Antibacterial and Antifungal Sesquiterpenoids from Aerial Parts of Anvillea garcinii
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Plant Material
3.3. Extraction and Isolation
3.4. Acid Hydrolysis of 2
3.5. Antibacterial Bioassay
3.6. Antifungal Assay
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Aati, H.; El-Gamal, A.; Shaheen, H.; Kayser, O. Traditional use of ethnomedicinal native plants in the Kingdom of Saudi Arabia. J. Ethnobiol. Ethnomed. 2019, 15, 2. [Google Scholar] [CrossRef] [PubMed]
- Bitsindou, M.; Lejoly, J. Plants used in hepatoprotective remedies in traditional African medicine. In Proceedings of the WOCMAP I-Medicinal and Aromatic Plants Conference, Maastrcht, The Netherland, 19 July 1992; part 2 of 4 332. pp. 73–80. [Google Scholar]
- Oshkondali, S.T.; Elshili, M.M.; Almunir, N.; Rashed, A.; Kushlaf, N.; EL-mahmoudy, A.M.; Shaeroun, A.; Alqamoudy, H.; Ahmed, B.A.; Mohamed, K.S. Therapeutic potentials of bioactive compounds in some species (Amberboa Tubiflore, Anacyclus Clavatus and Anvillea Garcinii) in the family Asteraceae. Sch. Acad. J. Pharm. 2019, 8, 456–460. [Google Scholar] [CrossRef]
- El Hassany, B.; El Hanbali, F.; Akssira, M.; Mellouki, F.; Haidour, A.; Barrero, A.F. Germacranolides from Anvillea radiata. Fitoterapia 2004, 75, 573–576. [Google Scholar] [CrossRef] [PubMed]
- Tyson, R.L.; Chang, C.J.; McLaughlin, J.L.; Cassady, J.M. A novel sesquiterpene lactone from Anvillea garcinii (Burm.). J. Nat. Prod. 1979, 42, 680–681. [Google Scholar]
- Tyson, R.L.; Chang, C.J.; McLaughlin, J.L.; Aynehchi, Y.; Cassady, J.M. 9-α-hydroxyparthenolide, a novel antitumor sesquiterpene lactone from Anvillea garcinii (Burm.) DC. Experientia 1981, 37, 441–442. [Google Scholar] [CrossRef]
- Rustaiyan, A.; Dabiri, M.; Jakupovic, J. Germacranolides from Anvillea garcinii. Phytochemistry 1986, 25, 1229–1230. [Google Scholar] [CrossRef]
- Khan, M.; Saeed Abdullah, M.M.; Mousa, A.A.; Alkhathlan, H.Z. Chemical composition of vegetative parts and flowers essential oils of wild Anvillea garcinii grown in Saudi Arabia. Rec. Nat. Prod. 2016, 10, 251–256. [Google Scholar]
- Sattar, E.A.; Galal, A.M.; Mossa, G.S. Antitumor germacranolides from Anvillea garcinii. J. Nat. Prod. 1996, 59, 403–405. [Google Scholar] [CrossRef]
- Ulubelen, A.; Mabry, T.J.; Aynehchi, Y. Flavonoids of Anvillea garcinii. J. Nat. Prod. 1980, 42, 624–626. [Google Scholar] [CrossRef]
- Perveen, S.; Al-Taweel, A.M.; Yusufoglu, H.S.; Fawzy, G.A.; Foudah, A.; Abdel-Kader, M.S. Hepatoprotective and cytotoxic activities of Anvillea garcinii and isolation of four new secondary metabolites. J. Nat. Med. 2018, 72, 106–117. [Google Scholar] [CrossRef]
