Synthesis and Characterization of a Binuclear Copper(II)-dipyriamethyrin Complex: [Cu2(dipyriamethyrin)(μ2-1,1-acetato)2]
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- Waldron, K.J.; Rutherford, J.C.; Ford, D.; Robinson, N.J. Metalloproteins and Metal Sensing. Nature 2009, 460, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Andreini, C.; Bertini, I.; Cavallaro, G.; Holliday, G.L.; Thornton, J.M. Metal ions in biological catalysis: From enzyme databases to general principles. J. Biol. Inorg. Chem. 2008, 13, 1205–1218. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.P.; Scanlan, D.J.; Blindauer, C.A. Protein fractionation and detection for metalloproteomics: Challenges and approachs. Anal. Bioanal. Chem. 2012, 402, 3311–3322. [Google Scholar] [CrossRef] [PubMed]
- Valasatava, Y.; Rosato, A.; Furnham, N.; Thornton, J.M.; Andreini, C. To what extent do structural changes in catalytic metal sites affect enzyme function? J. Inorg. Biochem. 2018, 179, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Tottey, S.; Waldron, K.J.; Firbank, S.J.; Reale, B.; Bessant, C.; Sato, K.; Cheek, T.R.; Gray, J.; Banfield, M.J.; Dennison, C.; et al. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 2008, 455, 1138–1142. [Google Scholar] [CrossRef] [PubMed]
- Mirts, E.N.; Bhagi-Damodaran, A.; Liu, Y. Understanding and Modulating Metalloenzymes with Unnatural Amino Acids, Non-Native Metal Ions, and Non-Native Metallocofactors. Acc. Chem. Res. 2019, 52, 935–944. [Google Scholar] [CrossRef]
- Jeschek, M.; Panke, S.; Ward, T.R. Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism. Trends Biotechnol. 2018, 36, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Schwizer, F.; Okamoto, Y.; Heinisch, T.; Gu, Y.; Pellizzoni, M.M.; Lebrun, V.; Reuter, R.; Kohler, V.; Lewis, J.C.; Ward, T.R. Artificial Metalloenzymes: Reaction Scope and Optimization Strategies. Chem. Rev. 2018, 118, 142–231. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Cangelosi, V.M.; Zastrow, M.L.; Tegoni, M.; Plegaria, J.S.; Tebo, A.G.; Mocny, C.S.; Ruckthong, L.; Qayyum, H.; Pecoraro, V.L. Protein Design: Toward Functional Metalloenzymes. Chem. Rev. 2014, 114, 3495–3578. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Yeung, N.; Sieracki, N.; Marshall, N.M. Design of functional metalloproteins. Nature 2009, 460, 855–862. [Google Scholar] [CrossRef] [Green Version]
- Wieszczycka, K.; Staszak, K. Artificial metalloenzymes as catalysts in non-natural compounds synthesis. Coord. Chem. Rev. 2017, 351, 160–171. [Google Scholar] [CrossRef]
- Groves, J.T.; Watanabe, Y. Reactive iron porphyrin derivatives related to the catalytic cycles of cytochrome P-450 and peroxidase. Studies of the mechanism of oxygen activation. J. Am. Chem. Soc. 1988, 110, 8443–8452. [Google Scholar] [CrossRef]
- Joshi, T.; Graham, B.; Spiccia, L. Macrocyclic Metal Complexes for Metalloenzyme Mimicry and Sensor Development. Acc. Chem. Res. 2015, 48, 2366–2379. [Google Scholar] [CrossRef] [PubMed]
- Happe, T.; Hemschemeier, A. Metalloprotein mimics – old tools in a new light. Trends Biotechnol. 2014, 32, 170–176. [Google Scholar] [CrossRef]
- Chen, K.-W.; Yang, F.-A.; Chen, J.-H.; Wang, S.-S.; Tung, J.-Y. A novel bismercury(II) complex of bindentate N21, N22-bridged porphyrin: [((benzamido-κN)phenylmercury-κHg-N21, N22)-meso-tetraphenyl porphyrinato- N23, N24]phenylmercury(II) toluene solvate. Polyhedron 2008, 27, 2216–2220. [Google Scholar] [CrossRef]
