NMR-Based Plant Metabolomics in Nutraceutical Research: An Overview
Abstract
:1. Introduction
2. NMR-Based Plant Metabolomics
3. An Invaluable Tool in the Discovery and Characterization of Nutraceuticals and for Identification of New Sources of Nutraceuticals from the Plant Kingdom
4. Use in Quality Control and Optimization of Nutraceuticals
4.1. Quality Control of Nutraceuticals: Challenges and Opportunities
4.2. Optimization of Nutraceutical Production
5. Assessing the Impact of Plant Derived Nutraceuticals on Human Metabolism
5.1. The Need to Provide Scientific Evidence on the Safety and Efficacy of Plant-Derived Nutraceuticals
5.2. Metabolomics Can Be Used as a Powerful Tool to Achieve Personalized Diagnostic and Prognostic Nutrition
5.3. NMR-Based-Approaches in Human Nutritional Metabolomics Studies
5.4. Following the Intricate Fate of Nutraceuticals in the Human Body
5.5. Analyzing Low Abundant Metabolites Derived from Phytochemicals Uptake
5.6. Evaluating the Impact of Nutraceutical Compounds on Human Metabolism and Health
6. Conclusions
Funding
Conflicts of Interest
References
- Daliu, P.; Santini, A.; Novellino, E. From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Expert Rev. Clin. Phar. 2019, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- DeFelice, S.L. The nutraceutical revolution: Its impact on food industry R&D. Trends Food Sci. Technol. 1995, 6, 59–61. [Google Scholar]
- Zeisel, S.H. Regulation of “nutraceuticals”. Science 1999, 285, 1853–1855. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, L. Nutraceuticals Definition, Kinds and Applications. In Systems and Synthetic Biotechnology for Production of Nutraceuticals; Springer Nature Singapore Pte Ltd.: Singapore, 2019; pp. 1–7. [Google Scholar]
- Rangel-Huerta, O.; Gil, A. Nutrimetabolomics: An Update on Analytical Approaches to Investigate the Role of Plant-Based Foods and Their Bioactive Compounds in Non-Communicable Chronic Diseases. Int. J. Mol. Sci. 2016, 17, 2072. [Google Scholar] [CrossRef] [PubMed]
- Verpoorte, R.; Choi, Y.H.; Kim, H.K. NMR-based metabolomics at work in phytochemistry. Phytochem. Rev. 2007, 6, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Sumner, L.W.; Mendes, P.; Dixon, R.A. Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 2003, 62, 817–836. [Google Scholar] [CrossRef] [Green Version]
- Das, L.; Bhaumik, E.; Raychaudhuri, U.; Chakraborty, R. Role of nutraceuticals in human health. J. Food Sci. Technol. 2011, 49, 173–183. [Google Scholar] [CrossRef] [Green Version]
- de Falco, B.; Lanzotti, V. NMR spectroscopy and mass spectrometry in metabolomics analysis of Salvia. Phytochem. Rev. 2018, 17, 951–972. [Google Scholar] [CrossRef]
- Wolfender, J.L.; Eugster, P.J.; Bohni, N.; Cuendet, M. Advanced Methods for Natural Product Drug Discovery in the Field of Nutraceuticals. Chimia 2011, 65, 400–406. [Google Scholar] [CrossRef] [Green Version]
- Farag, M.A. Comparative mass spectrometry & nuclear magnetic resonance metabolomic approaches for nutraceuticals quality control analysis: A brief review. Recent Pat. Biotechnol. 2014, 8, 17–24. [Google Scholar]
- Razzaq, A.; Sadia, B.; Raza, A.; Hameed, M.K.; Saleem, F. Metabolomics: A Way Forward for Crop Improvement. Metabolites 2019, 9, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.S.; Cordeiro, C.; Roessner, U.; Figueiredo, A. Editorial: Metabolomics in Crop Research—Current and Emerging Methodologies. Front. Plant. Sci. 2019, 10, 1013. [Google Scholar] [CrossRef] [PubMed]
- Astle, J.; Ferguson, J.T.; German, J.B.; Harrigan, G.G.; Kelleher, N.L.; Kodadek, T.; Parks, B.A.; Roth, M.J.; Singletary, K.W.; Wenger, C.D.; et al. Characterization of proteomic and metabolomic responses to dietary factors and supplements. J. Nutr. 2007, 137, 2787–2793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfender, J.-L.; Nuzillard, J.-M.; van der Hooft, J.J.J.; Renault, J.-H.; Bertrand, S. Accelerating Metabolite Identification in Natural Product Research: Toward an Ideal Combination of Liquid Chromatography–High-Resolution Tandem Mass Spectrometry and NMR Profiling, in SilicoDatabases, and Chemometrics. Anal. Chem. 2018, 91, 704–742. [Google Scholar] [CrossRef]
