A Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry Quantitative Method for Determination of Baricitinib in Plasma, and Its Application in a Pharmacokinetic Study in Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chromatography and Mass Spectrometry Conditions
2.2. Method Validation
2.2.1. Selectivity and Specificity
2.2.2. Linearity and Lower Limit of Quantification
2.2.3. Precision and Accuracy
2.2.4. Recovery and Matrix Effects
2.2.5. Stability
2.3. Application to a Pharmacokinetic Study
3. Materials and Methods
3.1. Experimental
3.2. Equipment
3.3. Chromatographic Conditions
3.4. Preparation of Stock and Working Solutions
3.5. Sample Preparation
3.6. Method Validation
3.7. Animal
3.8. Application to a Pharmacokinetic Study
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dugowson, C.E. 53—Rheumatoid Arthritis. In Women and Health; Goldman, M.B., Hatch, M.C., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 674–685. [Google Scholar] [CrossRef]
- Zlatanovic, G.; Veselinovic, D.; Cekic, S.; Zivkovic, M.; Dordevic-Jocic, J.; Zlatanovic, M. Ocular manifestation of rheumatoid arthritis-different forms and frequency. Bosn. J. Basic Med. Sci. 2010, 10, 323–327. [Google Scholar] [CrossRef] [Green Version]
- Ljung, L.; Ueda, P.; Liao, K.P.; Greenberg, J.D.; Etzel, C.J.; Solomon, D.H.; Askling, J. Performance of the Expanded Cardiovascular Risk Prediction Score for Rheumatoid Arthritis in a geographically distant National Register-based cohort: An external validation. RMD Open 2018, 4, e000771. [Google Scholar] [CrossRef] [PubMed]
- Bartoloni, E.; Alunno, A.; Valentini, V.; Luccioli, F.; Valentini, E.; La Paglia, G.M.C.; Leone, M.C.; Cafaro, G.; Marcucci, E.; Gerli, R. Targeting Inflammation to Prevent Cardiovascular Disease in Chronic Rheumatic Diseases: Myth or Reality? Front. Cardiovasc. Med. 2018, 5, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, M.; Collins, B.F.; Ho, L.A.; Raghu, G. Rheumatoid arthritis-associated lung disease. Eur. Respir Rev. 2015, 24, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, K.; Kobayashi, Y.; Uehara, S.; Suzuki, T.; Koide, M.; Yamashita, T.; Nakamura, M.; Takahashi, N.; Kato, H.; Udagawa, N.; et al. A Jak1/2 inhibitor, baricitinib, inhibits osteoclastogenesis by suppressing RANKL expression in osteoblasts in vitro. PLoS ONE 2017, 14, e0181126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogul, A.; Corsi, K.; McAuliffe, L. Baricitinib: The Second FDA-Approved JAK Inhibitor for the Treatment of Rheumatoid Arthritis. Ann. Pharmacother. 2019, 53, 947–953. [Google Scholar] [CrossRef]
- Zhang, X.; Chua, L.; Ernest, C., 2nd; Macias, W.; Rooney, T.; Tham, L.S. Dose/Exposure-Response Modeling to Support Dosing Recommendation for Phase III Development of Baricitinib in Patients with Rheumatoid Arthritis. CPT Pharmacomet. Syst. Pharmacol. 2017, 6, 804–813. [Google Scholar] [CrossRef]
- Schlueter, M.; Finn, E.; Díaz, S.; Dilla, T.; Inciarte-Mundo, J.; Fakhouri, W. Cost-effectiveness analysis of baricitinib versus adalimumab for the treatment of moderate-to-severe rheumatoid arthritis in Spain. Clin. Outcomes Res. 2019, 11, 395–403. [Google Scholar] [CrossRef] [Green Version]
