Himalayan Nettle Girardinia diversifolia as a Candidate Ingredient for Pharmaceutical and Nutraceutical Applications—Phytochemical Analysis and In Vitro Bioassays
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Analysis
2.2. In Vitro Bioassays
2.3. Cytotoxic Activity
2.4. Effect on LDLR Expression in Hepatoma Cell Line Huh7
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction
4.3. HPLC-DAD-APCI-MS of Phytosterols, HPLC-DAD-APCI for Parotenoids, and HPLC-DAD-ESI-MS for Phenolic and Saponins
4.4. GC-MS Analysis
4.5. Isolation of Phytoconstituents
4.6. Bioassays
4.7. Cell Cultures
4.8. Cell Viability Assay
4.9. Western Blot Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gurung, A.; Flanigan, H.; Ghimeray, A.K.; Karki, R.; Bista, R.; Gurung, O.P. Traditional knowledge of processing and use of the Himalayan giant nettle (Girardinia diversifolia (Link) Friis) among the Gurungs of Sikles, Nepal. Ethnobot. Res. Appl. 2012, 10, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Kumar Rana, S.; Sen Oli, P.; Kala Rana, H. Traditional botanical knowledge (TBK) on the use of medicinal plants in Sikles area, Nepal. Asian J. Plant Sci. Res. 2015, 5, 8–15. [Google Scholar]
- Nath, K.K.; Deka, P.; Borthakur, S.K. Traditional remedies of joint diseases in Assam. Indian J. Tradit. Knowl. 2011, 10, 568–571. [Google Scholar]
- Kunwar, R.M.; Mahat, L.; Sharma, L.N.; Shrestha, K.P.; Kominee, H.; Bussmann, R.W. Underutilized plant species in Far West Nepal. J. Mt. Sci. 2012, 9, 589–600. [Google Scholar] [CrossRef]
- Bhatti, V.; Vashishtha, D. Indigenous plants in traditional healthcare system in Kedarnath valley of western Himalaya. Indian J. Tradit. Knowl. 2008, 07, 300–310. [Google Scholar]
- Subedee, B.R.; Chaudhary, R.P.; Uprety, Y.; Dorji, T. Socio-ecological perspectives of Himalayan Giant Nettle (Girardinia diversifolia (Link) Friis) in Nepal. J. Nat. Fibers 2020, 17, 9–17. [Google Scholar] [CrossRef]
- Rokaya, M.B.; Münzbergová, Z.; Timsina, B. Ethnobotanical study of medicinal plants from the Humla district of western Nepal. J. Ethnopharmacol. 2010, 130, 485–504. [Google Scholar] [CrossRef]
- Sut, S.; Baldan, V.; Faggian, M.; Peron, G.; Dall’Acqua, S. Nutraceuticals, A new challenge for medicinal chemistry. Curr. Med. Chem. 2016, 23, 3198–3223. [Google Scholar] [CrossRef]
- Kibwage, I. Phytochemical and Antimicrobial Investigation of Girardinia diversifolia (Link) Friis (Urticaceae). East Cent. African J. Pharm. Sci. 2011, 14, 89–94. [Google Scholar]
- Cañabate-Díaz, B.; Segura Carretero, A.; Fernández-Gutiérrez, A.; Belmonte Vega, A.; Garrido Frenich, A.; Martínez Vidal, J.L.; Duran Martos, J. Separation and determination of sterols in olive oil by HPLC-MS. Food Chem. 2007, 102, 593–598. [Google Scholar] [CrossRef]
- Sheng, Y.; Chen, X.-B. Isolation and identification of an isomer of β-sitosterol by HPLC and GC-MS. Health (Irvine. Calif). 2009, 01, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Rivera, S.M.; Christou, P.; Canela-Garayoa, R. Identification of carotenoids using mass spectrometry. Mass Spectrom. Rev. 2014, 33, 353–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friščić, M.; Bucar, F.; Hazler Pilepić, K. LC-PDA-ESI-MSn analysis of phenolic and iridoid compounds from Globularia spp. J. Mass Spectrom. 2016, 51, 1211–1236. [Google Scholar] [CrossRef] [PubMed]
