Anal. Toxicol. 2001, 25, 583–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, L.; Hu, B.; Yu, C. PH-resistant titania hybrid organic-inorganic coating for stir bar sorptive extraction of drugs of abuse in urine samples followed by high performance liquid chromatography-ultraviolet visible detection. J. Chromatogr. A 2010, 1217, 7003–7009. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Chen, J.; He, M.; Hu, B. Simultaneous quantification of amphetamines, caffeine and ketamine in urine by hollow fiber liquid phase microextraction combined with gas chromatography-flame ionization detector. Talanta 2010, 82, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.S.; Fu, C.Y.; Lee, C.H.; Liu, C.; Chien, C.S. GC-MS quantification of ketamine, norketamine, and dehydronorketamine in urine specimens and comparative study using ELISA as the preliminary test methodology. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 852, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Barroso, M.; Martinho, A.; Cruz, A.; Gallardo, E. Determination of ketamine and its major metabolite, norketamine, in urine and plasma samples using microextraction by packed sorbent and gas chromatography-tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1004, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Hofstetter, R.; Fassauer, G.M.; Link, A.; Siegmund, W.; Oswald, S. Quantitative chiral and achiral determination of ketamine and its metabolites by LC–MS/MS in human serum, urine and fecal samples. J. Pharm. Biomed. Anal. 2017, 139, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.A.; Liu, H.C.; Lin, D.L.; Liu, R.H.; Hsieh, Y.Z.; Wu, S.P. Simultaneous quantitation of methamphetamine, ketamine, opiates and their metabolites in urine by SPE and LC-MS-MS. J. Anal. Toxicol. 2017, 41, 679–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anilanmert, B.; Çavuş, F.; Narin, I.; Cengiz, S.; Sertler, Ş.; Özdemir, A.A.; Açikkol, M. Simultaneous analysis method for GHB, ketamine, norketamine, phenobarbital, thiopental, zolpidem, zopiclone and phenytoin in urine, using C18 poroshell column. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1022, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.D.; Rhodes, D.J.; Pritchard, B.J. A validated SPME-GC-MS method for simultaneous quantification of club drugs in human urine. Forensic Sci. Int. 2007, 171, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.M.; Nogueira, J.M.F. High throughput bar adsorptive microextraction: A novel cost-effective tool for monitoring benzodiazepines in large number of biological samples. Talanta 2019, 199, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Abujaber, F.; Ahmad, S.M.; Neng, N.R.; Rodríguez Martín-Doimeadios, R.C.; Guzmán Bernardo, F.J.; Nogueira, J.M.F. Bar adsorptive microextraction coated with multi-walled carbon nanotube phases—Application for trace analysis of pharmaceuticals in environmental waters. J. Chromatogr. A 2019, 1600, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Ide, A.H.; Nogueira, J.M.F. New-generation bar adsorptive microextraction (BAμE) devices for a better eco-user-friendly analytical approach–Application for the determination of antidepressant pharmaceuticals in biological fluids. J. Pharm. Biomed. Anal. 2018, 153, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.M.; Ide, A.H.; Neng, N.R.; Nogueira, J.M.F. Application of bar adsorptive microextraction to determine trace organic micro-pollutants in environmental water matrices. Int. J. Environ. Anal. Chem. 2017, 97, 484–498. [Google Scholar] [CrossRef]