- Markley, J.L.; Bruschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The future of NMR-based metabolomics. Curr. Opin. Biotechnol. 2017, 43, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Gowda, G.A.N.; Raftery, D. Recent Advances in NMR-Based Metabolomics. Anal. Chem. 2017, 89, 490–510. [Google Scholar] [CrossRef]
- Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based plant metabolomics: Where do we stand, where do we go? Trends Biotechnol. 2011, 29, 267–275. [Google Scholar] [CrossRef]
- Emwas, A.H.; Roy, R.; McKay, R.T.; Tenori, L.; Saccenti, E.; Gowda, G.A.N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; et al. NMR Spectroscopy for Metabolomics Research. Metabolites 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Wolfender, J.L.; Rudaz, S.; Choi, Y.H.; Kim, H.K. Plant Metabolomics: From Holistic Data to Relevant Biomarkers. Curr. Med. Chem. 2013, 20, 1056–1090. [Google Scholar]
- Yi, L.; Dong, N.; Yun, Y.; Deng, B.; Ren, D.; Liu, S.; Liang, Y. Chemometric methods in data processing of mass spectrometry-based metabolomics: A review. Anal. Chim. Acta 2016, 914, 17–34. [Google Scholar] [CrossRef]
- Scognamiglio, M.; Fiumano, V.; D’Abrosca, B.; Esposito, A.; Choi, Y.H.; Verpoorte, R.; Fiorentino, A. Chemical interactions between plants in Mediterranean vegetation: The influence of selected plant extracts on Aegilops geniculata metabolome. Phytochemistry 2014, 106, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Leiss, K.A.; Choi, Y.H.; Verpoorte, R.; Klinkhamer, P.G.L. An overview of NMR-based metabolomics to identify secondary plant compounds involved in host plant resistance. Phytochem. Rev. 2010, 10, 205–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Gall, G.; Colquhoun, I.J.; Davis, A.L.; Collins, G.J.; Verhoeyen, M.E. Metabolite Profiling of Tomato (Lycopersicon esculentum) Using 1H NMR Spectroscopy as a Tool To Detect Potential Unintended Effects Following a Genetic Modification. J. Agric. Food Chem. 2003, 51, 2447–2456. [Google Scholar] [CrossRef]
- Takis, P.G.; Ghini, V.; Tenori, L.; Turano, P.; Luchinat, C. Uniqueness of the NMR approach to metabolomics. Trac Trends Anal. Chem. 2019, 120, 115300. [Google Scholar] [CrossRef]
- Wishart, D.S. NMR metabolomics: A look ahead. J. Magn. Reson. 2019, 306, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc. 2010, 5, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.bccresearch.com/ (accessed on 24 February 2020).
- Yuliana, N.D.; Jahangir, M.; Verpoorte, R.; Choi, Y.H. Metabolomics for the rapid dereplication of bioactive compounds from natural sources. Phytochem. Rev. 2013, 12, 293–304. [Google Scholar] [CrossRef]
- Robinette, S.L.; Bruschweiler, R.; Schroeder, F.C.; Edison, A.S. NMR in Metabolomics and Natural Products Research: Two Sides of the Same Coin. Acc. Chem. Res. 2012, 45, 288–297. [Google Scholar] [CrossRef]
- Kadum, H.; Hamid, A.A.; Abas, F.; Ramli, N.S.; Mohammed, A.K.S.; Muhialdin, B.J.; Jaafar, A.H. Bioactive Compounds Responsible for Antioxidant Activity of Different Varieties of Date (Phoenix dactylifera L.) Elucidated by 1H-NMR Based Metabolomics. Int. J. Food Prop. 2019, 22, 462–476. [Google Scholar] [CrossRef] [Green Version]
- Jayaprakasha, G.K.; Patil, B.S. A metabolomics approach to identify and quantify the phytochemicals in watermelons by quantitative 1H NMR. Talanta 2016, 153, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Cagliani, L.R.; Pellegrino, G.; Giugno, G.; Consonni, R. Quantification of Coffea arabica and Coffea canephora var. robusta in roasted and ground coffee blends. Talanta 2013, 106, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Turbitt, J.R.; Colson, K.L.; Killday, K.B.; Milstead, A.; Neto, C.C. Application of 1H NMR based metabolomics to the analysis of cranberry (Vaccinium macrocarpon) supplements. Phytochem. Anal. 2019, 31, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The role of carotenoids in the prevention of human pathologies. Biomed. Pharm. 2004, 58, 100–110. [Google Scholar] [CrossRef] [PubMed]
- da Costa, J.P. A current look at nutraceuticals—Key concepts and future prospects. Trends Food Sci. Technol. 2017, 62, 68–78. [Google Scholar] [CrossRef]
- Souyoul, S.A.; Saussy, K.P.; Lupo, M.P. Nutraceuticals: A Review. Dermatol. Ther. 2018, 8, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Nasri, H.; Baradaran, A.; Shirzad, H.; Rafieian-Kopaei, M. New concepts in nutraceuticals as alternative for pharmaceuticals. Int. J. Prev. Med. 2014, 5, 1487–1499. [Google Scholar]