- Gouveia-Figueira, S.C.; Castilho, P.C. Phenolic screening by HPLC-DAD-ESI/MSn and antioxidant capacity of leaves, flowers and berries of Rubus grandifolius Lowe. Ind. Crops Prod. 2015, 73, 28–40. [Google Scholar] [CrossRef]
- Maggi, F.; Giuliani, C.; Fico, G.; Ricciutelli, M.; Bramucci, M.; Quassinti, L.; Petrelli, D.; Vitali, L.A.; Cianfaglione, K.; Tirillini, B.; et al. Secondary metabolites, secretory structures and biological activity of water celery (Apium nodiflorum (L.) Lag.) growing in central Italy. Plant Biosyst. 2018, 1–11. [Google Scholar] [CrossRef]
- Flamini, R. Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols. ISRN Spectrosc. 2013, 2013, 1–45. [Google Scholar] [CrossRef]
- Saleri, F.D.; Chen, G.; Li, X.; Guo, M. Comparative analysis of saponins from different Phytolaccaceae species and their antiproliferative activities. Molecules 2017, 22, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Sun, J.Z.; Xu, S.Z.; Cai, Q.; Liu, Y.Q. Rapid characterization and identification of chemical constituents in gentiana radix before and after wine-processed by UHPLC-LTQ-orbitrap MSn. Molecules 2018, 23. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.-C.; Wang, Y.-X.; Dai, R.; Tian, X.-G.; Sun, C.-P.; Ma, X.-C.; Jia, J.-M.; Zhang, B.-J.; Huo, X.-K.; Wang, C. C27-Nor lanostane triterpenoids of the fungus Ganoderma lucidum and their inhibitory effects on acetylcholinesteras. Phytochem. Lett. 2017, 20, 263–268. [Google Scholar] [CrossRef]
- Brühlmann, C.; Marston, A.; Hostettmann, K.; Carrupt, P.A.; Testa, B. Screening of non-alkaloidal natural compounds as acetylcholinesterase inhibitors. Chem. Biodivers. 2004, 1, 819–829. [Google Scholar] [CrossRef]
- Dall’Acqua, S.; Maggi, F.; Minesso, P.; Salvagno, M.; Papa, F.; Vittori, S.; Innocenti, G. Identification of non-alkaloid acetylcholinesterase inhibitors from Ferulago campestris (Besser) Grecescu (Apiaceae). Fitoterapia 2010, 81, 1208–1212. [Google Scholar] [CrossRef]
- Sharma, P.; Srivastava, P.; Seth, A.; Tripathi, P.N.; Banerjee, A.G.; Shrivastava, S.K. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer’s disease and potential therapeutic strategies. Prog. Neurobiol. 2019, 174, 53–89. [Google Scholar] [CrossRef] [PubMed]
- Gade, S.; Rajamanikyam, M.; Vadlapudi, V.; Nukala, K.M.; Aluvala, R.; Giddigari, C.; Karanam, N.J.; Barua, N.C.; Pandey, R.; Upadhyayula, V.S.V.; et al. Acetylcholinesterase inhibitory activity of stigmasterol & hexacosanol is responsible for larvicidal and repellent properties of Chromolaena odorata. Biochim. Biophys. Acta - Gen. Subj. 2017, 1861, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.I.B.; Oliveira, S.M.; Tonello, R.; Rossato, M.F.; da Silva Brum, E.; Ferreira, J.; Trevisan, G. Anti-nociceptive effect of stigmasterol in mouse models of acute and chronic pain. Naunyn. Schmiedebergs. Arch. Pharmacol. 2017, 390, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Sultana, N.; Khalid, A. Phytochemical and enzyme inhibitory studies on indigenous medicinal plant Rhazya stricta. Nat. Prod. Res. 2010, 24, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Bahadori, M.B.; Dinparast, L.; Valizadeh, H.; Farimani, M.M.; Ebrahimi, S.N. Bioactive constituents from roots of Salvia syriaca L.: Acetylcholinesterase inhibitory activity and molecular docking studies. South African J. Bot. 2016, 106, 1–4. [Google Scholar] [CrossRef]
- Moodie, L.W.K.; Sepcic, K.; Turk, T.; Frangez, R.; Svenson, J. Natural cholinesterase inhibitors from marine organisms. Nat. Prod. Rep. 2019, 36, 1053–1092. [Google Scholar] [CrossRef]