- Wallace, D.J.; Furie, R.A.; Tanaka, Y.; Kalunian, K.C.; Mosca, M.; Petri, M.A.; Dörner, T.; Cardiel, M.H.; Bruce, I.N.; Gomez, E.; et al. Baricitinib for systemic lupus erythematosus: A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2018, 392, 222–231. [Google Scholar] [CrossRef]
- Shi, J.G.; Chen, X.; Lee, F.; Emm, T.; Scherle, P.A.; Lo, Y.; Punwani, N.; Williams, W.V.; Yeleswaram, S. The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J. Clin. Pharmacol. 2014, 54, 1354–1361. [Google Scholar] [CrossRef]
- Posada, M.M.; Cannady, E.A.; Payne, C.D.; Zhang, X.; Bacon, J.A.; Pak, Y.A.; Higgins, J.W.; Shahri, N.; Hall, S.D.; Hillgren, K.M. Prediction of Transporter-Mediated Drug-Drug Interactions for Baricitinib. Clin. Transl. Sci. 2017, 10, 509–519. [Google Scholar] [CrossRef]
- Payne, C.; Zhang, X.; Shahri, N.; Williams, W.; Cannady, E. AB0492 Evaluation of Potential Drug-Drug Interactions with Baricitinib. Ann. Rheum. Dis. 2015, 74, 1063. [Google Scholar] [CrossRef]
- Rodriguez-Carrio, J.; Lopez, P.; Suarez, A. Type I IFNs as biomarkers in rheumatoid arthritis: Towards disease profiling and personalized medicine. Clin. Sci. 2015, 128, 449–464. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Genovese, M.C.; Haraoui, B.; Li, Z.; Xie, L.; Klar, R.; Pinto-Correia, A.; Otawa, S.; Lopez-Romero, P.; de la Torre, I.; et al. Dose reduction of baricitinib in patients with rheumatoid arthritis achieving sustained disease control: Results of a prospective study. Ann. Rheum. Dis. 2019, 78, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Atsumi, T.; Amano, K.; Harigai, M.; Ishii, T.; Kawaguchi, O.; Rooney, T.P.; Akashi, N.; Takeuchi, T. Efficacy and safety of baricitinib in Japanese patients with rheumatoid arthritis: Subgroup analyses of four multinational phase 3 randomized trials. Mod. Rheumatol. 2018, 28, 583–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, C.; Zhao, X.; She, L.; Shi, Z.; Deng, Z.; Tan, L.; Tu, X.; Jiang, S.; Tang, B. Baricitinib induces LDL-C and HDL-C increases in rheumatoid arthritis: A meta-analysis of randomized controlled trials. Lipids Health Dis. 2019, 18, 54. [Google Scholar] [CrossRef] [Green Version]
- Smolen, J.S.; Genovese, M.C.; Takeuchi, T.; Hyslop, D.L.; Macias, W.L.; Rooney, T.; Chen, L.; Dickson, C.L.; Riddle Camp, J.; Cardillo, T.E.; et al. Safety Profile of Baricitinib in Patients with Active Rheumatoid Arthritis with over 2 Years Median Time in Treatment. J. Rheumatol. 2019, 46, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Brooks, K.M.; Tang, C.C.; Wakim, P.; Blake, M.; Brooks, S.R.; Montealegre Sanchez, G.A.; de Jesus, A.A.; Huang, Y.; Tsai, W.L.; et al. Pharmacokinetics, Pharmacodynamics, and Proposed Dosing of the Oral JAK1 and JAK2 Inhibitor Baricitinib in Pediatric and Young Adult CANDLE and SAVI Patients. Clin. Pharmacol. Ther. 2018, 104, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Adam, S.; Simon, N.; Steffen, U.; Andes, F.; Müller, D.; Culemann, S.; Andreev, D.; Hahn, M.; Scholtysek, C.; Schett, G.; et al. P148 JAK-inhibition by baricitinib and tofacitinib ameliorates pathological bone loss. Ann. Rheum. Dis. 2019, 78, 3. [Google Scholar]