- Zhu, F.; Du, B.; Xu, B. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review. Crit. Rev. Food Sci. Nutr. 2017, 58, 1260–1270. [Google Scholar] [CrossRef]
- Tripoli, E.; Guardia, M.L.; Giammanco, S.; Majo, D.D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic Effects of Simple Phenolic Acids: A Comprehensive Review. Phytother. Res. 2016, 30, 184–199. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Babu, P.V.A.; Liu, D.; Gilbert, E.R. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J. Nutr. Biochem. 2013, 24, 1777–1789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamadi, N.; Sharififar, F.; Pournamdari, M.; Ansari, M. A Review on Biosynthesis, Analytical Techniques, and Pharmacological Activities of Trigonelline as a Plant Alkaloid. J. Diet. Suppl. 2017, 15, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-del-Río, I.; Fernández, J.; Lombó, F. Plant nutraceuticals as antimicrobial agents in food preservation: Terpenoids, polyphenols and thiols. Int.J. Antimicrob. Agents 2018, 52, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Maulidiani, M.; Mediani, A.; Abas, F.; Park, Y.S.; Park, Y.-K.; Kim, Y.M.; Gorinstein, S. 1H NMR and antioxidant profiles of polar and non-polar extracts of persimmon (Diospyros kaki L.)—Metabolomics study based on cultivars and origins. Talanta 2018, 184, 277–286. [Google Scholar] [CrossRef]
- Awin, T.; Mediani, A.; Mohd Faudzi, S.M.; Maulidiani, M.; Leong, S.W.; Shaari, K.; Abas, F. Identification of α-glucosidase inhibitory compounds from Curcuma mangga fractions. Int. J. Food Prop. 2020, 23, 154–166. [Google Scholar] [CrossRef]
- Frédérich, M.; Wauters, J.-N.; Tits, M.; Jason, C.; de Tullio, P.; Van der Heyden, Y.; Fan, G.; Angenot, L. Quality Assessment of Polygonum cuspidatum and Polygonum multiflorum by 1H NMR Metabolite Fingerprinting and Profiling Analysis. Planta Med. 2010, 77, 81–86. [Google Scholar] [CrossRef]
- Cardoso, S.; Maraschin, M.; Peruch, L.A.M.; Rocha, M.; Pereira, A. A Chemometrics Approach for Nuclear Magnetic Resonance Data to Characterize the Partial Metabolome Banana Peels from Southern Brazil. J. Integr. Bioinf. 2017, 14. [Google Scholar] [CrossRef]
- Pariyani, R.; Ismail, I.S.; Ahmad Azam, A.; Abas, F.; Shaari, K. Identification of the compositional changes in Orthosiphon stamineus leaves triggered by different drying techniques using 1H NMR metabolomics. J. Sci. Food Agric. 2017, 97, 4169–4179. [Google Scholar] [CrossRef]
- de Falco, B.; Incerti, G.; Bochicchio, R.; Phillips, T.D.; Amato, M.; Lanzotti, V. Metabolomic analysis of Salvia hispanica seeds using NMR spectroscopy and multivariate data analysis. Ind. Crop. Prod. 2017, 99, 86–96. [Google Scholar] [CrossRef]
- Bhatia, A.; Bharti, S.K.; Tewari, S.K.; Sidhu, O.P.; Roy, R. Metabolic profiling for studying chemotype variations in Withania somnifera (L.) Dunal fruits using GC–MS and NMR spectroscopy. Phytochemistry 2013, 93, 105–115. [Google Scholar] [CrossRef]
- Mishra, S.; Gogna, N.; Dorai, K. NMR-based investigation of the altered metabolic response of Bougainvillea spectabilis leaves exposed to air pollution stress during the circadian cycle. Environ. Exp. Bot. 2019, 164, 58–70. [Google Scholar] [CrossRef]
- Fan, G.; Tao, L.-h.; Yue, Q.-h.; Kuang, T.-t.; Tang, C.; Yang, Y.-d.; Luo, W.-z.; Zhou, X.-d.; Zhang, Y. Metabolic Discrimination of Rhizoma Coptidis from Different Species Using 1H NMR Spectroscopy and Principal Component Analysis. Planta Med. 2012, 78, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Parihar, R.; Baishya, B. Identification of metabolites in coriander seeds (Coriandrum Sativum L.) aided by ultrahigh resolution total correlation NMR spectroscopy. Magn. Reson. Chem. 2019, 57, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Mediani, A.; Abas, F.; Khatib, A.; Maulidiani, H.; Shaari, K.; Choi, Y.H.; Lajis, N.H. 1H-NMR-based metabolomics approach to understanding the drying effects on the phytochemicals in Cosmos caudatus. Food Res. Int. 2012, 49, 763–770. [Google Scholar] [CrossRef]