- Ahmad, S.M.; Gomes, M.I.; Ide, A.H.; Neng, N.R.; Nogueira, J.M.F. Monitoring traces of organochlorine pesticides in herbal matrices by bar adsorptive microextraction–Application to black tea and tobacco. Int. J. Environ. Anal. Chem. 2019, 1–15. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Analyte | Chemical Structure | log P 1 | pKa 1 | RT (min) | Ions (m/z) 2 |
---|---|---|---|---|---|
IS | - | - | 5.42 | 83, 168, 169 | |
NKET | 2.91 | 7.48 | 6.73 | 166, 168, 195 | |
KET | 3.35 | 7.45 | 6.97 | 180, 182, 209 |
Parameter | KET | NKET |
---|---|---|
LOD (μg L−1) | 1.0 | |
LLOQ (μg L−1) | 5.0 | |
Linear range (μg L−1) | 5.0 to 1000.0 | |
Calibration plot (n = 10) | y = 0.0032x + 0.0066 | y = 0.0032x + 0.029 |
r2 | 0.9990 | 0.9970 |
Intra-day assays (n = 6) | ||
5.0 μg L−1 | 87.2 ± 7.6 | 87.5 ± 11.9 |
50.0 μg L−1 | 87.4 ± 6.6 | 98.8 ± 5.5 |
200.0 μg L−1 | 87.9 ± 8.5 | 89.0 ± 6.8 |
1000.0 μg L−1 | 94.8 ± 3.2 | 98.6 ± 4.5 |
Inter-day assays (n = 18) | ||
5.0 μg L−1 | 110.0 ± 5.7 | 102.0 ± 12.6 |
50.0 μg L−1 | 104.4 ± 10.1 | 112.1 ± 11.8 |
200.0 μg L−1 | 94.7 ± 8.7 | 89.8 ± 12.3 |
1000.0 μg L−1 | 102.9 ± 6.9 | 85.5 ± 6.1 |
Recovery yields (n = 6) | ||
5.0 μg L−1 | 105.0 ± 9.2 | 103.1 ± 5.8 |
50.0 μg L−1 | 97.8 ± 7.9 | 89.8 ± 4.7 |
200.0 μg L−1 | 96.6 ± 7.2 | 88.1 ± 8.5 |
1000.0 μg L−1 | 96.5 ± 4.0 | 84.9 ± 3.4 |
Matrix effect (n = 6) | ||
5.0 μg L−1 | −4.4 ± 6.1 | 8.4 ± 6.3 |
50.0 μg L−1 | 4.9 ± 2.9 | −4.6 ± 10.4 |
200.0 μg L−1 | 9.0 ± 1.5 | 2.5 ± 14.1 |
1000.0 μg L−1 | −2.5 ± 6.2 | −9.1 ± 5.6 |
Microextraction Technique | HF-LPME | MEPS | SBSE | SPME | HF-LPME | HT-BAμE |
---|---|---|---|---|---|---|
Instrumental system | GC-MS | GC-MS/MS | HPLC-UV | GC-MS | GC-FID | LVI-GC-MS |
LODs(μg L−1) | 0.1–0.25 | 5 | 2.3–9.1 | 100 | 8 | 1.0 |
Linear range(μg L−1) | 0.5–50 | 10–250 | 30–3000 | 100–15000 | 3–350 | 5.0–1000.0 |
Accuracy (%) | 88.3–108 | 91.4–105.6 | n.a. | 105.9–113.6 | 75.2–119.3 | 85.5–112.1 |
Precision (%) | ≤10.1 | ≤9.2 | ≤8.9 | ≤14.8 | ≤8.9 | ≤12.6 |
Recovery (%) | 85.2–101 | 72.5–100.7 | 90.8 | n.a. | n.a. | 84.9–105.0 |
Sample volume (mL) | 2 | 0.25 | 3 | 1 | 3 | 0.5 |
Sample preparation time (min/sample) | 60 a | 7.42 b | 40 c | 21 d | 20 c | 45 |
Reference | [3] | [12] | [9] | [16] | [10] | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, S.M.; Oliveira, M.N.; Neng, N.R.; Nogueira, J.M.F. A Fast and Validated High Throughput Bar Adsorptive Microextraction (HT-BAµE) Method for the Determination of Ketamine and Norketamine in Urine Samples. Molecules 2020, 25, 1438. https://doi.org/10.3390/molecules25061438
Ahmad SM, Oliveira MN, Neng NR, Nogueira JMF. A Fast and Validated High Throughput Bar Adsorptive Microextraction (HT-BAµE) Method for the Determination of Ketamine and Norketamine in Urine Samples. Molecules. 2020; 25(6):1438. https://doi.org/10.3390/molecules25061438
Chicago/Turabian StyleAhmad, Samir M., Mariana N. Oliveira, Nuno R. Neng, and J.M.F. Nogueira. 2020. "A Fast and Validated High Throughput Bar Adsorptive Microextraction (HT-BAµE) Method for the Determination of Ketamine and Norketamine in Urine Samples" Molecules 25, no. 6: 1438. https://doi.org/10.3390/molecules25061438
APA StyleAhmad, S. M., Oliveira, M. N., Neng, N. R., & Nogueira, J. M. F. (2020). A Fast and Validated High Throughput Bar Adsorptive Microextraction (HT-BAµE) Method for the Determination of Ketamine and Norketamine in Urine Samples. Molecules, 25(6), 1438. https://doi.org/10.3390/molecules25061438