- Richez, C.; Truchetet, M.E.; Kostine, M.; Schaeverbeke, T.; Bannwarth, B. Efficacy of baricitinib in the treatment of rheumatoid arthritis. Expert Opin. Pharmacother. 2017, 18, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Veeraraghavan, S.; Thappali, S.R.; Viswanadha, S.; Vakkalanka, S.; Rangaswamy, M. Simultaneous Quantification of Baricitinib and Methotrexate in Rat Plasma by LC-MS/MS: Application to a Pharmacokinetic Study. Sci. Pharm. 2016, 84, 347–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koller, D.; Vaitsekhovich, V.; Mba, C.; Steegmann, J.L.; Zubiaur, P.; Abad-Santos, F.; Wojnicz, A. Effective quantification of 11 tyrosine kinase inhibitors and caffeine in human plasma by validated LC-MS/MS method with potent phospholipids clean-up procedure. Application to therapeutic drug monitoring. Talanta 2020, 208, 120450. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Xiao, B.; Weng, N. Impact of column temperature and mobile phase components on selectivity of hydrophilic interaction chromatography (HILIC). J. Sep. Sci. 2008, 31, 1449–1464. [Google Scholar] [CrossRef] [PubMed]
- Buszewski, B.; Noga, S. Hydrophilic interaction liquid chromatography and per aqueous liquid chromatography in fungicides analysis. J. AOAC Int. 2012, 95, 1362–1370. [Google Scholar]
- European Medicines Agency. Olumiant, INN-Baricitinib, Summary of Product, Characteristics, 1–30. Available online: https://www.ema.europa.eu/en/documents/product-information/olumiant-epar-product-information_en.pdf (accessed on 3 February 2020).
- Kong, R. 17—LC/MS Application in High-Throughput ADME Screen. In Separation Science and Technology; Ahuja, S., Dong, M.W., Eds.; Academic Press: London, UK, 2005; Volume 6, pp. 413–446. [Google Scholar]
- Wells, D.A. Bioanalytical Applications: Solid-Phase Extraction. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: London, UK, 2013. [Google Scholar]
- Guidance for Industry on Bioanalytical Method Validation; Center for Drug Evaluation and Research, US Food and Drug Administration: Rockville, MD, USA, 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 2 February 2020).
- European Medicines Agency. Guideline on Bioanalytical Method Validation. 2012. Available online: https://www.ema.europa.eu/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 5 February 2020).
Sample Availability: Samples of the compounds are not available from the authors. |
Nominal Conc. (ng/mL) | Intra-Day | Inter-Day | ||||
---|---|---|---|---|---|---|
Measured Conc. (ng/mL) | CV (%) | Accuracy (%) | Measured Conc. (ng/mL) | CV (%) | Accuracy (%) | |
0.2 | 0.17 ± 0.02 | 13.2 | 85.3 | 0.175 ± 0.02 | 11.4 | 87.5 |
0.6 | 0.54 ± 0.06 | 11.8 | 89.4 | 0.53 ± 0.06 | 11.3 | 88.3 |
40.0 | 35.99 ± 4.00 | 11.1 | 90.0 | 35.24 ± 3.30 | 9.4 | 88.1 |
400.0 | 344.36 ± 2.49 | 2.8 | 86.9 | 353.16 ± 6.61 | 1.9 | 88.3 |