- Thompson, S.J.; Brennan, M.R.; Lee, S.Y.; Dong, G. Synthesis and applications of rhodium porphyrin complexes. Chem. Soc. Rev. 2018, 47, 929–981. [Google Scholar] [CrossRef]
- Cullen, D.; Meyer, E.; Srivastava, T.S.; Tsutsui, M. Unusual metalloporphyrins. XIV. Structure of [meso-tetraphenylporphyinato]bis[tricarbonylrhenium(I)]. J. Am. Chem. Soc. 1972, 94, 7603–7605. [Google Scholar] [CrossRef]
- Takenaka, A.; Sasada, Y.; Omura, T.; Ogoshi, H.; Yoshida, Z.-I. Crystal structure of μ-octaethylporphinato-bis[dicarbonylrhodium(I)]. J. Chem. Soc. Chem. Commun. 1973, 792–793. [Google Scholar] [CrossRef]
- Tsutsui, M.; Hrung, C.P.; Ostfeld, D.; Srivastava, T.S.; Cullen, D.L.; Meyer, E.F., Jr. Unusual Metalloporphyrin Complexes of Rhenium and Technetium. J. Am. Chem. Soc. 1975, 97, 3952–3965. [Google Scholar] [CrossRef]
- Callot, H.J.; Chevrier, B.; Weiss, R. Sitting-atop Porphyrin Complexes. The Structure of the Bischloromercury(II) complex of N-Tosyaminooctaethylporphyrin. J. Am. Chem. Soc. 1979, 101, 7729–7730. [Google Scholar] [CrossRef]
- Brothers, P.J. Boron Complexes of Pyrrolyl Ligands. Inorg. Chem. 2011, 50, 12374–12386. [Google Scholar] [CrossRef] [PubMed]
- Brothers, P.J. Boron complexes of porphyrins and related polypyrrole ligands: Unexpected chemistry for both boron and the porphyrin. Chem. Commun. 2008, 2090–2102. [Google Scholar] [CrossRef] [PubMed]
- Sessler, J.L.; Tomat, E. Transition Metal Complexes of Expanded Porphyrins. Acc. Chem. Res. 2007, 40, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Alka, A.; Shetti, V.S.; Ravikanth, M. Coordination chemistry of expanded porphyrins. Coord. Chem. Rev. 2019, 401, 213063. [Google Scholar] [CrossRef]
- Mori, H.; Osuka, A. Bismetal Complexes of 5,20-Bis(5-formyl-2-pyrrolyl)-[26]hexaphyrin(1.1.1.1.1.1) Exhibiting Strong Near-Infrared Region Absorptions. Chem. Eur. J. 2015, 21, 7007–7011. [Google Scholar] [CrossRef]
- Rath, H.; Aratani, N.; Lim, J.M.; Lee, J.S.; Kim, D.; Shinokubo, H.; Osuka, A. Bis-rhodium hexaphyrins: Metalation of [28]hexaphyrin and a smooth Hückel aromatic-antiaromatic interconversion. Chem. Commun. 2009, 3762–3764. [Google Scholar] [CrossRef]
- Shimoura, K.; Kai, H.; Nakamura, Y.; Hong, Y.; Mori, S.; Miki, K.; Ohe, K.; Notsuka, Y.; Yamaoka, Y.; Ishida, M.; et al. Bis-Metal Complexes of Double N-Confused Dioxohexaphyrins as Potential Near-Infrared-II Photoacoustic Dyes. J. Am. Chem. Soc. 2020, 142, 4429–4437. [Google Scholar] [CrossRef]
- Sessler, J.L.; Tomat, E.; Mody, T.D.; Lynch, V.M.; Veauthier, J.M.; Mirsaidov, U.; Markert, J.T. A Schiff Base Expanded Porphyrin Macrocycle that Acts as a Versatile Binucleating Ligand for Late First-Row Transition Metals. Inorg. Chem. 2005, 44, 2125–2127. [Google Scholar] [CrossRef]
- Reiter, W.A.; Gerges, A.; Lee, S.; Deffo, T.; Clifford, T.; Danby, A.; Bowman-James, K. Accordion porphyrins: Hybrid models for heme and binuclear monooxygenases. Coord. Chem. Rev. 1998, 174, 343–359. [Google Scholar] [CrossRef]
- Tomat, E.; Cuesta, L.; Lynch, V.M.; Sessler, J.L. Binuclear Fluoro-Bridged Zinc and Cadmium Complexes of a Schiff Base Expanded Porphyrin: Fluoride Abstraction from the Tetrafluoroborate Anion. Inorg. Chem. 2007, 46, 6224–6226. [Google Scholar] [CrossRef] [PubMed]