- Yang, Y.; Cheng, X.; Liu, W.; Chou, G.; Wang, Z.; Wang, C. Potent AChE and BChE inhibitors isolated from seeds of Peganum harmala Linn by a bioassay-guided fractionation. J. Ethnopharmacol. 2015, 168, 279–286. [Google Scholar] [CrossRef]
- Rui, X.; Wenfang, L.; Jing, C.; Meng, C.; Chengcheng, D.; Jiqu, X.; Shuang, R. Neuroprotective effects of phytosterol esters against high cholesterol-induced cognitive deficits in aged rat. Food Funct. 2017, 8, 1323–1332. [Google Scholar] [CrossRef]
- Jun, H.J.; Lee, J.H.; Cho, B.R.; Seo, W.D.; Kang, H.W.; Kim, D.W.; Cho, K.J.; Lee, S.J. Dual inhibition of γ-oryzanol on cellular melanogenesis: Inhibition of tyrosinase activity and reduction of melanogenic gene expression by a protein kinase a-dependent mechanism. J. Nat. Prod. 2012, 75, 1706–1711. [Google Scholar] [CrossRef]
- Vasseur, S.; Guillaumond, F. LDL Receptor: An open route to feed pancreatic tumor cells. Mol. Cell. Oncol. 2016, 3, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, M.; Skill, N.; Marcus, V.; Deschenes, M.; Tan, X.; Bouteaud, J.; Negi, S.; Awan, Z.; Aikin, R.; Kwan, J.; et al. Decreased PCSK9 expression in human hepatocellular carcinoma. BMC Gastroenterol. 2015, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ferri, N.; Corsini, A.; Macchi, C.; Magni, P.; Ruscica, M. Proprotein convertase subtilisin kexin type 9 and high-density lipoprotein metabolism: Experimental animal models and clinical evidence. Transl. Res. 2016, 173, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Malek, S.N.A.; Shin, S.K.; Wahab, N.A.; Yaacob, H. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Molecules 2009, 14, 1713–1724. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Moon, D.O.; Rhu, C.H.; Choi, B.T.; Lee, W.H.; Kim, G.Y.; Choi, Y.H. β-Sitosterol induces anti-proliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. Biol. Pharm. Bull. 2007, 30, 1317–1323. [Google Scholar] [CrossRef] [Green Version]
- Khanavi, M.; Gheidarloo, R.; Sadati, N.; Shams Ardekani, M.R.; Bagher Nabavi, S.M.; Tavajohi, S.; Ostad, S.N. Cytotoxicity of fucosterol containing fraction of marine algae against breast and colon carcinoma cell line. Pharmacogn. Mag. 2012, 8, 60–64. [Google Scholar] [CrossRef]
- Ali, M.; Muhammad, S.; Shah, M.R.; Khan, A.; Rashid, U.; Farooq, U.; Ullah, F.; Sadiq, A.; Ayaz, M.; Ali, M.; et al. Neurologically potent molecules from Crataegus oxyacantha; isolation, anticholinesterase inhibition, and molecular docking. Front. Pharmacol. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Yoshida, Y.; Niki, E. Antioxidant effects of phytosterol and its components. J. Nutr. Sci. Vitaminol. (Tokyo). 2003, 49, 277–280. [Google Scholar] [CrossRef]
- Jabir, N.R.; Khan, F.R.; Tabrez, S. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of alzheimer’s disease. CNS Neurosci. Ther. 2018, 24, 753–762. [Google Scholar] [CrossRef]
- Young, A.J.; Lowe, G.L. Carotenoids—antioxidant properties. Antioxidants 2018, 7, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Caritá, A.C.; Fonseca-Santos, B.; Shultz, J.D.; Michniak-Kohn, B.; Chorilli, M.; Leonardi, G.R. Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. Nanomed. Nanotechnol. Biol. Med. 2020, 24, 102117. [Google Scholar]
- Hasegawa, S. Clinical Use of Gummetal. 2008. Available online: https://www.ortofan.pl/handlowy/files/files/gummetal_zastosowania_kliniczne_0.pdf (accessed on 26 March 2020).
