Antioxidants and Health-Beneficial Nutrients in Fruits of Eighteen Cucurbita Cultivars: Analysis of Diversity and Dietary Implications
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Sample Preparation
4.3. Total Phenolic Content (TPC)
4.4. Antioxidant Capacity—A FRAP Assay
4.5. Antioxidant Capacity—A CUPRAC Assay
4.6. Radical Scavenging Capacity (RSC)–A DPPHAssay
4.7. Identification of Phenolic Compounds with HPLC
4.8. Identification of β-Carotene with HPLC
4.9. Determination of the Content of Selected Macro- and Microelements, Free Amino Acids, and Soluble Sugars
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, B.D. The Initial Domestication of Cucurbita pepo in the Americas 10,000 Years Ago. Science 1997, 276, 932–934. [Google Scholar] [CrossRef] [Green Version]
- Bisognin, D.A. Origin and evolution of cultivated cultivars. Ciência Rural 2002, 32, 715–732. [Google Scholar] [CrossRef] [Green Version]
- Paris, H.S. Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Econ. Bot. 1989, 43, 423–443. [Google Scholar] [CrossRef]
- Janick, J.; Paris, H. The Cucurbit Images (1515–1518) of the Villa Farnesina, Rome. Ann. Bot. 2006, 97, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Decker-Walters, D.S.; Walters, T.W. Squash. In The Cambridge World History of Food; Kiple, K.F., Ornelas, K.C., Eds.; Cambridge Univ. Press: Cambridge, UK, 2000; pp. 335–351. [Google Scholar]
- Nesom, G.L. New state records for Citrullus, Cucumis, and Cucurbita (Cucurbitaceae) outside of cultivation in the USA. Phytoneuron 2011, 1–7. [Google Scholar]
- Kates, H.R.; Soltis, P.S.; Soltis, D.E. Evolutionary and domestication history of Cucurbita (pumpkin and squash) species inferred from 44 nuclear loci. Mol. Phylogenetics Evol. 2017, 111, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Adams, G.G.; Imran, S.; Wang, S.; Mohammad, A.; Kok, S.; Gray, D.A.; Channell, G.A.; Morris, G.A.; Harding, S.E. The hypoglycemic effect of pumpkins as anti-diabetic and functional medicines. Food Res. Int. 2011, 44, 862–867. [Google Scholar] [CrossRef]
- Różyło, R.; Gawlik-Dziki, U.; Dziki, D.; Jakubczyk, A.; Karaś, M.; Różyło, K. Wheat Bread with Pumpkin (Cucurbita maxima L.) Pulp as a Functional Food Product. Food Technol. Biotechnol. 2014, 52, 430–438. [Google Scholar] [CrossRef]
- AlJahani, A.H.; Cheikhousman, R. Nutritional and sensory evaluation of pumpkin-based (Cucurbita maxima) functional juice. Nutr. Food Sci. 2017, 47, 346–356. [Google Scholar] [CrossRef]
- Dhiman, K.; Gupta, A.; Sharma, D.; Gill, N.; Goyal, A. A Review on the Medicinally Important Plants of the Family Cucurbitaceae. Asian J. Clin. Nutr. 2012, 4, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, J.; Park, D.J. Texture-modified foods for the elderly: Status, technology and opportunities. Trends Food Sci. Technol. 2016, 57, 156–164. [Google Scholar] [CrossRef]
- Russell, R.M.; Rasmussen, H.; Lichtenstein, A.H. Modified Food Guide Pyramid for people over seventy years of age. J. Nutr. 1999, 129, 751–753. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, E.T.; Ohls, J.; Carlson, S.; Fleming, K. The Healthy Eating Index. J. Am. Diet. Assoc. 1995, 95, 1103–1108. [Google Scholar] [CrossRef]
- HEI Scores for Americans. 2015; USDA Food and Nutrition Service; U.S. Department of Agriculture. Available online: www.fns.usda.gov/hei-scores-americans (accessed on 4 March 2020).
- Gille, D.; Bütikofer, U.; Chollet, M.; Schmid, A.; Altintzoglou, T.; Honkanen, P.; Stoffers, H.; Walther, B.; Piccinali, P. Nutrition behavior of the middle-aged and elderly: Compliance with dietary recommendations of the food pyramid. Clin. Nutr. 2016, 35, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, R.M.P. Review of Cucurbita pepo (Pumpkin) its Phytochemistry and Pharmacology. Med. Chem. 2016, 6, 12–21. [Google Scholar] [CrossRef]