- Sarma, T.; Panda, P.K. Annulated Isomeric, Expanded, and Contracted Porphyrins. Chem. Rev. 2017, 117, 2785–2838. [Google Scholar] [CrossRef] [PubMed]
- Khusnutdinova, D.; Wadsworth, B.L.; Flores, M.; Beiler, A.M.; Cruz, E.A.R.; Zenkov, Y.; Moore, G.F. Electrocatalytic Properties of Binuclear Cu (II) Fused Porphyrins for Hydrogen Evolution. ACS Catal. 2018, 8, 9888–9898. [Google Scholar] [CrossRef]
- Cuesta, L.; Tomat, E.; Lynch, V.M.; Sessler, J.L. Binuclear organometallic ruthenium complexes of a Schiff base expanded porphyrin. Chem. Commun. 2008, 3744–3746. [Google Scholar] [CrossRef] [PubMed]
- Montenegro-Pohlhammer, N.; Urzua-Leiva, R.; Paez-Hernandez, D.; Cardenas-Jiron, G. Spin-filter transport and magnetic properties in a binuclear Cu(II) expanded porphyrin based molecular junction. Dalton Trans. 2019, 48, 8418–8426. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.-J.; Shamov, G.A.; Schreckenback, G. Binuclear Uranium(VI) Complexes with a “Pacman” Expanded Porphyrin: Computational Evidence for Highly Unusual Bis-Actinyl Structures. Chem. Eur. J. 2010, 16, 2282–2290. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.L.; Jones, G.M.; Odoh, S.O.; Schreckenbach, G.; Magnani, N.; Love, J.B. Strongly coupled binuclear uranium-oxo complexes from uranyl oxo rearrangement and reductive silylation. Nat. Chem. 2012, 4, 221–227. [Google Scholar] [CrossRef]
- Setsune, J.-i.; Kawama, M.; Nishinaka, T. Helical binuclear Co(II) complexes of pyriporphyrin analogue for sensing homochiral carboxylic acids. Tet. Lett. 2011, 52, 1773–1777. [Google Scholar] [CrossRef]
- Vogel, E.; Michels, M.; Zander, L.; Lex, J.; Tuzun, N.S.; Houk, K.N. Spirodiporphyrins- As Binuclear Metal Complexes. Angew. Chem., Int. Ed. 2003, 42, 2857–2862. [Google Scholar] [CrossRef]
- Samala, S.; Dutta, R.; He, Q.; Park, Y.; Chandra, B.; Lynch, V.M.; Jung, Y.M.; Sessler, J.L.; Lee, C.-H. A robus bis-rhodium(I) complex of π−extended planar, anti-aromatic hexaphyrin[1.0.1.0.1.0]. Chem. Commun. 2020, 56, 758–761. [Google Scholar] [CrossRef]
- Frensch, L.K.; Propper, K.; John, M.; Demeshko, S.; Bruckner, C.; Meyer, F. Siamese-Twin Porphyrin: A Pyrazole-Based Expanded Porphyrin Providing a Bimetallic Cavity. Angew. Chem., Int. Ed. 2011, 50, 1420–1424. [Google Scholar] [CrossRef]
- Blusch, L.K.; Craigo, K.E.; Martin-Diaconescu, V.; McQuarters, A.B.; Bill, E.; Dechert, S.; DeBeer, S.; Lehnert, N.; Meyer, F. Hidden Non-Innocence in an Expanded Porphyrin: Electronic Structure of the Siamese-Twin Porphyrin’s Dicopper Complex in Different Oxidation States. J. Am. Chem. Soc. 2013, 135, 13892–13899. [Google Scholar] [CrossRef] [PubMed]
- Carre, F.H.; Corriu, R.J.P.; Bolin, G.; Moreau, J.J.E.; Vernhet, C. Aminosilanes in Organic Synthesis. Preparation of New Expanded Porphyrin Ligands and Bimetallic Transition-Metal Complexes. Crystal Structure of Tetrapyrrole Macrocycle Dirhodium Complex. Organometallics 1993, 12, 2478–2486. [Google Scholar] [CrossRef]
- Corriu, R.J.P.; Bolin, G.; Moreau, J.J.E.; Vernhet, C. A facile synthesis of new tetrapyrrole macrocyclic derivatives. Formation of bimetallic transition metal complexes. J. Chem. Soc. Chem. Commun. 1991, 211–213. [Google Scholar] [CrossRef]
- Stawski, W.; Kijewska, M.; Pawlicki, M. Multi-cation Coordination in Porphyrinoids. Chem. Asian J. 2020, 15, 8–20. [Google Scholar] [CrossRef] [PubMed]