- Wang, T.; Jónsdóttir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009. [Google Scholar] [CrossRef]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 1–11. [Google Scholar] [CrossRef]
- Keepers, Y.P.; Pizao, P.E.; Peters, G.J.; van Ark-Otte, J.; Winograd, B.; Pinedo, H.M. Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. Eur. J. Cancer. 1991, 27, 897–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimoldi, I.; Facchetti, G.; Lucchini, G.; Castiglioni, E.; Marchianò, S.; Ferri, N. In vitro anticancer activity evaluation of new cationic platinum(II) complexes based on imidazole moiety. Bioorganic Med. Chem. 2017, 25, 1907–1913. [Google Scholar] [CrossRef]
- Ferri, N.; Colombo, G.; Ferrandi, C.; Raines, E.W.; Levkau, B.; Corsini, A. Simvastatin reduces MMP1 expression in human smooth muscle cells cultured on polymerized collagen by inhibiting Rac1 activation. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 1043–1049. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the extract are available from the authors. |
RT(min) | [M + H-H2O]+ | Fragments | Identification | mg/g |
---|---|---|---|---|
6.7 | 425 | 405-389-365-299-251 | Erythrodiol | 0.50 ± 0.05 |
7.8 | 425 | 405-389-365-299-251 | Uvaol | 0.54 ± 0.05 |
8.5 | 427 | 409-391-255-173 | Hydroxy cycloartenol | 0.25 ± 0.05 |
9.2 | 409 | 391-339-297-269-173 | Cycloartenol | 0.35 ± 0.05 |
21.7 | 395 | 297-255-241-199-159 | Fucosterol * | 23.5 ± 0.05 |
21.8 | 397 | 315-299-285-257-243-203-189 | γ-Sitosterol * | 91.0 ± 0.05 |
22.5 | 381 | 297-255-227-173-159 | Brassicasterol * | 3.14 ± 0.05 |
23.1 | 429 | 165-137-122-67 | α-Tocopherylquinone | n.d. |
24.7 | 383 | 273-257-243-215-161 | Campesterol | 32.5 ± 0.05 |
27.6 | 397 | 257-175-161 | β-sitosterol * | 112.4 ±0.07 |
29.6 | 399 | 316-257-243-190-175-149 | Sitostanol * | 16.6 ± 0.05 |
5.07 | 553 | α-Cryptoxanthin | 3.9 ± 0.1 | |
5.91 | 549.5 | Carotenoid | 3.4 ± 0.1 | |
6.02 | 545.5 | 489-435-339 | Phytoene | 1.3 ± 0.1 |
6.23 | 555.1 | 534-460-442 | β-Carotene epoxide | 4.0 ± 0.1 |
6.43 | 597.5 | 534-460-442 | Zeaxhantin * | 6.1 ± 0.1 |
7.05 | 553.5 | 534-460-442 | Cryptoxanthin | 8.7 ± 0.1 |
7.58 | 551.4 | 535-558-471-444 | Ketocarotenoid | 3.8 ± 0.1 |
8.53 | 551.5 | 535-558-471-444 | Ketocarotenoid | 3.2 ± 0.1 |
9.62 | 551.5 | 535-558-471-444 | Ketocarotenoid | 2.5 ± 0.1 |