- Perveen, S.; Fawzi, G.A.; Al-Taweel, A.M.; Orfali, R.S.; Yusufoglu, H.S.; Abdel-Kader, M.S.; Al-Sabbagh, R.M. Antiulcer activity of different extract of Anvillea garcinii and isolation of two new secondary metabolites. Open Chem. 2018, 16, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Perveen, S.; Alqahtani, J.; Orfali, R.; Al-Taweel, A.M.; Yusufoglu, H.S.; Abdel-Kader, M.S.; Taglialatela-Scafati, O. Antimicrobial guaianolide sesquiterpenoids from leaves of the Saudi Arabian plant Anvillea garcinii. Fitoterapia 2019, 134, 129–134. [Google Scholar] [CrossRef]
- Chae, Y.K.; Bobin, K.; Jungil, H.; Hyeon-Son, C. Parthenolide inhibits lipid accumulation via activation of Nrf2/ Keap1 signaling during adipocyte differentiation. Food Sci. Biotechnol. 2020, 29, 431–440. [Google Scholar]
- Abdel-Sattar, E.; McPhail, A.T. Cis-Parthenolid-9-one from Anvillea garcinia. J. Nat. Prod. 2000, 63, 1587–1589. [Google Scholar] [CrossRef]
- Drew, D.P.; Krichau, N.; Reichwald, K.; Simonsen, H.T. Guaianolides in Apiaceae: Perspectives on pharmacology and biosynthesis. Phytochem. Rev. 2009, 8, 581–599. [Google Scholar] [CrossRef]
- Galal, A.M. Minor guaianolides from Anvillea garcinia. Al Azhar J. Pharm. Sci. 1997, 19, 30–33. [Google Scholar]
- Tan, R.X.; Tang, H.Q.; Hu, J.; Shuai, B. Lignans and sesquiterpene lactones from Artemisia sieversiana and Inula racemosa. Phytochemistry 1998, 49, 157–161. [Google Scholar] [CrossRef]
- Tosovic, J.; Markovic, S. Structural and antioxidative features of chlorogenic acid. Croat. Chem. Acta 2016, 89, 535–541. [Google Scholar] [CrossRef]
- Erel, S.B.; Karaalp, C.; Bedir, E.; Kaehlig, H.; Glasl, S.; Khan, S.; Krenn, L. Secondary metabolites of Centaurea calolepis and evaluation of cnicin for anti-inflammatory, antioxidant, and cytotoxic activities. Pharm. Biol. 2011, 49, 840–849. [Google Scholar] [CrossRef]
- Azam, F.; Chaudhry, B.A.; Ijaz, H.; Qadir, M.I. Caffeoyl-β-D-glucopyranoside and 1,3-dihydroxy-2-tetracosanoylamino-4-(E)-nonadecene isolated from Ranunculus muricatus exhibit antioxidant activity. Sci. Rep. 2019, 9, 15613. [Google Scholar] [CrossRef]
- Delazar, A.; Nazemiyeh, H.; Afshar, F.H.; Barghi, N.; Esnaashari, S.; Asgharian, P. Chemical compositions and biological activities of Scutellaria pinnatifida A. Hamilt aerial parts. Res. Pharm. Sci. 2017, 12, 187–195. [Google Scholar]