- Can-Cauich, C.A.; Sauri-Duch, E.; Moo-Huchin, V.M.; Betancur-Ancona, D.; Cuevas-Glory, L.F. Effect of extraction method and specie on the content of bioactive compounds and antioxidant activity of pumpkin oil from Yucatan, Mexico. Food Chem. 2019, 285, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulou, M.N.; Nomikos, T.; Fragopoulou, E.; Antonopoulou, S. Antioxidant and lipoxygenase inhibitory activities of pumpkin seed extracts. Food Res. Int. 2009, 42, 641–646. [Google Scholar] [CrossRef]
- Shokrzadeh, M.; Azadbakht, M.; Ahangar, N.; Hashemi, A.; Saravi, S.S.S. Cytotoxicity of hydro-alcoholic extracts of Cucurbita pepo and Solanum nigrum on HepG2 and CT26 cancer cell lines. Pharmacogn. Mag. 2010, 6, 176–179. [Google Scholar] [CrossRef]
- McGinley, M. Cucurbita pepo. The encyclopedia of Earth. Edible medicinal and non-medicinal plants. In Fruits; Springer: Amsterdam, The Netherlands, 2011; Volume 2. [Google Scholar]
- Sarkar, S.; Buha, D. Effect of ripe fruit pulp extract of Cucurbita pepo Linn. in aspirin induced gastric and duodenal ulcer in rats. Indian J. Exp. Boil. 2008, 46, 639–645. [Google Scholar]
- Seo, J.S.; Burri, B.J.; Quan, Z.; Neidlinger, T.R. Extraction and chromatography of carotenoids from pumpkin. J. Chromatogr. A 2005, 1073, 371–375. [Google Scholar] [CrossRef]
- Dar, A.H.; Sofi, S.A.; Rafiq, S. Pumpkin the functional and therapeutic ingredient: A review. Int. J. Food Sci. Nutr. 2017, 2, 165–170. [Google Scholar]
- Zdunić, G.M.; Menković, N.R.; Jadranin, M.B.; Novaković, M.M.; Šavikin, K.P.; Živković, J.Č. Phenolic compounds and carotenoids in pumpkin fruit and related traditional products. Chem. Ind. 2016, 70, 429–433. [Google Scholar] [CrossRef] [Green Version]
- Tangney, C.; Rasmussen, H. Polyphenols, inflammation, and cardiovascular disease. Curr. Atheroscler. Rep. 2013, 15, 324. [Google Scholar] [CrossRef] [PubMed]
- Albarracin, S.L.; Stab, B.; Casas, Z.; Sutachan, J.J.; Samudio, I.J.; González, J.; Gonzalo, L.; Capani, F.; Morales, L.; Barreto, G.E. Effects of natural antioxidants in neurodegenerative disease. Nutr. Neurosci. 2012, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Pogačnik, L.; Silva, R.F.M. Food, polyphenols and neuroprotection. Neural Regen. Res. 2017, 12, 582–583. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Chen, C.; Guan, Y.; Song, X.; Jin, Y.; Wang, J.; Hu, Y.; Xin, T.; Jiang, Q.; Zhong, L. A pumpkin polysaccharide induces apoptosis by inhibiting the JAK2/STAT3 pathway in human hepatoma HepG2 cells. Int. J. Biol. Macromol. 2017, 104, 681–686. [Google Scholar] [CrossRef]
- Alghasham, A.A. Cucurbitacins – a promising target for cancer therapy. Int. J. Health Sci. 2013, 7, 77–89. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, M.; Zhang, H.; Sun, C.; Deng, Y. Inhibitory effects of cucurbitacin B on laryngeal squamous cell carcinoma. Eur. Arch. Oto-Rhino-Laryngology 2008, 265, 1225–1232. [Google Scholar] [CrossRef]
- Kaushik, U.; Aeri, V.; Mir, S.R. Cucurbitacins – an insight into medicinal leads from nature. Pharmacogn. Rev. 2015, 9, 12–18. [Google Scholar]
- Chilczuk, B.; Perucka, I.; Materska, M.; Buczkowska, H. Content of lutein, zeaxanthin, and β-carotene in lyophilized fruits of selected cultivars of Cucurbita maxima D. Zywn. Nauk. Technol. Jak. 2014, 2, 139–150. (In Polish) [Google Scholar] [CrossRef]
- Provesi, J.G.; Amante, E.R. Carotenoids in Pumpkin and Impact of Processing Treatments and Storage. In Processing and Impact on Active Components in Food; Elsevier BV: San Diego, CA, USA, 2015; pp. 71–80. [Google Scholar]
- Adedayo, O.R.; Farombi, A.G.; Oyekanmi, A.M. Proximate, mineral and antinutrient evaluation of pumpkin (Cucurbita pepo). J. Appl. Chem. 2013, 4, 25–28. [Google Scholar]
- Chiu, H.-F.; Shen, Y.; Venkatakrishnan, K.; Wang, C.-K. Food for Eye Health: Carotenoids and Omega-3 Fatty Acids. In Encyclopedia of Food Chemistry; Elsevier BV: San Diego, CA, USA, 2019; Volume 3, pp. 313–322. [Google Scholar]
- Fissore, E.; Ponce, N.; Stortz, C.; Rojas, A.M.; Gerschenson, L. Characterisation of Fiber Obtained from Pumpkin (Cucumis moschata Duch.) Mesocarp Through Enzymatic Treatment. Food Sci. Technol. Int. 2007, 13, 141–151. [Google Scholar] [CrossRef]