9.78 | 551.5 | 535-558-471-444 | Ketocarotenoid | 1.6 ± 0.1 |
10.05 | 537.5 | 457-445-413 | β-Carotene * | 1.9 ± 0.1 |
RT(min) | [M – H]− | Fragments | Identification | mg/g |
---|---|---|---|---|
1.8 | 341 | 179 | Sucrose * | nd |
1.9 | 191 | 179 85 | Quinic acid * | 0.138 ± 0.021 |
2.2 | 191 | Citric acid * | 0.235 ± 0.045 | |
2.3 | 195 | 177 129 85 | Gluconic acid | nd |
2.7 | 353 | 191 179 135 | 3-O-Caffeoyl quinic acid | 0.056 ± 0.045 |
3.7 | 371 | 209 191 85 | trans-Syringin (eleuteroside B)* | 0.503 ± 0.046 |
5.2 | 315 | 153 | Protocatecuic acid glucoside | 0.121 ± 0.031 |
6.3 | 365 | 211 153 | Protocatecuic ester with sinapoyl alchol | 0.103 ± 0.031 |
6.6 | 447 | 357 315 271 | Isoorientin | 0.090 ± 0.032 |
7.85 | 175 | 157 115 85 | Ascorbic acid | 2.901 ± 0,031 |
8.1 | 371 | 147 209 | Synapoilquinic acid | 0.162 ± 0.051 |
9.2 | 385 | 224 | Synapoyl acid hexoside isomer 1 | 0.081 ± 0.028 |
10.3 | 447 | 285 199 243 175 | Kaempferol-3-O-glucoside * | 0.033 ± 0.002 |
10.9 | 367 | 191 | 5-O-Feruloyl quinic acid | 0.191 ± 0.029 |
11.5 | 385 | 224 | Synapoyl acid hexoside isomer 2 | 0.151 ± 0.031 |
11.8 | 841 | 779 679 617, 547, 529 | 3-[Xyl]-28-Glc-11-Hydroxyphytolaccagenin | 0.154 ± 0.021 |
12.0 | 431 | 341 311 283 | Vitexin* | 0.058 ± 0.023 |
12.8 | 841 | 679 517 473 457 437 | Scabran G | 0.035 ± 0.011 |
13.6 | 563 | 443 413 323 | Vitexin-2″O-xyloside* | 0.171 ± 0.028 |
14.2 | 593 | 473 413 341 311 | Vitexin-2″O-glucoside* | 0.085 ± 0.006 |
14.3 | 679 | 517 473 455 438 | Ganoderic acid C2 hexoside isomer 1 | 0.079 ± 0.007 |
14.9 | 679 | 517 499 473 455 438 | Ganoderic acid C2 hexoside isomer 2 | 0.074 ± 0.007 |
16.3 | 679 | 518 499 473 455 438 | Ganoderic acid C2 hexoside isomer 3 | 0.037 ± 0.007 |
18.9 | 517 | 499 437 304 | Ganoderic acid C2 | 0.038 ± 0.0071 |
19.4 | 327 | 309 291 229 | oxo-dihydroxy-octadecanoic acid | 0.390 ± 0.008 |
[M + H]+ | ||||
15.4 | 805 | 643 | Malvidin-3-O-glucoside-4-vinyl-catechin | 0.032 ± 0.008 |
8.7 | 377 | 243 | Vitamin B2 | 0.122 ± 0.021 |
RT (min) | Identification | MW (Da) | CAS | mg/g |
---|---|---|---|---|
14.2 | Phytol | 296 | 102608-53-7 | 26.72 ± 0.05 |
18.4 | Myristic acid, methyl ester (C16:0) | 242 | 124-10-7 | 0.70 ± 0.03 |
23.1 | Palmitic acid, methyl ester (C10:0) | 270 | 112-39-0 | 37.18 ± 0.05 |