- Mandrone, M.; Scognamiglio, M.; Fiorentino, A.; Sanna, C.; Cornioli, L.; Antognoni, F.; Bonvicini, F.; Poli, F. Phytochemical profile and α-glucosidase inhibitory activity of Sardinian Hypericum scruglii and Hypericum Hircinum. Fitoterapia 2017, 120, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Mannina, L.; Sobolev, A.P.; Capitani, D. Applications of NMR metabolomics to the study of foodstuffs: Truffle, kiwifruit, lettuce, and sea bass. Electrophoresis 2012, 33, 2290–2313. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, H.; Nicholson, J.; Hylands, P.; Sampson, J.; Whitcombe, I.; Stewart, C.; Caiger, S.; Oru, I.; Holmes, E. Metabolomic Strategy for the Classification and Quality Control of Phytomedicine: A Case Study of Chamomile Flower (Matricaria recutita L.). Planta Med. 2004, 70, 250–255. [Google Scholar]
- Grauso, L.; Emrick, S.; Bonanomi, G.; Lanzotti, V. Metabolomics of the alimurgic plants Taraxacum officinale, Papaver rhoeas and Urtica dioica by combined NMR and GC–MS analysis. Phytochem. Anal. 2019, 30, 535–546. [Google Scholar] [CrossRef]
- Chan, P.; Zhang, W.; Lau, C.-H.; Cheung, C.; Keun, H.; Tsim, K.; Lam, H. Metabonomic Analysis of Water Extracts from Different Angelica Roots by 1H-Nuclear Magnetic Resonance Spectroscopy. Molecules 2014, 19, 3460–3470. [Google Scholar] [CrossRef] [Green Version]
- Pramai, P.; Abdul Hamid, N.A.; Mediani, A.; Maulidiani, M.; Abas, F.; Jiamyangyuen, S. Metabolite profiling, antioxidant, and α-glucosidase inhibitory activities of germinated rice: Nuclear-magnetic-resonance-based metabolomics study. J. Food Drug Anal. 2018, 26, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Park, S.J.; Hyun, S.-H.; Yang, S.-O.; Lee, J.; Auh, J.-H.; Kim, J.-H.; Cho, S.-M.; Marriott, P.J.; Choi, H.-K. Biochemical monitoring of black raspberry (Rubus coreanus Miquel) fruits according to maturation stage by 1H NMR using multiple solvent systems. Food Res. Int. 2011, 44, 1977–1987. [Google Scholar] [CrossRef]
- Zolkeflee, N.K.Z.; Isamail, N.A.; Maulidiani, M.; Abdul Hamid, N.A.; Ramli, N.S.; Azlan, A.; Abas, F. Metabolite variations and antioxidant activity of Muntingia calabura leaves in response to different drying methods and ethanol ratios elucidated by NMR-based metabolomics. Phytochem. Anal. 2020. [Google Scholar] [CrossRef] [PubMed]
- Abdul Hamid, N.A.; Mediani, A.; Maulidiani, M.; Abas, F.; Park, Y.S.; Leontowicz, H.; Leontowicz, M.; Namiesnik, J.; Gorinstein, S. Characterization of metabolites in different kiwifruit varieties by NMR and fluorescence spectroscopy. J. Pharm. Biomed. Anal. 2017, 138, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, L.P.S.; Kim, H.K.; Verpoorte, R.; Choi, Y.H. NMR-Based Metabolomics: A Probe to Utilize Biodiversity. In Metabolomics Tools for Natural Product Discovery; Humana Press: Totowa, NJ, USA, 2013; pp. 117–127. [Google Scholar]
- D’Abrosca, B.; Scognamiglio, M.; Corrado, L.; Chiocchio, I.; Zampella, L.; Mastrobuoni, F.; Rega, P.; Scortichini, M.; Fiorentino, A.; Petriccione, M. Evaluation of different training systems on Annurca apple fruits revealed by agronomical, qualitative and NMR-based metabolomic approaches. Food Chem. 2017, 222, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-G.; Song, Y.-L.; Wang, Y.; Yuan, Y.-F.; Huang, X.-J.; Ye, W.-C.; Wang, Y.-T.; Zhang, Q.-W. Metabolic differentiations of Pueraria lobata and Pueraria thomsonii using 1H NMR spectroscopy and multivariate statistical analysis. J. Pharm. Biomed. Anal. 2014, 93, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Ritota, M.; Marini, F.; Sequi, P.; Valentini, M. Metabolomic Characterization of Italian Sweet Pepper (Capsicum annum L.) by Means of HRMAS-NMR Spectroscopy and Multivariate Analysis. J. Agric. Food Chem. 2010, 58, 9675–9684. [Google Scholar] [CrossRef] [PubMed]
- Florentino-Ramos, E.; Villa-Ruano, N.; Hidalgo-Martínez, D.; Ramírez-Meraz, M.; Méndez-Aguilar, R.; Velásquez-Valle, R.; Zepeda-Vallejo, L.G.; Pérez-Hernández, N.; Becerra-Martínez, E. 1H NMR-based fingerprinting of eleven Mexican Capsicum annuum cultivars. Food Res. Int. 2019, 121, 12–19. [Google Scholar] [CrossRef]
- Wei, F.; Furihata, K.; Koda, M.; Hu, F.; Kato, R.; Miyakawa, T.; Tanokura, M. 13C NMR-Based Metabolomics for the Classification of Green Coffee Beans According to Variety and Origin. J. Agric. Food Chem. 2012, 60, 10118–10125. [Google Scholar] [CrossRef]
- Gođevac, D.; Damjanović, A.; Stanojković, T.P.; Anđelković, B.; Zdunić, G. Identification of cytotoxic metabolites from Mahonia aquifolium using 1H NMR-based metabolomics approach. J. Pharm. Biomed. Anal. 2018, 150, 9–14. [Google Scholar] [CrossRef]