- Guillon, F.; Champ, M. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res. Int. 2000, 33, 233–245. [Google Scholar] [CrossRef]
- Wang, P.-C.; Zhao, S.; Yang, B.-Y.; Wang, Q.; Kuang, H.-X. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr. Polym. 2016, 148, 86–97. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, Y.; Zhou, T.; Zhang, H.; Hu, X.; Li, Q. A preliminary study of monosaccharide composition and α-glucosidase inhibitory effect of polysaccharides from pumpkin (Cucurbita moschata) fruit. Int. J. Food Sci. Technol. 2011, 47, 357–361. [Google Scholar] [CrossRef]
- Simpson, R.; Morris, G.A. The anti-diabetic potential of polysaccharides extracted from members of the cucurbit family: A review. Bioact. Carbohydrates Diet. Fibre 2014, 3, 106–114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chen, P.; Zhang, Y.; Jin, H.; Zhu, L.; Li, J.; Yao, H. Effects of polysaccharide from pumpkin on biochemical indicator and pancreatic tissue of the diabetic rabbits. Int. J. Boil. Macromol. 2013, 62, 574–581. [Google Scholar] [CrossRef]
- Fortis-Barrera, Á.; García-Macedo, R.; Almanza-Perez, J.; Blancas-Flores, G.; Zamilpa-Alvarez, A.; Flores-Sáenz, J.; Cruz, M.; Román-Ramos, R.; Alarcón-Aguilar, F. Cucurbita ficifolia (Cucurbitaceae) modulates inflammatory cytokines and IFN-γ in obese mice. Can. J. Physiol. Pharmacol. 2017, 95, 170–177. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free. Radic. Boil. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Nijveldt, R.J.; Van Nood, E.; Van Hoorn, D.E.; Boelens, P.G.; Van Norren, K.; Van Leeuwen, P. AFlavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001, 74, 418–425. [Google Scholar] [CrossRef]
- De Nisco, M.; Manfra, M.; Bolognese, A.; Sofo, A.; Scopa, A.; Tenore, G.C.; Pagano, F.; Milite, C.; Russo, M.T. Nutraceutical properties and polyphenolic profile of berry skin and wine of Vitis vinifera L. (cv. Aglianico). Food Chem. 2013, 140, 623–629. [Google Scholar] [CrossRef]
- Surveswaran, S.; Cai, Y.; Corke, H.; Sun, M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem. 2007, 102, 938–953. [Google Scholar] [CrossRef]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Mérillon, J.-M. Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Chekroun-Bechlaghem, N.; Belyagoubi-Benhammou, N.; Belyagoubi, L.; Gismondi, A.; Nanni, V.; Di Marco, G.; Canuti, L.; Canini, A.; El Haci, I.A.; Bekkara, F.A. Phytochemical analysis and antioxidant activity of Tamarixafricana, Arthrocnemummacrostachyum and Suaedafruticosa, three halophyte species from Algeria. Plant. Biosyst. Int. J. Deal. Asp. Plant. Boil. 2019, 153, 843–852. [Google Scholar]
- Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. 2014, 4, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Hernández, I.A.; Afseth, N.K.; López-Luke, T.; Contreras-Torres, F.F.; Wold, J.P.; Ornelas-Soto, N. Surface enhanced Raman spectroscopy of phenolic antioxidants: A systematic evaluation of ferulic acid, p-coumaric acid, caffeic acid and sinapic acid. Vib. Spectrosc. 2017, 89, 113–122. [Google Scholar] [CrossRef]
- Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant Properties of Ferulic Acid and Its Related Compounds. J. Agric. Food Chem. 2002, 50, 2161–2168. [Google Scholar] [CrossRef] [PubMed]
- Zduńska, K.; Dana, A.; Kołodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Ski. Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-W.; Jiang, J.-S.; Lu, W.-Q. Ferulic Acid Exerts Anti-Angiogenic and Anti-Tumor Activity by Targeting Fibroblast Growth Factor Receptor 1-Mediated Angiogenesis. Int. J. Mol. Sci. 2015, 16, 24011–24031. [Google Scholar] [CrossRef]
- Banjarnahor, S.D.; Artanti, N. Antioxidant properties of flavonoids. Med. J. Indones. 2015, 23, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Gulcin, I. Antioxidant activity of food constituents: An overview. Arch. Toxicol. 2011, 86, 345–391. [Google Scholar] [CrossRef]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Gondal, T.A.; Saeed, F.; Imran, A.; Shahbaz, M.; Fokou, P.V.T.; Arshad, M.U.; Khan, H.; et al. Kempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, A.M.; Issaoui, M.; Chammem, N. Analysis of main and healthy phenolic compounds in foods. J. AOAC Int. 2019, 102, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Kostecka-Gugała, A.; Ledwożyw-Smoleń, I.; Augustynowicz, J.; Wyżgolik, G.; Kruczek, M.; Kaszycki, P. Antioxidant properties of fruits of raspberry and blackberry grown in central Europe. Open Chem. 2015, 13, 1313–1325. [Google Scholar] [CrossRef]