24.3 | 7-hexadecenoic acid, methyl ester (C16:1) | 268 | 5687-67-3 | 2.06 ± 0.06 |
27.6 | Stearic acid, methyl ester (C18:0) | 298 | 112-61-8 | 8.98 ± 0.06 |
28.7 | Elaidic acid, methyl ester (C18:1) | 296 | 112-62-9 | 8.66 ± 0.06 |
30.4 | Linoleic acid, methyl ester (C18:2 ω-6) | 294 | 112-63-0 | 21.95 ± 0.08 |
31.8 | Arachidic acid, methyl ester (C20:0) | 326 | 1120-28-1 | 6.01 ± 0.05 |
32.3 | Linolenic acid, methyl ester (C18:3 ω-3) | 292 | 301-00-8 | 9.69 ± 0.06 |
33.5 | Heneicosanoic acid, methyl ester (C21:0) | 340 | 6064-90-0 | 1.22 ± 0.03 |
35.6 | Docosanoic acid, methyl ester (C22:0) | 354 | 929-77-1 | 2.94 ± 0.03 |
37.3 | Tricosanoic acid, methyl ester (C23:0) | 368 | 2433-97-8 | 0.65 ± 0.02 |
38.5 | 1-docosanol | 326 | 661-19-8 | 0.36 ± 0.02 |
39.1 | Lignoceric acid, methyl ester (C24:0) | 382 | 2442-49-1 | 2.42 ± 0.04 |
42.3 | Cerotic acid, methyl ester (C26:0) | 410 | 5802-82-4 | 0.80 ± 0.02 |
45.5 | Montanic acid, methyl ester (C28:0) | 438 | 55682-92-3 | 0.52 ± 0.02 |
Extract | AchE Inhibition (mgGALAE/g) | BuChE Inhibition (mgGALAE/g) | Tyrosinase Inhibition (mgKAE/g) | Amylase Inhibition (mmolACAE/g) | Glucosidase Inhibition (mmolACAE/g) |
---|---|---|---|---|---|
G.diversifolia | 4.08 ± 0.21 | 7.21 ± 0.61 | 138.14 ± 1.36 | 1.19 ± 0.05 | 5.42 ± 0.03 |
Extract | Total Phenolic Content (mgGAE/g) | DPPH (mgTE/g) | ABTS (mgTE/g) | CUPRAC (mgTE/g) | FRAP (mgTE/g) | Metal Chelating (mgEDTAE/g) | Phosphomolybdenum (mmolTE/g) |
---|---|---|---|---|---|---|---|
G. diversifolia | 24.30 ± 0.15 | 14.37 ± 0.72 | 28.33 ± 1.21 | 105.27 ± 0.65 | 42.63 ± 0.69 | 25.70 ± 2.35 | 2.53 ± 0.25 |
Ion | Identification | Hexane Extract (mg/g) | Dichloromethane Extract (mg/g) | Ethyl Acetate Extract (mg/g) |
---|---|---|---|---|
[M + H-H2O]+425 | Erythrodiol | 0.35 ± 0.02 | 2.26 ± 0.04 | 3.38 ± 0.02 |
[M + H-H2O]+425 | Uvaol | 0.28 ± 0.02 | 1.46 ± 0.02 | 1.96 ± 0.04 |
[M + H-H2O]+427 | Hydroxy cycloartenol | 0.24 ± 0.05 | 5.22 ± 0.03 | 0.24 ± 0.02 |
[M + H-H2O]+409 | Cycloartenol | 2.61 ± 0.02 | 5.65 ± 0.07 | 4.52 ± 0.04 |
[M + H-H2O]+395 | Fucosterol * | 134.39 ± 0.10 | 165.27 ± 0.11 | 7.23 ± 0.07 |
[M + H-H2O]+397 | γ-Sitosterol * | 0.92 ± 0.10 | 230.77 ± 0.07 | 55.42 ±0.09 |
[M + H-H2O]+381 | Brassicasterol * | 29.14 ± 0.04 | 32.40 ± 0.09 | 5.78 ± 0.02 |
[M + H-H2O]+429 | α-Tocopherylquinone | n.d. | ||