- Aisah, L.S.; yun, Y.F.; Herlina, T.; Julaeha, E.; Zainuddin, A.; Nurfarida, I.; Hidayat, A.T.; Supratman, U.; Shiono, Y. Flavonoid compounds from the leaves of Kalanchoe prolifera and their cytotoxic activity against P-388 murine leukemia cells. Nat. Prod. Sci. 2017, 23, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.B.; Shin, J.S.; Han, H.S.; Lee, H.H.; Park, J.C.; Lee, K.T. Kaempferol 7-O-β-D-glucoside isolated from the leaves of Cudrania tricuspidata inhibits LPS-induced expression of pro-inflammatory mediators through inactivation of NF-κB, AP-1, and JAK-STAT in RAW 264.7 macrophages. Chem. Biol. Interact. 2018, 284, 101–111. [Google Scholar] [CrossRef]
- Achoub, H.; Mencherini, T.; Esposito, T.; Rastrelli, L.; Aquino, R.; Gazzerro, P.; Zaiter, L.; Benayache, F.; Benayache, S. New sesquiterpenes from Asteriscus graveolens. Nat. Prod. Res. 2019, in press. [Google Scholar] [CrossRef]
- Meng, J.C.; Hu, Y.F.; Chen, J.H.; Tan, R.X. Antifungal highly oxygenated guaianolides and other constituents from Ajania fruticulosa. Phytochemistry 2002, 58, 1141–1145. [Google Scholar] [CrossRef]
- Ebrahim, W.; El-Neketi, M.; Lewald, L.; Orfali, R.; Lin, W.; Rehberg, N.; Kalscheuer, R.; Daletos, G.; Proksch, P. Metabolites from the fungal endophyte Aspergillus austroafricanus in axenic culture and in fungal−bacterial mixed cultures. J. Nat. Prod. 2016, 79, 914–922. [Google Scholar] [CrossRef]
- Berghe, V.; Vlietinck, A. Screening methods for antibacterial and antiviral agents from higher plants. Methods Plant Biochem. 1991, 6, 47–68. [Google Scholar]
- Gong, L.; Guo, S. Endophytic fungi from Dracaena cambodiana and Aquilaria sinensis and their antimicrobial activity. Afr. J. Biotechnol. 2009, 8, 731. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
1 | 2 | |||
---|---|---|---|---|
Pos. | δH (mult., J in Hz) | δC | δH (mult., J in Hz) | δC |
1 | 2.80 (m) | 40.5 | 5.56 (dd, 9.5, 11.5) | 129.4 |
2α | 1.64 (dddd, 1.5, 3.5, 7.5, 12.5) | 24.6 | 2.61 (m) | 23.5 |
2β | 1.49 (tdd, 2.0, 6.5, 12.5) | 2.22 (m) | ||
3 | 1.53 (m) | 40.4 | 2.13 (m) | 35.9 |
1.22 (m) | ||||
4 | - | 79.6 | - | 61.8 |
5 | 2.00 (t, 11.0) | 54.6 | 2.79 (d, 9.0) | 65.9 |
6 | 4.17 (dd, 9.5, 11.0) | 82.6 | 4.04 (t, 9.0) | 81.4 |
7 | 2.87 (ddd, 9.5, 3.5, 1.5) | 40.7 | 2.11 (m) | 48.2 |
8 α | 1.99 (ddd, 2.5, 3.5, 9.2) | 31.6 | 2.09 (dd, 2.1, 9.2) | 35.0 |
8β | 1.53 (ddd, 1.0, 1.5, 9.2) | - | 1.98 (bdd, 9.2, 7.5) | - |
9 | 3.58 (dd, 2.5, 1.0) | 76.0 | 4.37 (dd, 7.5, 2.1) | 83.1 |
10 | - | 76.6 | - | 133.9 |
11 | - | 139.8 | 2.49 (dt, 2.5, 7.0) | 41.7 |
12 | - | 170.8 | - | 178.7 |
13a | 5.90 (brs) | 118.7 | 1.27 (d, 7.0) | 12.0 |
13b | 5.36 (brs) | - | ||
14 | 0.95 (s) | 21.8 | 1.76 (s) | 10.0 |
15 | 1.10 (s) | 22.0 | 1.36 (s) | 16.3 |
1′ | 4.11 (d, 7.5) | 98.7 | ||
2′ | 3.23 (t, 7.5) | 73.5 | ||
3′ | 3.17 (m) | 76.5 | ||
4′ | 3.29 (m) | 70.3 | ||
5′ | 3.31 (m) | 76.7 | ||
6′a | 3.67 (m) | 61.4 | ||
6′b | 3.86 (m) |