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial phytochemicals in potato—A review. Food Res. Int. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- Leja, M.; Kaminska, I.; Kramer, M.; Maksylewicz-Kaul, A.; Kammerer, D.; Carle, R.; Baranski, R. The Content of Phenolic Compounds and Radical Scavenging Activity Varies with Carrot Origin and Root Color. Plant. Foods Hum. Nutr. 2013, 68, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Nicolle, C.; Simon, G.; Rock, E.; Amouroux, P.; Rámásy, C. Genetic Variability Influences Carotenoid, Vitamin, Phenolic, and Mineral Content in White, Yellow, Purple, Orange, and Dark-orange Carrot Cultivars. J. Am. Soc. Hortic. Sci. 2004, 129, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Navarre, D.A.; Goyer, A.; Shakya, R. Nutritional Value of Potatoes. In Advances in Potato Chemistry and Technology; Elsevier BV: San Diego, CA, USA, 2009; pp. 395–424. [Google Scholar]
- Kulczyński, B.; Gramza-Michałowska, A. The Profile of Carotenoids and Other Bioactive Molecules in Various Pumpkin Fruits (Cucurbita maxima Duchesne) Cultivars. Molecules 2019, 24, 3212. [Google Scholar] [CrossRef] [Green Version]
- Kulczyński, B.; Gramza-Michałowska, A. The Profile of Secondary Metabolites and Other Bioactive Compounds in Cucurbita pepo L. and Cucurbita moschata Pumpkin Cultivars. Molecules 2019, 24, 2945. [Google Scholar] [CrossRef] [Green Version]
- Kruczek, M. Pumpkin (Cucurbita sp.) as a source of health-beneficial compounds with antioxidant properties. Dynia (Cucurbita sp.) jakoźródłoprozdrowotnychzwiązków o charakterzeantyoksydacyjnym. Przemysł Chem. 2015, 1, 86–90. (In Polish) [Google Scholar] [CrossRef]
- Kulczyński, B.; Gramza-Michałowska, A.; Królczyk, J.B. Optimization of Extraction Conditions for the Antioxidant Potential of Different Pumpkin Varieties (Cucurbita maxima). Sustainability 2020, 12, 1305. [Google Scholar] [CrossRef] [Green Version]
- De Paiva, S.A.R.; Russell, R.M. β-Carotene and Other Carotenoids as Antioxidants. J. Am. Coll. Nutr. 1999, 18, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Bernal, Ó.A.; Torres-Aguirre, G.A.; Núñez-Gastélum, J.A.; de la Rosa, L.A.; Rodrigo-García, J.; Ayala-Zavala, J.F.; Álvarez-Parrilla, E. New approach to the interaction between Folin-Ciocalteu reactive and sugars during the quantification of total phenols. TIP Rev. Esp. Cienc. Quim. Biol. 2017, 20, 23–28. (In Spanish) [Google Scholar]
- Evans, J.R.; Lawrenson, J.G. Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration. Cochrane Database Syst. Rev. 2017, 2017, CD000254. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academies Press: Washington, DC, USA, 1997. [Google Scholar]
- Russell, R.M.; Beard, J.L.; Cousins, R.J.; Dunn, J.T.; Ferland, G.; Hambidge, K.M.; Suttie, J.W. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; A Report of the Panel on Micronutrients, Subcommittees on Upper Reference Levels of Nutrients and of Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes Food and Nutrition Board Institute of Medicine; National Academic Press: Washington, DC, USA, 2001. [Google Scholar]
- Prasad, A.S. Zinc: Role in immunity, oxidative stress and chronic inflammation. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Naczk, M. Phenolics in Food and Nutraceutical: Phenolic Compounds in Fruits and Vegetables; CRC Press: Tulsa, OK, USA, 2004; pp. 131–156. [Google Scholar]
- Wang, S.Y.; Zheng, W. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agric. Food Chem. 2001, 49, 4977–4982. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Wang, S.Y.; Wang, C.Y.; González-Aguilar, G. AEffect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT 2004, 37, 687–695. [Google Scholar] [CrossRef]