Drug Name | Nominal Conc. (ng/mL) | Extraction Recovery | Matrix Effects | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | Accuracy (%) | CV (%) | Mean ± SD | Accuracy (%) | CV (%) | ||
Baracitinib | 0.6 | 0.58 ± 0.04 | 95.9 | 5.4 | 0.63 ± 0.04 | 89.3 | 6.8 |
40.0 | 34.37 ± 1.85 | 85.9 | 8.2 | 0.53 ± 0.04 | 89.5 | 6.8 | |
400.0 | 351.67±31.32 | 81.7 | 0.7 | 349.54 ± 35.94 | 87.7 | 10.3 | |
Irbersartan | 100.0 | 74.33 ± 3.21 | 74.3 | 4.3 | 87.40 ± 2.95 | 87.4 | 3.5 |
Stability | Conc. (ng/mL) | |||||
---|---|---|---|---|---|---|
40.0 ng/mL | 400.0 ng/mL | |||||
Parameters | Mean ± SD | Accuracy (%) | Precision (%CV) | Mean ± SD | Accuracy (%) | Precision (%CV) |
Bench top (6 h) | 34.61 ± 3.03 | 8.7 | 86.5 | 343.27 ± 44.76 | 85.8 | 13.0 |
Thaw/freeze (3 cycles) | 34.09 ± 3.99 | 85.1 | 8.8 | 345.73 ± 39.84 | 86.4 | 11.5 |
Auto-sampler | 35.6 ± 2.69 | 89.0 | 7.6 | 360.36 ± 11.52 | 90.1 | 11.5 |
Long term (at −80 °C for 8 weeks) | 34.63 ± 4.63 | 86.6 | 13.4 | 350.56 ± 28.53 | 87.64 | 8.1 |
Parameters | Mean * ± SD |
---|---|
Cmax (ng/mL) | 129.08 ± 91.4 |
AUC0-11 (ng.h/mL) | 205.15 ± 101.40 |
AUC0-inf (ng.h/mL) | 222.53 ± 107.20 |
Kel (h) | 0.32 ± 0.04 |
t1/2 (h) | 2.24 ± 0.43 |
MRT (h) | 3.30 ± 0.78 |
t max (h) | 0.5 |
Parameters | Baracitinib | Irbersartan |
---|---|---|
I. Parameters of compound-dependent | ||
SRM transition (m/z) (Parent) | 372.15 | 429.20 |
Daughter | 251.24 | 207.35 |
Collision energy (eV) | 52 | 38 |
Cone voltages | 30 | 22 |
II. Parameters of source-dependent | ||
Collision gas | Argon with a flow rate of 0.1 mL/min | |
Desolvating gas | Nitrogen with flow rate of 600 L/h | |
Desolvating temperature (°C) | 350 | |
Source temperature was (°C) | 150 | |
The capillary voltage (kV) | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezzeldin, E.; Iqbal, M.; Asiri, Y.A.; Ali, A.A.; Alam, P.; El-Nahhas, T. A Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry Quantitative Method for Determination of Baricitinib in Plasma, and Its Application in a Pharmacokinetic Study in Rats. Molecules 2020, 25, 1600. https://doi.org/10.3390/molecules25071600
Ezzeldin E, Iqbal M, Asiri YA, Ali AA, Alam P, El-Nahhas T. A Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry Quantitative Method for Determination of Baricitinib in Plasma, and Its Application in a Pharmacokinetic Study in Rats. Molecules. 2020; 25(7):1600. https://doi.org/10.3390/molecules25071600
Chicago/Turabian StyleEzzeldin, Essam, Muzaffar Iqbal, Yousif A. Asiri, Azza A Ali, Prawez Alam, and Toqa El-Nahhas. 2020. "A Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry Quantitative Method for Determination of Baricitinib in Plasma, and Its Application in a Pharmacokinetic Study in Rats" Molecules 25, no. 7: 1600. https://doi.org/10.3390/molecules25071600
APA StyleEzzeldin, E., Iqbal, M., Asiri, Y. A., Ali, A. A., Alam, P., & El-Nahhas, T. (2020). A Hydrophilic Interaction Liquid Chromatography–Tandem Mass Spectrometry Quantitative Method for Determination of Baricitinib in Plasma, and Its Application in a Pharmacokinetic Study in Rats. Molecules, 25(7), 1600. https://doi.org/10.3390/molecules25071600