[M + H-H2O]+383 | Campesterol | 31.53 ± 0.07 | 29.66 ± 0.07 | 4.36 ±0.06 |
[M + H-H2O]+397 | β-sitosterol * | 417.52 ± 0.15 | 112.2 ± 0.07 | 0.20 ± 0.02 |
[M + H-H2O]+395 | Stigmasterol | 70.29 ± 0.21 | 50.72 ± 0.17 | 4.31 ± 0.01 |
[M + H-H2O]+399 | Sitostanol * | 6.11 ± 0.05 | 6.83 ± 0.03 | 0.06 ± 0.02 |
IC50 (µg/mL) | |||
---|---|---|---|
Extract | 2008 | BxPC3 | Huh7 |
G. diversifoliaMeOH | 47.5 ± 4.1 | 12.5 ± 3.5 | 7.2 ± 2.5 |
G. diversifolia Ethyl acetate | nd | nd | 19.9 ± 1.5 |
G. diversifolia Cyclohexane | nd | nd | 38.8 ± 1.2 |
G. diversifolia Dichloromethane | nd | nd | Not Active |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharan Shrestha, S.; Sut, S.; Ferrarese, I.; Barbon Di Marco, S.; Zengin, G.; De Franco, M.; Pant, D.R.; Mahomoodally, M.F.; Ferri, N.; Biancorosso, N.; et al. Himalayan Nettle Girardinia diversifolia as a Candidate Ingredient for Pharmaceutical and Nutraceutical Applications—Phytochemical Analysis and In Vitro Bioassays. Molecules 2020, 25, 1563. https://doi.org/10.3390/molecules25071563
Sharan Shrestha S, Sut S, Ferrarese I, Barbon Di Marco S, Zengin G, De Franco M, Pant DR, Mahomoodally MF, Ferri N, Biancorosso N, et al. Himalayan Nettle Girardinia diversifolia as a Candidate Ingredient for Pharmaceutical and Nutraceutical Applications—Phytochemical Analysis and In Vitro Bioassays. Molecules. 2020; 25(7):1563. https://doi.org/10.3390/molecules25071563
Chicago/Turabian StyleSharan Shrestha, Shyam, Stefania Sut, Irene Ferrarese, Serena Barbon Di Marco, Gokhan Zengin, Michele De Franco, Deepak Raj Pant, Mohamad Fawzi Mahomoodally, Nicola Ferri, Noemi Biancorosso, and et al. 2020. "Himalayan Nettle Girardinia diversifolia as a Candidate Ingredient for Pharmaceutical and Nutraceutical Applications—Phytochemical Analysis and In Vitro Bioassays" Molecules 25, no. 7: 1563. https://doi.org/10.3390/molecules25071563
APA StyleSharan Shrestha, S., Sut, S., Ferrarese, I., Barbon Di Marco, S., Zengin, G., De Franco, M., Pant, D. R., Mahomoodally, M. F., Ferri, N., Biancorosso, N., Maggi, F., Dall Acqua, S., & Rajbhandary, S. (2020). Himalayan Nettle Girardinia diversifolia as a Candidate Ingredient for Pharmaceutical and Nutraceutical Applications—Phytochemical Analysis and In Vitro Bioassays. Molecules, 25(7), 1563. https://doi.org/10.3390/molecules25071563