- Serrano, M.; Guillen, F.; Martínez-Romero, D.; Castillo, S.; Valero, D. Chemical Constituents and Antioxidant Activity of Sweet Cherry at Different Ripening Stages. J. Agric. Food Chem. 2005, 53, 2741–2745. [Google Scholar] [CrossRef]
- Patel, P.R.; Rao, T.V.R. Physiological changes in relation to growth and ripening of khirni [Manilkarahexandra(Roxb.) Dubard] fruit. Fruits 2009, 64, 139–146. [Google Scholar] [CrossRef]
- Yang, J.; Gadi, R.; Thomson, T. Antioxidant capacity, total phenols, and ascorbic acid content of noni (Morindacitrifolia) fruits and leaves at various stages of maturity. Micronesica 2011, 41, 167–176. [Google Scholar]
- Dinelli, G.; Bonetti, A.; Minelli, M.; Marotti, I.; Catizone, P.; Mazzanti, A. Content of flavonols in Italian bean (Phaseolus vulgaris L.) ecotypes. Food Chem. 2006, 99, 105–114. [Google Scholar] [CrossRef]
- Justesen, U.; Knuthsen, P. Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem. 2001, 73, 245–250. [Google Scholar] [CrossRef]
- Lewandowska, U.; Szewczyk, K.; Hrabec, E.; Janecka, A.; Gorlach, S. Overview of Metabolism and Bioavailability Enhancement of Polyphenols. J. Agric. Food Chem. 2013, 61, 12183–12199. [Google Scholar] [CrossRef] [PubMed]
- Pandareesh, M.; Mythri, R.; Bharath, M.S. Bioavailability of dietary polyphenols: Factors contributing to their clinical application in CNS diseases. Neurochem. Int. 2015, 89, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Paiko, Y.; Mann, A.; Ndamitso, M.; Mathew, J.; Maaji, S. Proximate, mineral and anti-nutritional composition of Cucurbita maxima fruits parts. J. Chem. Res. 2014, 19, 37–49. [Google Scholar]
- Elinge, C.M.; Muhammad, A.; Siaka, A.A.; Atiku, F.A.; Hannatu, A.S.; Peni, I.J.; Yahaya, Y. Nutritional and antinutritional composition of pumpkin (Cucurbita pepo L.) pulp. Adv. Food Energy Secur. 2012, 2, 22–28. [Google Scholar]
- Nwaoguikpe, R.N.; Ujowundu, C.O.; Okwu, G.N. The antisickling potentials of four cucurbits (T. occidentalis, C. maxima, C. sativus and C. lonatu). Sch. J. App. Med. Sci. 2013, 1, 191–198. [Google Scholar]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990. [Google Scholar] [CrossRef]
- Benzie, I.; Strain, J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K.M.; Özyürek, M.; Güçlü, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 957–998. [Google Scholar] [CrossRef] [Green Version]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Celik, S.E.; Bektaşoğlu, B.; Berker, K.I.; Ozyurt, D. Comparative Evaluation of Various Total Antioxidant Capacity Assays Applied to Phenolic Compounds with the CUPRAC Assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özyürek, M.; Güçlü, K.; Apak, R. The main and modified CUPRAC methods of antioxidant measurement. TrAC Trends Anal. Chem. 2011, 30, 652–664. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Pasławski, P.; Migaszewski, Z.M. The quality of element determinations in plant materials by instrumental methods. Pol. J. Environ. Stud. 2006, 15, 154–164. [Google Scholar]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 1954, 57, 508–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yemm, E.W.; Cocking, E.C.; Ricketts, R.E. The determination of amino-acids with ninhydrin. Anal. 1955, 80, 209. [Google Scholar] [CrossRef]
- Owen, A.J. Good Laboratory Practice with a UV-Visible Spectroscopy System; Application Note; Hewlett-Packard Company: Waldbronn, Germany, 1995. [Google Scholar]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Antioxidant Capacity | Content | |||||||
---|---|---|---|---|---|---|---|---|
TE 100 g−1 f.w. | mg 100 g−1f.w. | CAE 100 g−1f.w. | g 100 g−1f.w. | mg 100 g−1f.w. | ||||
Species | Cultivar | CUPRAC | FRAP | DPPH | β-Carotene | Total phenols | Soluble sugars | Amino acids |
C. maxima | Australian Butter | 193.6 ± 11.2 g | 50.9 ± 3.5ef | 2.90 ± 0.50 abc | 13.1 ± 0.5 cde | 19.7 ± 0.9 abc | 6.43 ± 0.38 e | 57.8 ± 1.2 e |