- Ritota, M.; Casciani, L.; Han, B.-Z.; Cozzolino, S.; Leita, L.; Sequi, P.; Valentini, M. Traceability of Italian garlic (Allium sativum L.) by means of HRMAS-NMR spectroscopy and multivariate data analysis. Food Chem. 2012, 135, 684–693. [Google Scholar] [CrossRef]
- Abdelsalam, A.; Mahran, E.; Chowdhury, K.; Boroujerdi, A.; El-Bakry, A. NMR-based metabolomic analysis of wild, greenhouse, and in vitro regenerated shoots of Cymbopogon schoenanthus subsp. proximus with GC–MS assessment of proximadiol. Physiol. Mol. Biol. Plants 2017, 23, 369–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Falco, B.; Incerti, G.; Pepe, R.; Amato, M.; Lanzotti, V. Metabolomic Fingerprinting of Romaneschi Globe Artichokes by NMR Spectroscopy and Multivariate Data Analysis. Phytochem. Anal. 2016, 27, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Girelli, C.R.; Accogli, R.; Del Coco, L.; Angilè, F.; De Bellis, L.; Fanizzi, F.P. 1H-NMR-based metabolomic profiles of different sweet melon (Cucumis melo L.) Salento varieties: Analysis and comparison. Food Res. Int. 2018, 114, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Abreu, A.C.; Aguilera-Sáez, L.M.; Peña, A.; García-Valverde, M.; Marín, P.; Valera, D.L.; Fernández, I. NMR-Based Metabolomics Approach To Study the Influence of Different Conditions of Water Irrigation and Greenhouse Ventilation on Zucchini Crops. J. Agric. Food Chem. 2018, 66, 8422–8432. [Google Scholar] [CrossRef]
- Ryu, S.; Furihata, K.; Koda, M.; Wei, F.; Miyakawa, T.; Tanokura, M. NMR-based analysis of the chemical composition of Japanese persimmon aqueous extracts. Magn. Reson. Chem. 2016, 54, 213–221. [Google Scholar] [CrossRef]
- Le Gall, H.; Fontaine, J.-X.; Molinié, R.; Pelloux, J.; Mesnard, F.; Gillet, F.; Fliniaux, O. NMR-based Metabolomics to Study the Cold-acclimation Strategy of Two Miscanthus Genotypes. Phytochem. Anal. 2017, 28, 58–67. [Google Scholar] [CrossRef]
- Charlton, A.J.; Donarski, J.A.; Harrison, M.; Jones, S.A.; Godward, J.; Oehlschlager, S.; Arques, J.L.; Ambrose, M.; Chinoy, C.; Mullineaux, P.M.; et al. Responses of the pea (Pisum sativum L.) leaf metabolome to drought stress assessed by nuclear magnetic resonance spectroscopy. Metabolomics 2008, 4, 312–327. [Google Scholar] [CrossRef]
- Lockwood, G.B. The quality of commercially available nutraceutical supplements and food sources. J. Pharm Pharm. 2011, 63, 3–10. [Google Scholar] [CrossRef]
- Simmler, C.; Graham, J.G.; Chen, S.N.; Pauli, G.F. Integrated analytical assets aid botanical authenticity and adulteration management. Fitoterapia 2018, 129, 401–414. [Google Scholar] [CrossRef]
- Santini, A.; Cammarata, S.M.; Capone, G.; Ianaro, A.; Tenore, G.C.; Pani, L.; Novellino, E. Nutraceuticals: Opening the debate for a regulatory framework. Brit. J. Clin. Pharm. 2018, 84, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Scognamiglio, M.; D’Abrosca, B.; Fiumano, V.; Golino, M.; Esposito, A.; Fiorentino, A. Seasonal phytochemical changes in Phillyrea angustifolia L.: Metabolomic analysis and phytotoxicity assessment. Phytochem. Lett. 2014, 8, 163–170. [Google Scholar] [CrossRef]
- Bhatia, A.; Tripathi, T.; Singh, S.; Bisht, H.; Behl, H.M.; Roy, R.; Sidhu, O.P. Comprehensive metabolite profiling in distinct chemotypes of Commiphora Wightii. Nat. Prod. Res. 2019, 33, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.A.; Kim, H.S.; Choi, S.H.; Jang, J.Y.; Jeong, M.J.; Lee, S.I. The Importance of the Circadian Clock in Regulating Plant Metabolism. Int. J. Mol. Sci. 2017, 18, 2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Wen, K.S.; Ruan, X.; Zhao, Y.X.; Wei, F.; Wang, Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [Green Version]
- Keurentjes, J.J. Genetical metabolomics: Closing in on phenotypes. Curr. Opin. Plant. Biol. 2009, 12, 223–230. [Google Scholar] [CrossRef]
- Pacifico, S.; Piccolella, S.; Galasso, S.; Fiorentino, A.; Kretschmer, N.; Pan, S.P.; Bauer, R.; Monaco, P. Influence of harvest season on chemical composition and bioactivity of wild rue plant hydroalcoholic extracts. Food Chem. Toxicol. 2016, 90, 102–111. [Google Scholar] [CrossRef]