- Kohler, T.; Hodgson, M.C.; Seidel, D.; Veauthier, J.M.; Meyer, S.; Lynch, V.; Boyd, P.D.W.; Brothers, P.J.; Sessler, J.L. Octaethylporphyrin and expanded porphyrin complexes containing BF2 groups. Chem. Commun. 2004, 1060–1061. [Google Scholar] [CrossRef]
- Weghorn, S.J.; Sessler, J.L.; Lynch, V.; Baumann, T.F.; Sibert, J.W. Bis[(μ-chloro)copper(II)] Amethyrin: A Bimetallic Copper(II) Complex of an Expanded Porphyrin. Inorg. Chem. 1996, 35, 1089–1090. [Google Scholar] [CrossRef]
- Sessler, J.L.; Melfi, P.J.; Tomat, E.; Lynch, V.M. Copper(II) and oxovanadium(V) complexes of hexaphyrin(1.0.1.0.0.0). Dalton Trans. 2007, 629–632. [Google Scholar] [CrossRef]
- Brewster, J.T., II; Anguera, G.; Moore, M.D.; Dolinar, B.S.; Zafar, H.; Thiabaud, G.D.; Lynch, V.M.; Humphrey, S.M.; Sessler, J.L. Synthesis and Characterization of a Binuclear Copper(II) Naphthoisoamethyrin Complex Displaying Weak Antiferromagnetic Coupling. Inorg. Chem. 2017, 56, 12665–12669. [Google Scholar] [CrossRef]
- Brewster, J.T., II; He, Q.; Anguera, G.; Moore, M.D.; Ke, X.-S.; Lynch, V.M.; Sessler, J.L. Synthesis and characterization of a dipyriamethyrin-uranyl complex. Chem. Commun. 2017, 53, 4981–4984. [Google Scholar] [CrossRef]
- Brewster, J.T., II; Mangel, D.N.; Gaunt, A.J.; Saunders, D.P.; Zafar, H.; Lynch, V.M.; Boreen, M.A.; Garner, M.E.; Goodwin, C.A.P.; Settineri, N.S.; et al. In-Plane Thorium(IV), Uranium(IV), and Neptunium(IV) Expanded Porphyrin Complexes. J. Am. Chem. Soc. 2019, 141, 17867–17874. [Google Scholar] [CrossRef]
- Bruckner, C.; Zhang, Y.; Rettig, S.J.; Dolphin., D. Synthesis, derivatization and structural characterization of octahedral tris(5-phenyl-4,6-dipyrrinato) complexes of cobalt(III) and iron(III). Inorg. Chim. Acta. 1997, 263, 279–286. [Google Scholar] [CrossRef]
- Halper, S.R.; Cohen, S.M. Synthesis, Structure, and Spectroscopy of Phenylacetylenylene Rods Incorporating meso-Substituted Dipyrrin Ligands. Chem. Eur. J. 2003, 9, 4661–4669. [Google Scholar] [CrossRef]
- Halper, S.R.; Malachowski, M.R.; Delaney, H.M.; Cohen, S.M. Heteroleptic Copper Dipyrromethene Complexes: Synthesis, Structure, and Coordination Polymers. Inorg. Chem. 2004, 43, 1242–1249. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Nan, H.; Sun, W.; Zhang, Q.; Zhan, M.; Zou, L.; Xie, Z.; Li, X.; Lu, C.; Cheng, Y. Synthesis and characterisation of neutral mononuclear cuprous complexes based on dipyrrin derivatives and phosphine mixed-ligands. Dalton Trans. 2012, 41, 10199–10210. [Google Scholar] [CrossRef] [PubMed]
- Sessler, J.L.; Tomat, E.; Lynch, V.M. Positive Homotropic Allosteric Binding of a Silver(I) Cations in a Schiff Base Oligopyrrolic Macrocycle. J. Am. Chem. Soc. 2006, 128, 4184–4185. [Google Scholar] [CrossRef] [PubMed]
- Setsune, J.-I.; Watanabe, K. Cryptand-like Porphyrinoid Assembled with Three Dipyrrylpyridine Chains: Synthesis, Structure, and Homotropic Positive Allosteric Binding of Carboxylic Acids. J. Am. Chem. Soc. 2008, 8, 2404–2405. [Google Scholar] [CrossRef]
- Macquet, J.P.; Millard, M.M.; Theophanides, T. X-Ray Photoelectron Spectroscopy of Porphyrins. J. Am. Chem. Soc. 1978, 100, 4741–4746. [Google Scholar] [CrossRef]
- Shen, Y.; Ryde, U. The structure of sitting-atop complexes of metalloporphyrins studied by theoretical methods. J. Inorg. Biochem. 2004, 98, 878–895. [Google Scholar] [CrossRef]
- De Luca, G.; Romeo, A.; Scolaro, L.M.; Ricciardi, G.; Rosa, A. Sitting-Atop Metallo-Porphyrin Complexes: Experimental and Theoretical Investigations on Such Elusive Species. Inorg. Chem. 2009, 48, 8493–8507. [Google Scholar] [CrossRef]