Compound | Growth Inhibition (%, mean ± SD) * | MIC (µg mL−1) | ||
---|---|---|---|---|
C. albicans | C. parapsilosis | C. albicans | C. parapsilosis | |
1 | 83.4 ± 3.3 | 81.3 ± 2.6 | 0.21 ± 0.04 | 0.25 ± 0.05 |
2 | 79.8 ± 5.3 | 76.5 ± 4.5 | 0.26 ± 0.07 | 0.31 ± 0.02 |
3 | 85.0 ± 3.4 | 80.0 ± 2.7 | 0.38 ± 0.03 | 0.34 ± 0.06 |
4 | 61.2 ± 3.3 | 69.5 ± 2.4 | 0.89 ± 0.02 | 0.61 ± 0.08 |
5 | 23.6 ± 5.2 | 18.9 ± 3.7 | 0.68 ± 0.01 | 0.79 ± 0.03 |
6 | 19.5 ± 2.9 | 21.7 ± 3.4 | 0.73 ± 0.08 | 0.86 ± 0.07 |
7 | 15.8 ± 3.2 | 10.9 ± 4.7 | 0.97 ± 0.12 | 0.79 ± 0.06 |
8 | 42.7 ± 4.4 | 51.8 ± 2.5 | 0.74 ± 0.05 | 0.62 ± 0.03 |
9 | 45.3 ± 3.7 | 49.9 ± 4.8 | 0.68 ± 0.08 | 0.74 ± 0.02 |
Itraconazole | 54.7 ± 2.6 | 51.5 ± 4.1 | 0.29 ± 0.06 | 0.33 ± 0.04 |
Compound | MIC (µg mL−1) | ||||
---|---|---|---|---|---|
Staphilococcus aureus | Bacillus licheniformis | Escherichia xiangfangensis | Escherichia fergusonii | Pseudomonas aeruginosa | |
1 | 2.3 | 2.3 | >25 | 5.7 | >25 |
2 | 3.4 | 3.1 | >25 | 6.3 | >25 |
3 | 5.2 | 4.4 | 3.8 | >25 | >25 |
4 | >25 | >25 | 5.2 | 4.6 | >25 |
5 | >25 | >25 | >25 | >25 | >25 |
6 | >25 | >25 | >25 | >25 | >25 |
7 | >25 | >25 | >25 | >25 | >25 |
8 | 9.4 | >25 | >25 | 6.8 | >25 |
9 | >25 | 7.5 | >25 | 8.4 | >25 |
Amikacin | 0.523 | 0.523 | 0.523 | 0.523 | 0.523 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perveen, S.; Alqahtani, J.; Orfali, R.; Aati, H.Y.; Al-Taweel, A.M.; Ibrahim, T.A.; Khan, A.; Yusufoglu, H.S.; Abdel-Kader, M.S.; Taglialatela-Scafati, O. Antibacterial and Antifungal Sesquiterpenoids from Aerial Parts of Anvillea garcinii. Molecules 2020, 25, 1730. https://doi.org/10.3390/molecules25071730
Perveen S, Alqahtani J, Orfali R, Aati HY, Al-Taweel AM, Ibrahim TA, Khan A, Yusufoglu HS, Abdel-Kader MS, Taglialatela-Scafati O. Antibacterial and Antifungal Sesquiterpenoids from Aerial Parts of Anvillea garcinii. Molecules. 2020; 25(7):1730. https://doi.org/10.3390/molecules25071730
Chicago/Turabian StylePerveen, Shagufta, Jawaher Alqahtani, Raha Orfali, Hanan Y. Aati, Areej M. Al-Taweel, Taghreed A. Ibrahim, Afsar Khan, Hasan S. Yusufoglu, Maged S. Abdel-Kader, and Orazio Taglialatela-Scafati. 2020. "Antibacterial and Antifungal Sesquiterpenoids from Aerial Parts of Anvillea garcinii" Molecules 25, no. 7: 1730. https://doi.org/10.3390/molecules25071730
APA StylePerveen, S., Alqahtani, J., Orfali, R., Aati, H. Y., Al-Taweel, A. M., Ibrahim, T. A., Khan, A., Yusufoglu, H. S., Abdel-Kader, M. S., & Taglialatela-Scafati, O. (2020). Antibacterial and Antifungal Sesquiterpenoids from Aerial Parts of Anvillea garcinii. Molecules, 25(7), 1730. https://doi.org/10.3390/molecules25071730