- Ghatak, A.; Chaturvedi, P.; Weckwerth, W. Metabolomics in Plant Stress Physiology. Adv. Biochem. Eng. Biotechnol. 2018, 164, 187–236. [Google Scholar]
- Oms-Oliu, G.; Odriozola-Serrano, I.; Martin-Belloso, O. Metabolomics for assessing safety and quality of plant-derived food. Food Res. Int. 2013, 54, 1172–1183. [Google Scholar] [CrossRef]
- Minoja, A.P.; Napoli, C. NMR screening in the quality control of food and nutraceuticals. Food Res. Int. 2014, 63, 126–131. [Google Scholar] [CrossRef]
- Villalon-Lopez, N.; Serrano-Contreras, J.I.; Tellez-Medina, D.I.; Gerardo Zepeda, L. An (1)H NMR-based metabolomic approach to compare the chemical profiling of retail samples of ground roasted and instant coffees. Food Res. Int. 2018, 106, 263–270. [Google Scholar] [CrossRef]
- Saviano, G.; Paris, D.; Melck, D.; Fantasma, F.; Motta, A.; Iorizzi, M. Metabolite variation in three edible Italian Allium cepa L. by NMR-based metabolomics: A comparative study in fresh and stored bulbs. Metabolomics 2019, 15, 105. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; El Senousy, A.S.; El-Ahmady, S.H.; Porzel, A.; Wessjohann, L.A. Comparative metabolome-based classification of Senna drugs: A prospect for phyto-equivalency of its different commercial products. Metabolomics 2019, 15, 80. [Google Scholar] [CrossRef] [PubMed]
- Monakhova, Y.B.; Holzgrabe, U.; Diehl, B.W.K. Current role and future perspectives of multivariate (chemometric) methods in NMR spectroscopic analysis of pharmaceutical products. J. Pharm Biomed. Anal. 2018, 147, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Lei, Z.; Nikolau, B.J.; Saito, K. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects. Nat. Prod. Rep. 2015, 32, 212–229. [Google Scholar] [CrossRef]
- Kumar, A.; Mosa, K.A.; Ji, L.Y.; Kage, U.; Dhokane, D.; Karre, S.; Madalageri, D.; Pathania, N. Metabolomics-assisted biotechnological interventions for developing plant-based functional foods and nutraceuticals. Crit. Rev. Food Sci. 2018, 58, 1791–1807. [Google Scholar] [CrossRef]
- Lerman, A.; Lockwood, B. Nutraceuticals in veterinary medicine. Pharm. J. 2007, 278, 51–55. [Google Scholar]
- Ronis, M.J.J.; Pedersen, K.B.; Watt, J. Adverse Effects of Nutraceuticals and Dietary Supplements. Annu Rev. Pharm. 2018, 58, 583–601. [Google Scholar] [CrossRef]
- Mazzanti, G.; Menniti-Ippolito, F.; Moro, P.A.; Cassetti, F.; Raschetti, R.; Santuccio, C.; Mastrangelo, S. Hepatotoxicity from green tea: A review of the literature and two unpublished cases. Eur. J. Clin. Pharm. 2009, 65, 331–341. [Google Scholar] [CrossRef]
- Mahady, G.B.; Parrot, J.; Lee, C.; Yuri, G.S.; Dan, A. Botanical dietary supplement use in peri- and postmenopausal women. Menopause 2003, 10, 65–72. [Google Scholar]
- Sauer, S.; Plauth, A. Health-beneficial nutraceuticals-myth or reality? Appl. Microbiol. Biot. 2017, 101, 951–961. [Google Scholar] [CrossRef]
- McGhie, T.K.; Rowan, D.D. Metabolomics for measuring phytochemicals, and assessing human and animal responses to phytochemicals, in food science. Mol. Nutr. Food Res. 2012, 56, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Gokay, O.; Albert, K. From single to multiple microcoil flow probe NMR and related capillary techniques: A review. Anal. Bioanal. Chem. 2012, 402, 647–669. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, F. NMR-based metabolomics: The foodome and the assessment of dietary exposure as a key step to evaluate the effect of diet on health. In Modern Magnetic Resonance; Springer: Cham, Switzerland, 2018. [Google Scholar]
- van Duynhoven, J.P.M.; Jacobs, D.M. Assessment of dietary exposure and effect in humans: The role of NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2016, 96, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Brennan, L.; Fiehn, O.; Hankemeier, T.; Kristal, B.S.; van Ommen, B.; Pujos-Guillot, E.; Verheij, E.; Wishart, D.; Wopereis, S. Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics 2009, 5, 435–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Duynhoven, J.; Vaughan, E.E.; Jacobs, D.M.; Kemperman, R.A.; van Velzen, E.J.J.; Gross, G.; Roger, L.C.; Possemiers, S.; Smilde, A.K.; Dore, J.; et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA 2011, 108, 4531–4538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higdon, J.V.; Frei, B. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. Rev. Food Sci. 2003, 43, 89–143. [Google Scholar] [CrossRef]