Bambino | 118.4 ± 10.6 de | 40.5 ± 9.8 cde | 13.07 ± 2.27 def | n.a. | 41.6 ± 4.2 fgh | 7.89 ± 0.29 g | 63.4 ± 1.7 ef | |
Buttercup | 130. ± 19.3 e | 41.3 ± 1.8 cde | 5.76 ± 1.00 abc | n.a. | 36.0 ± 2.8 efg | 4.30 ± 0.18 bcd | 35.3 ± 0.1 d | |
Chicago Warted Hubbard | 109.3 ± 3.4 bcde | 33.6 ± 1.3 bcd | 8.86 ± 1.54cde | 12.7 ± 0.6 cde | 18.9 ± 2.0 abc | 6.90 ± 0.09ef | 64.2 ± 5.1 ef | |
Garbo | 99.4 ± 3.8 bcd | 22.3 ± 0.8 ab | 1.58 ± 0.27 ab | 11.9 ± 0.5 cd | 27.6 ± 1.8 bcde | 4.36 ± 0.35 bcd | 23.1 ± 2.3bc | |
Hokkaido | 251.5 ± 20.3 h | 139.9± 13.1 i | 32.46 ± 1.06i | n.a. | 20.6 ± 0.5 abc | 6.10 ± 0.62 e | 109.5 ± 6.7 g | |
Indomatrone | 256.6 ± 2.6 h | 85.2 ± 2.9 h | 1.01 ± 0.03 a | 14.8 ± 0.9 e | 50.4 ± 3.1 h | 7.34 ± 0.25fg | 71.3 ± 7.0 f | |
Triamble | 114.7 ± 3.7 cde | 21.2 ± 3.6 ab | 3.57 ± 0.62 abc | 11.2 ± 0.2 c | 32.5 ± 1.9 def | 4.97 ± 0.03 d | 27.2 ± 2.2 cd | |
C. pepo | Halloween | 64.3 ± 3.6 a | 11.7 ± 1.7 a | 3.31 ± 0.57 abc | 11.5 ± 0.2 c | 21.3 ± 2.2 abcd | 3.03 ± 0.27 a | 25.9 ± 1.6 cd |
Kamo Kamo | 168.8 ± 1.4 fg | 57.8 ± 3.8 f | 21.03 ± 3.65 gh | 1.9 ± 0.0 a | 51.5 ± 11.0 h | 3.64 ± 0.26 abc | 15.5 ± 1.2 ab | |
Miranda | 102.7 ± 6.8 bcde | 33.0 ± 0.8 bcd | 13.92 ± 0.45 ef | 7.6 ± 0.8 b | 13.2 ± 0.6 a | 6.35 ± 0.36 e | 22.6 ± 0.9 bc | |
Sweet Dumpling | 178.6 ± 16.1 fg | 51.2 ± 3.1 ef | 32.10 ± 5.56 i | 14.6 ± 0.6 e | 48.1 ± 1.8 h | 2.78 ± 0.13 a | 12.7 ± 2.5 a | |
Table Gold | 173.1 ± 8.1 fg | 33.4 ± 3.1 bcd | 5.64 ± 0.98 abc | 14.4 ± 0.3 e | 29.8 ± 3.1 cde | 4.38 ± 0.05 bcd | 28.1 ± 1.2 bc | |
C. moschata | Butternut | 83.1 ± 4.7 ab | 21.7 ± 2.5 ab | 2.45 ± 0.35 ab | 11.1 ± 0.6 c | 17.1 ± 1.1 ab | 4.49 ± 0.13 cd | 64.7 ± 3.7 ef |
Kogigu | 158.8 ± 2.0 f | 34.7 ± 2.4 bcd | 7.78 ± 1.35 bcd | 14.3 ± 2.3 de | 70.8 ± 6.3 i | 6.71 ± 0.36 ef | 59.5 ± 3.2 e | |
Musquéede Provence | 86.1 ± 1.9 abc | 31.9 ± 1.7 bc | 16.08 ± 2.79 fg | 0.5 ± 0.1 a | 29.2 ± 0.6 cde | 3.50 ± 0.04 ab | 7.6 ± 0.5 a | |
Shishigatani | 194.8 ± 9.1 g | 47.9 ± 4.6 def | 15.01 ± 1.02 f | 12.5 ± 0.6 cde | 46.6 ± 2.1 gh | 4.66 ± 0.23 d | 56.2 ± 2.7 e | |
C. ficifolia | Angel Hair | 233.3 ± 4.7 h | 71.4 ± 4.4 g | 24.52± 0.86 h | n.a. | 20.6 ± 0.1 abc | 4.56 ± 0.24 d | 13.0 ± 0.2 a |
Content (mg 100 g−1f.w.) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Species | Cultivar | Protocatechuic Acid | p-hydroxy-Benzoic Acid | Catechin | Chlorogenic Acid | Caffeic Acid | p-Coumaric Acid | Syringic Acid | Ferulic Acid | Salicylic Acid | Kaempferol |
C. maxima | Australian Butter | 0.69 ± 0.09 d | 0.003 ± 0.001 | 0.06 ± 0.01 abc | n.d. | n.d. | 0.02 ± 0.003 | 1.29 ± 0.03 abc | 0.012 ± 0.000 | 1.39 ± 0.12 e | 0.025 ± 0.002 |
Bambino | 0.09 ± 0.00 ab | 0.007 ± 0.000 | 0.15 ± 0.02 bc | n.d. | 0.03 ± 0.00 | 0.02 ± 0.004 | 4.43 ± 0.26 ef | n.d. | 1.43 ± 0.30 e | n.d. | |
Buttercup | 0.36 ± 0.02 c | 0.001 ± 0.000 | 0.03 ± 0.01 a | n.d. | 0.05 ± 0.00 | n.d. | 2.04 ± 0.24 bc | n.d. | 0.10 ± 0.02 a | 0.046 ± 0.001 | |
Chicago Warted Hubbard | 0.29 ± 0.05 bc | 0.027 ± 0.000 | 0.38 ± 0.03 g | n.d. | 0.05 ± 0.02 | 0.03 ± 0.004 | 1.46 ± 0.12 abc | 0.231 ± 0.060 | 1.76 ± 0.15 f | 0.042 ± 0.009 | |
Garbo | 0.52 ± 0.01 cd | 0.004 ± 0.001 | 0.42 ± 0.04 g | n.d. | n.d. | 0.03 ± 0.004 | 4.54 ± 0.21 ef | 0.259 ± 0.011 | 1.66 ± 0.09 ef | 0.056 ± 0.006 | |
Hokkaido | 1.16 ± 0.02 e | 0.001 ± 0.000 | 0.02 ± 0.00 a | n.d. | 0.04 ± 0.00 | n.d. | 0.62 ± 0.03 ab | 0.020 ± 0.004 | 0.68 ± 0.02 bc | 0.042 ± 0.003 | |
Indomatrone | 0.66 ± 0.01 d | 0.020 ± 0.002 | 0.06 ± 0.00 ab | n.d. | n.d. | 0.02 ± 0.003 | 4.25 ± 0.19 ef | 0.020 ± 0.002 | 2.56 ± 0.12 g | 0.060 ± 0.009 | |
Triamble | 0.03 ± 0.00 a | 0.006 ± 0.000 | 0.37 ± 0.01 g | 0.03 ± 0.00 | n.d. | 0.01 ± 0.002 | 2.77 ± 0.10 cd | 0.143 ± 0.014 | 1.49 ± 0.11 ef | n.d. | |
C. pepo | Halloween | 1.07 ± 0.10 e | 0.002 ± 0.001 | 0.22 ± 0.02 ef | 0.14 ± 0.02 | 0.03 ± 0.01 | 0.01 ± 0.001 | 2.18 ± 0.05 bc | 0.010 ± 0.001 | 1.06 ± 0.04 d | 0.027 ± 0.003 |
KamoKamo | 1.08 ± 0.08 e | 0.002 ± 0.000 | 0.15 ± 0.02 cde | n.d. | 0.01 ± 0.00 | n.d. | 4.91 ± 0.16 ef | 0.025 ± 0.001 | 0.61 ± 0.03 bc | 0.022 ± 0.001 | |