- Duedal, T.; Nielsen, K.A.; Olsen, G.; Rasmussen, C.B.G.; Kongsted, J.; Levillain, E.; Breton, T.; Miyazaki, E.; Takimiya, K.; Bähring, S.; et al. Very Strong Binding for a Neutral Calix[4]pyrrole Receptor Displaying Positive Allosteric Binding. J. Org. Chem. 2017, 82, 2123–2128. [Google Scholar] [CrossRef] [Green Version]
- Gorelsky, S.I.; Lapointe, D.; Fagnou, K. Analysis of the Concerted Metalation-Deprotonation Mechanism in Palladium-Catalyzed Direct Arylation Across a Broad Range of Aromatic Substrates. J. Am. Chem. Soc. 2008, 130, 10848–10849. [Google Scholar] [CrossRef] [PubMed]
- Rao, W.-H.; Shi, B.-F. Recent advances in copper-mediated chelation-assisted functionalization of unactivated C-H bonds. Org. Chem. Front. 2016, 3, 1028–1047. [Google Scholar] [CrossRef]
- Lapointe, D.; Fagnou, K. Overview of the Mechanistic Work on the Concerted Metallation-Deprotonation Pathway. Chem. Lett. 2010, 39, 1118–1126. [Google Scholar] [CrossRef]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2’-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 7, 1349–1356. [Google Scholar] [CrossRef]
- The α value was calculated using the smallest N-Cu-O angle. The β-value was calculated using the axial N-Cu-N angle. τ was calculated as (β-α)/60.
- Halcrow, M.A. Jahn-Teller Distortions in Transition Metal Compounds and Their Importance in Functional Molecular and Inorganic Materials. Chem. Soc. Rev. 2013, 42, 1784–1795. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Brugh, A.M.; Rawson, J.; Therien, M.J.; Forbes, M.D.E. Alkyne-Bridged Multi[Copper(II) Porphyrin] Structures: Nuances of Orbital Symmetry in Long Range, Through-Bond Mediated Isotropic Spin Exchange Interactions. J. Am. Chem. Soc. 2017, 139, 9759–9762. [Google Scholar] [CrossRef]
- Selyutin, G.E.; Shklyaev, A.A.; Shul’ga, A.M. EPR Spectral Study of the Structure of Dimers of Copper(II) Porphyrin and Phthalocyanine Complexes. Russ. Chem. Bull. 1985, 34, 1218–1223. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brewster, J.T., II; Root, H.D.; Zafar, H.; Thiabaud, G.D.; Sedgwick, A.C.; He, J.; Lynch, V.M.; Sessler, J.L. Synthesis and Characterization of a Binuclear Copper(II)-dipyriamethyrin Complex: [Cu2(dipyriamethyrin)(μ2-1,1-acetato)2]. Molecules 2020, 25, 1446. https://doi.org/10.3390/molecules25061446
Brewster JT II, Root HD, Zafar H, Thiabaud GD, Sedgwick AC, He J, Lynch VM, Sessler JL. Synthesis and Characterization of a Binuclear Copper(II)-dipyriamethyrin Complex: [Cu2(dipyriamethyrin)(μ2-1,1-acetato)2]. Molecules. 2020; 25(6):1446. https://doi.org/10.3390/molecules25061446
Chicago/Turabian StyleBrewster, James T., II, Harrison D. Root, Hadiqa Zafar, Gregory D. Thiabaud, Adam C. Sedgwick, Jiaming He, Vincent M. Lynch, and Jonathan L. Sessler. 2020. "Synthesis and Characterization of a Binuclear Copper(II)-dipyriamethyrin Complex: [Cu2(dipyriamethyrin)(μ2-1,1-acetato)2]" Molecules 25, no. 6: 1446. https://doi.org/10.3390/molecules25061446
APA StyleBrewster, J. T., II, Root, H. D., Zafar, H., Thiabaud, G. D., Sedgwick, A. C., He, J., Lynch, V. M., & Sessler, J. L. (2020). Synthesis and Characterization of a Binuclear Copper(II)-dipyriamethyrin Complex: [Cu2(dipyriamethyrin)(μ2-1,1-acetato)2]. Molecules, 25(6), 1446. https://doi.org/10.3390/molecules25061446