- Giacco, R.; Costabile, G.; Fatati, G.; Frittitta, L.; Maiorino, M.I.; Marelli, G.; Parillo, M.; Pistis, D.; Tubili, C.; Vetrani, C.; et al. Effects of polyphenols on cardio-metabolic risk factors and risk of type 2 diabetes. A joint position statement of the Diabetes and Nutrition Study Group of the Italian Society of Diabetology (SID), the Italian Association of Dietetics and Clinical Nutrition (ADI) and the Italian Association of Medical Diabetologists (AMD). Nutr. Metab. Cardiovasc. Dis. 2020, 30, 355–367. [Google Scholar]
- van Velzen, E.J.J.; Westerhuis, J.A.; van Duynhoven, J.P.M.; van Dorsten, F.A.; Grun, C.H.; Jacobs, D.M.; Duchateau, G.S.M.J.E.; Vis, D.J.; Smilde, A.K. Phenotyping Tea Consumers by Nutrikinetic Analysis of Polyphenolic End-Metabolites. J. Proteome Res. 2009, 8, 3317–3330. [Google Scholar] [CrossRef]
- Jacobs, D.M.; Spiesser, L.; Garnier, M.; de Roo, N.; van Dorsten, F.; Hollebrands, B.; van Velzen, E.; Draijer, R.; van Duynhoven, J. SPE-NMR metabolite sub-profiling of urine. Anal. Bioanal. Chem. 2012, 404, 2349–2361. [Google Scholar] [CrossRef]
- Traka, M.H.; Mithen, R.F. Plant science and human nutrition: Challenges in assessing health-promoting properties of phytochemicals. Plant. Cell 2011, 23, 2483–2497. [Google Scholar] [CrossRef] [Green Version]
- Erkkila, A.T.; Schwab, U.S.; Lehto, S.; de Mello, V.D.; Kangas, A.J.; Soininen, P.; Ala-Korpela, M.; Uusitupa, M.I.J. Effect of fatty and lean fish intake on lipoprotein subclasses in subjects with coronary heart disease: A controlled trial. J. Clin. Lipidol. 2014, 8, 126–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulaszewska, M.M.; Weinert, C.H.; Trimigno, A.; Portmann, R.; Andres Lacueva, C.; Badertscher, R.; Brennan, L.; Brunius, C.; Bub, A.; Capozzi, F.; et al. Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies. Mol. Nutr. Food Res. 2019, 63, e1800384. [Google Scholar] [CrossRef] [PubMed]
- Savorani, F.; Rasmussen, M.A.; Mikkelsen, M.S.; Engelsen, S.B. A primer to nutritional metabolomics by NMR spectroscopy and chemometrics. Food Res. Int. 2013, 54, 1131–1145. [Google Scholar] [CrossRef] [Green Version]
- Hatzakis, E. Nuclear magnetic resonance (NMR) spectroscopy in food science: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 189–220. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.P.; Park, Y.; Ziegler, T.R. Nutritional metabolomics: Progress in addressing complexity in diet and health. Annu. Rev. Nutr. 2012, 32, 183–202. [Google Scholar] [CrossRef] [Green Version]
Experiment | HO | HE | Description |
---|---|---|---|
COSY | √ | Correlates proton signals belonging to geminal or vicinal hydrogen nuclei. Several variants are available. Among them, DQF-COSY, which (in principles) allows to detect also coupling constants. | |
TOCSY | √ | Detects proton signals belonging to the same spin system. | |
HSQC | √ | Detects carbon multiplicity and correlates carbon signals with directly bound protons. | |
H2BC | √ | Correlates protons with the vicinal carbons, as long as these carbons are protonated. | |
HMBC | √ | Allows the detection of long-range correlations. A variant of this is CIGAR-HMBC. | |
HSQC-TOCSY | √ | Detects carbon multiplicity and the correlation of the attached proton signals belonging to the same spin system. |
Compounds | Bioactivity [35,36,37,38,39,40,41,42,43,44,45] | Source Identified by NMR-Based Metabolomics | |||||
---|---|---|---|---|---|---|---|
Anticancer | Antioxidant | Anti- Inflammatory | Antibacterial | Antidiabetic | Cardiovascular Protection | ||
Carotenoids | |||||||
Lutein | √ | √ | √ | Diospyros kaki L. [46] | |||
Zeaxanthin | √ | √ | √ | Diospyros kaki L. [46] | |||
Phenolic compounds | |||||||
Curcumin | √ | √ | √ | √ | √ | Curcuma mangga Valeton & Zijp [47] | |
Resveratrol | √ | √ | √ | √ | Polygonum cuspidatum Siebold & Zucc. [48] | ||
Phenolic acids | |||||||
Caffeic acid | √ | √ | √ | Diospyros kaki L. [46] Musa spp. [49] Orthosiphon stamineus Benth. [50] Salvia hispanica L. [51] Withania somnifera L. [52] | |||
Chlorogenic acid | √ | √ | √ | Bougainvillea spectabilis Willd. [53] Coptis chinensis Franch [54] Coriandrum sativum L. [55] Cosmos caudatus Kunth [56] Salvia hispanica L. [51] Hypericum hircinum L. [57] Hypericum perforatum L. [57] Hypericum scruglii Bacch., Brullo & Salmeri [57] Lactuca sativa L. [58] Matricaria recutita L [59] Orthosiphon stamineus Benth. [50] Taraxacum officinale F.H.Wigg. [60] | |||