Miranda | 1.46 ± 0.06 f | 0.001 ± 0.000 | 0.09 ± 0.00 abc | 0.02 ± 0.00 | 0.04 ± 0.00 | 0.02 ± 0.002 | 1.47 ± 0.14 abc | 0.015 ± 0.003 | 0.43 ± 0.04 b | n.d. | |
Sweet Dumpling | 0.42 ± 0.03 c | 0.002 ± 0.000 | n.d | 0.06 ± 0.00 | n.d. | 0.01 ± 0.000 | 7.70 ± 0.72 g | 0.072 ± 0.013 | 0.12 ± 0.01 a | n.d. | |
Table Gold | 1.03 ± 0.11 e | 0.004 ± 0.000 | 0.19 ± 0.00 de | n.d. | n.d. | 0.01 ± 0.003 | 2.14 ± 0.08 bc | n.d. | 2.74 ± 0.09 g | n.d. | |
C. moschata | Butternut | 1.03 ± 0.07 e | 0.009 ± 0.000 | 0.28 ± 0.01 f | n.d. | n.d. | 0.02 ± 0.00 | 0.84 ± 0.05 ab | 0.196 ± 0.009 | 0.82 ± 0.02 cd | 0.048 ± 0.008 |
Kogigu | 2.42 ± 0.20 h | 0.014 ± 0.000 | 0.52 ± 0.06 h | n.d. | 0.04 ± 0.00 | 0.03 ± 0.006 | 16.41 ± 1.77 h | 0.442 ± 0.005 | 0.50 ± 0.04 bc | 0.107 ± 0.043 | |
Musquéede Provence | 0.32 ± 0.06 bc | 0.003 ± 0.000 | n.d. | n.d. | n.d. | n.d. | 3.72 ± 0.51 de | n.d. | 0.50 ± 0.13 bc | 0.026 ± 0.003 | |
Shishigatani | 1.70 ± 0.15 g | 0.015 ± 0.000 | 0.13 ± 0.03 bcde | 0.03 ± 0.00 | 0.08 ± 0.01 | 0.02 ± 0.001 | 5.42 ± 0.36 f | n.d. | 0.45 ± 0.02 b | n.d. | |
C. ficifolia | Angel Hair | 0.27 ± 0.02 bc | 0.004 ± 0.000 | 0.12 ± 0.00 bcd | n.d. | 0.03 ± 0.00 | n.d. | 0.39 ± 0.06 a | n.d. | 0.04 ± 0.00 a | n.d. |
TP | FRAP | CUPRAC | DPPH | Car | PcA | pHbA | SyrA | SA | Cat | |
---|---|---|---|---|---|---|---|---|---|---|
TP | 1.00 | |||||||||
FRAP | 0.46 * | 1.00 | ||||||||
CUPRAC | 0.54 *** | 0.89 *** | 1.00 | |||||||
DPPH | 0.32 | 0.22 | 0.10 | 1.00 | ||||||
Car | 0.05 | −0.03 | 0.23 | −0.65 *** | 1.00 | |||||
PcA | 0.48 * | 0.05 | 0.13 | 0.39 | −0.02 | 1.00 | ||||
pHbA | 0.25 | 0.31 | 0.29 | −0.07 | 0.44 * | −0.05 | 1.00 | |||
SyrA | 0.78 *** | 0.12 | 0.24 | 0.13 | 0.15 | 0.64 *** | 0.23 | 1.00 | ||
SA | −0.11 | 0.23 | 0.32 | −0.53 *** | 0.49 * | −0.57 *** | 0.21 | −0.30 | 1.00 | |
Cat | 0.17 | −0.54 *** | −0.44 * | −0.22 | 0.17 | 0.01 | 0.26 | 0.51 * | −0.08 | 1.00 |
Content, mg 100 g−1f.w. | µg 100 g−1f.w. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | Cultivar | Ca | K | Mg | P | S | Na | B | Fe | Zn | Cu | Mn |
C. maxima | Australian Butter | 24.7 ± 0,1ef | 218.8 ± 3.9 de | 14.2 ± 0.5 efgh | 49.9 ± 0.9 e | 17.8 ± 1.1 ef | 0.87 ± 0.05 bc | 0.20 ± 0.00 de | 0.25 ± 0.01 c | 0.37 ± 0.02 b | 59.1 ± 2.2 ef | 36.0 ± 1.7 d |
Bambino | 32.3 ± 0.2 g | 144.9 ± 6.9 a | 7.1 ± 0.9 ab | 19.3 ± 0.3 b | 15.6 ± 0.6 b | 0.41 ± 0.05 ab | 0.15 ± 0.02 bc | 0.24 ± 0.02 c | 0.30 ± 0.03 b | 53.8 ± 2.0 e | 33.9 ± 2.2 d | |
Buttercup | 18.9 ± 0.7 bc | 303.6 ± 5.2 g | 13.3 ± 1.1 def | 54.0 ± 0.9 f | 26.4 ± 0.2 i | 2.22 ± 0.17 ij | 0.21 ± 0.00 de | 0.27 ± 0.04 cd | 0.56 ± 0.00 d | 86.2 ± 3.7 g | 34.0 ± 1.3 d | |
Chicago Warted Hubbard | 24.5 ± 0.8 def | 324.8 ± 14.2 h | 7.3 ± 0.7 ab | 22.4 ± 0.8 c | 19.3 ± 0.1 g | 1.70 ± 0.06 gh | 0.18 ± 0.01 cd | 0.19 ± 0.00 b | 0.20 ± 0.01 a | 22.9 ± 1.9 a | 22.0 ± 1.4 c | |
Garbo | 31.7± 1.7 g | 235.2 ±2.5 e | 10.8 ± 0.0 c | 23.2 ±1.7 c | 17.4 ± 0.4 def | 1.00 ± 0.09 cde | 0.24 ± 0.01 e | 0.17 ± 0.03 b | 0.19 ± 0.01 a | 25.4 ± 1.5 ab | 15.5 ± 1.1 ab | |
Hokkaido | 26.1 ± 2.7 ef | 323.3 ± 0.4 h | 7.4 ± 0.5 b | 18.6 ± 0.3 b | 15.1 ± 0.4 c | 0.20 ± 0.02 a | 0.21 ± 0.02 de | 0.15 ± 0.02 b | 0.21 ± 0.00 a | 42.2 ± 0.6 cd | 14.5 ± 0.1 ab | |
Indomatrone | 32.2 ± 1.2 g | 469.8 ± 10.8 k | 34.0 ± 0.3 i | 76.5 ± 1.4 h | 49.3 ± 0.2 k | 6.82 ± 0.33 m | 0.15 ± 0.02 bc | 0.47 ± 0.00 g | 0.88 ± 0.04 f | 122.8 ± 7.7 i | 103.5 ± 3.1i | |
Triamble | 22.5 ± 0.4 de | 194.9 ± 1.2 c | 13.6 ± 0.3 defg | 54.7 ± 0.1 f | 18.7 ± 0.1 fg | 2.62 ± 0.20 jk | 0.11 ± 0.00 ab | 0.28 ± 0.00 cd | 0.52 ± 0.02 cd | 68.9 ± 1.6 f | 38.6 ± 0.5 de | |
C. pepo | Halloween | 38.0 ± 2.3 h | 291.0 ± 3.4 g | 11.4 ± 0.1 cd | 23.8 ± 1.3 c | 15.4 ± 0.6 c | 1.51 ± 0.02 efg | 0.22 ± 0.01 de | 0.15 ± 0.00 b | 0.15 ± 0.01 a | 48.8 ± 0.7 de | 19.4 ± 1.6 bc |
KamoKamo | 20.8 ± 0.8 cd | 259.4 ± 1.9 f | 12.9 ± 0.6 cde | 24.0 ± 0.1 c | 17.2 ± 0.2 de | 2.40 ± 0.27 ij | 0.15 ± 0.00 bc | 0.31 ± 0.01 de | 0.35 ± 0.01 b | 52.0 ± 0.5 de | 34.8 ± 1.2 d | |
Miranda | 17.8 ± 1.2 bc | 163.7 ± 8.8 b | 5.1 ± 0.8 a | 14.1 ± 1.1 a | 9.0 ± 0.1 b | 1.41 ± 0.12 defg | 0.14 ± 0.01 abc | 0.14 ± 0.00 b | 0.17 ± 0.01 a | 34.9 ± 2.0 bc | 11.4 ± 0.7 a | |
Sweet Dumpling | 16.6 ± 1.7 b | 272.9 ± 3.5 f | 34.6 ± 1.0 i | 110.6 ± 0.8 j | 29.3 ± 0.8 j | 3.08 ± 0.03 k | 0.23 ± 0.00 e | 0.41 ± 0.02 f | 1.23 ± 0.04 g | 101.2 ± 3.3 h | 68.0 ± 3.4 g | |
Table Gold | 24.8 ± 0.6 ef | 390.7 ± 0.7 i | 15.9 ± 1.8 h | 88.9± 0.5 i | 22.2 ± 0.8 h | 3.56 ± 0.17 l | 0.35 ± 0.02 f | 0.42 ± 0.01 f | 0.78 ± 0.05 e | 102.1 ± 6.1 h | 74.8 ± 5.7 h | |
C. moschata | Butternut | 34.4 ± 0.2 g | 212.3 ± 8.4 cd | 12.3 ± 0.4 cde | 30.9 ± 1.4 d | 15.7 ± 0.1 c | 1.09 ± 0.04 cdef | 0.15 ± 0.01 bc | 0.16 ± 0.01 b | 0.38 ± 0.03 b | 59.8 ± 1.7 ef | 32.5 ± 0.9 d |
Kogigu | 9.9 ± 0.5 a | 434.7 ± 6.8 j | 10.8 ± 0.1 c | 110.7 ± 2.5 j | 29.2 ± 0.3 j | 1.49 ± 0.30 efg | 0.14 ± 0.01 bc | 0.26 ± 0.00 cd | 0.46 ± 0.04 c | 148.4 ± 7.2 j | 43.3 ± 0.7 e | |
Musquéede Provence | 27.0 ± 0.4 f | 222.9 ± 0.6 de | 15.3 ± 0.4 fgh | 65.3 ± 0.4 g | 16.0 ± 0.3 cd | 1.53 ± 0.27 fg | 0.09 ± 0.00 a | 0.27 ± 0.01 cd | 0.35 ± 0.00 b | 53.9 ± 4.2 e | 38.0 ± 0.8 de | |
Shishigatani | 23.6 ± 0.3 def | 327.0 ± 4.9 h | 15.7 ± 0.4 gh | 87.9 ± 0.3 i | 21.9 ± 0.3 h | 2.09 ± 0.09 hi | 0.21 ± 0.03 de | 0.33 ± 0.01 e | 0.55 ± 0.03 d | 60.5 ± 3.7 ef | 60.9 ± 1.5 f | |
C. ficifolia | Angel Hair | 23.5 ± 0.7 def | 137.5 ± 4.8 a | 5.9 ± 0.2 ab | 12.9 ± 0.1 a | 7.5 ± 0.2 a | 0.97 ± 0.06 cd | 0.11 ± 0.01 ab | 0.08 ± 0.00 a | 0.13 ± 0.01 a | 15.4 ± 0.8 a | 34.6 ± 0.6 d |
Eigenvalue | % Variance | Cumulated % Variance | |
---|---|---|---|
PC1 | 8.21 | 39.12 | 39.12 |
PC2 | 2.99 | 14.26 | 53.38 |
PC3 | 2.81 | 13.36 | 66.74 |
PC4 | 2.34 | 11.12 | 77.86 |
PC5 | 1.37 | 6.53 | 84.39 |
Variable | PC1 | PC2 | PC3 | PC4 | PC5 |
---|---|---|---|---|---|
Protocatechuic acid | −0.227 | 0.299 | 0.442 | 0.466 | −0.466 |
p-hydroxybenzoic acid | −0.374 | −0.470 | 0.292 | 0.384 | 0.311 |
Salicylic acid | −0.325 | −0.810 | −0.185 | 0.082 | −0.137 |
Syringic acid | −0.557 | 0.491 | 0.196 | 0.536 | 0.069 |
B | −0.273 | −0.177 | −0.226 | −0.123 | −0.837 |
Ca | 0.271 | −0.689 | −0.283 | −0.139 | −0.057 |
Cu | −0.879 | 0.157 | 0.025 | 0.242 | −0.062 |
Fe | −0.903 | −0.036 | −0.232 | −0.161 | 0.017 |
K | −0.786 | −0.193 | 0.238 | 0.179 | −0.325 |
Mg | −0.817 | 0.014 | −0.296 | −0.335 | 0.135 |
Mn | −0.898 | −0.130 | −0.138 | −0.222 | 0.11 |
Na | −0.810 | −0.261 | −0.248 | −0.174 | 0.178 |
P | −0.854 | 0.326 | −0.110 | 0.133 | −0.098 |
S | −0.922 | −0.212 | 0.024 | 0.019 | 0.131 |
Zn | −0.859 | 0.157 | −0.262 | −0.269 | 0.008 |
Total phenols | −0.740 | 0.374 | 0.168 | 0.262 | 0.177 |
FRAP | −0.145 | −0.048 | 0.716 | −0.651 | −0.052 |
CUPRAC | −0.452 | −0.016 | 0.573 | −0.571 | −0.037 |
DPPH | 0.102 | 0.573 | 0.381 | −0.599 | 0.023 |
Soluble sugars | −0.077 | −0.501 | 0.631 | 0.253 | 0.272 |
Amino acids | −0.127 | −0.486 | 0.741 | 0.037 | −0.149 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostecka-Gugała, A.; Kruczek, M.; Ledwożyw-Smoleń, I.; Kaszycki, P. Antioxidants and Health-Beneficial Nutrients in Fruits of Eighteen Cucurbita Cultivars: Analysis of Diversity and Dietary Implications. Molecules 2020, 25, 1792. https://doi.org/10.3390/molecules25081792
Kostecka-Gugała A, Kruczek M, Ledwożyw-Smoleń I, Kaszycki P. Antioxidants and Health-Beneficial Nutrients in Fruits of Eighteen Cucurbita Cultivars: Analysis of Diversity and Dietary Implications. Molecules. 2020; 25(8):1792. https://doi.org/10.3390/molecules25081792
Chicago/Turabian StyleKostecka-Gugała, Anna, Michał Kruczek, Iwona Ledwożyw-Smoleń, and Paweł Kaszycki. 2020. "Antioxidants and Health-Beneficial Nutrients in Fruits of Eighteen Cucurbita Cultivars: Analysis of Diversity and Dietary Implications" Molecules 25, no. 8: 1792. https://doi.org/10.3390/molecules25081792
APA StyleKostecka-Gugała, A., Kruczek, M., Ledwożyw-Smoleń, I., & Kaszycki, P. (2020). Antioxidants and Health-Beneficial Nutrients in Fruits of Eighteen Cucurbita Cultivars: Analysis of Diversity and Dietary Implications. Molecules, 25(8), 1792. https://doi.org/10.3390/molecules25081792