Ferulic acid | √ | √ | √ | Angelica spp. [61] Coptis chinensis Franch [54] Oryza sativa L. [62] Rubus coreanus Miq. [63] | |||
Gallic acid | √ | √ | √ | √ | Bougainvillea spectabilis Willd. [53] Muntingia calabura L. [64] Oryza sativa L. [62] Orthosiphon stamineus Benth. [50] Phoenix dactylifera L. [31] Rubus coreanus Miq. [63] | ||
Flavonoids | |||||||
Flavanones | |||||||
Hesperidin | √ | √ | √ | √ | √ | Actinidia spp. [65] Bougainvillea spectabilis Willd. [53] | |
Naringenin | √ | √ | √ | √ | √ | √ | Lycopersicon esculentum (Dunal) D’Arcy [24] |
Flavones | |||||||
Apigenin | √ | √ | √ | √ | Orthosiphon stamineus Benth. [50] | ||
Luteolin | √ | √ | √ | √ | Orthosiphon stamineus Benth. [50] Papaver rhoeas L. [60] | ||
Flavonols | |||||||
Kaempferol | √ | √ | √ | √ | √ | √ | Actinidia spp. [65] Bougainvillea spectabilis Willd. [53] Lycopersicon esculentum (Dunal) D’Arcy [24] |
Myricetin | √ | √ | √ | Vitis vinifera L. [66] | |||
Quercetin | √ | √ | √ | √ | √ | √ | Cosmos caudatus Kunth [56] Hypericum hyrcinum L. [57] Hypericum perforatum L. [57] Salvia hispanica L. [51] |
Rutin | √ | √ | √ | √ | Actinidia spp. [65] Bougainvillea spectabilis Willd. [53] Cosmos caudatus Kunth [56] Malus x domestica Burch. [67] Papaver rhoeas L. [60] | ||
Anthocyanidins | |||||||
Cyanidin | √ | √ | √ | √ | Rubus coreanus Miq. [63] | ||
Catechins | |||||||
Epicatechin | √ | √ | √ | √ | Hypericum perforatum L. [57] Hypericum scruglii Bacch., Brullo & Salmeri [57] Malus x domestica Burch. [67] Phoenix dactylifera L. [31] Rubus coreanus Miq. [63] | ||
Epicatechin gallate | √ | √ | √ | √ | Diospyros kaki L. [46] | ||
Isoflavones | |||||||
Daidzein | √ | √ | Muntingia calabura L. [64] Pueraria lobata (Willd.) Ohwi [68] Pueraria thomsonii Benth. [68] | ||||
Genistein | √ | √ | √ | Salvia hispanica L. [51] | |||
Vitamins | |||||||
C (Ascorbic acid) | √ | √ | √ | Actinidia spp. [58] Capsicum annuum L. [69,70] Diospyros kaki L. [46] Lactuca sativa L. [58] Orthosiphon stamineus Benth [50] Rubus coreanus Miq. [63] | |||
E (α-tocopherol) | √ | √ | √ | Actinidia spp. [65] Diospyros kaki L. [46] Oryza sativa L. [62] | |||
E (γ-tocopherol) | √ | √ | √ | Muntingia calabura L. [64] | |||
Alkaloids | |||||||
Caffeine | √ | Coffea arabica L. [71] Coffea canephora Pierre [71] | |||||
Berberine | √ | √ | Coptis chinensis Franch [54] Mahonia aquifolium (Pursh) Nutt. [72] | ||||
Trigonelline | √ | √ | √ | √ | √ | √ | Actinidia spp. [65] Allium sativum L. [73] Bougainvillea spectabilis Willd. [53] Capsicum annuum L. [69] Cymbopogon schoenanthus subsp. proximus (Hochst. ex A.Rich.) Maire & Weiller [74] Cynara cardunculus L. [75] Coffea arabica L. [71] Coffea canephora Pierre [71] Cucumis melo L. [76] Cucurbita pepo L. [77] Diospyros kaki L. [78] Hypericum perforatum L. [57] Lycopersicon esculentum (Dunal) D’Arcy [24] Miscanthus × giganteus J.M.Greef & Deuter ex Hodk. & Renvoize [79] Pisum sativum L. [80] Papaver rhoeas L. [60] Taraxacum officinale F.H.Wigg. [60] Urtica dioica L. Withania somnifera (L.) Dunal [52] |
Diallylthiosulfinate | |||||||
Allicin | √ | √ | √ | √ | √ | Allium sativum L. [73] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valentino, G.; Graziani, V.; D’Abrosca, B.; Pacifico, S.; Fiorentino, A.; Scognamiglio, M. NMR-Based Plant Metabolomics in Nutraceutical Research: An Overview. Molecules 2020, 25, 1444. https://doi.org/10.3390/molecules25061444
Valentino G, Graziani V, D’Abrosca B, Pacifico S, Fiorentino A, Scognamiglio M. NMR-Based Plant Metabolomics in Nutraceutical Research: An Overview. Molecules. 2020; 25(6):1444. https://doi.org/10.3390/molecules25061444
Chicago/Turabian StyleValentino, Giovanna, Vittoria Graziani, Brigida D’Abrosca, Severina Pacifico, Antonio Fiorentino, and Monica Scognamiglio. 2020. "NMR-Based Plant Metabolomics in Nutraceutical Research: An Overview" Molecules 25, no. 6: 1444. https://doi.org/10.3390/molecules25061444
APA StyleValentino, G., Graziani, V., D’Abrosca, B., Pacifico, S., Fiorentino, A., & Scognamiglio, M. (2020). NMR-Based Plant Metabolomics in Nutraceutical Research: An Overview. Molecules, 25(6), 1444. https://doi.org/10.3390/molecules25061444