Assessment of Mint, Basil, and Lavender Essential Oil Vapor-Phase in Antifungal Protection and Lemon Fruit Quality
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Essential Oils by GC/MS Analysis
2.2. In Vitro Assay of MEO, BEO, and LEO Vapors for Antifungal Performances
2.3. Experiment 1: In Vivo Assay of Inoculated Lemon Fruits Stored with EO Vapor-Phase
2.4. Experiment 2: Physiological and Biochemical Indicators of Lemon Quality
3. Discussion
4. Materials and Methods
4.1. Plant Materials, EO Extraction, and Gas Chromatography/Mass Spectrometry Assessment
4.2. Antifungal Efficacy Assessment: In Vitro Assay
4.3. Experiment 1—Antifungal Protection of Lemons, In Vivo Assay
4.4. Experiment 2: Physiological and Biochemical Indicators of Lemon Fruit Quality, In Vivo Assay
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Porat, R.; Lichter, A.; Terry, L.A.; Harker, R.; Buzby, J. Postharvest Losses of Fruit and Vegetables during Retail and in Consumers’ Homes: Quantifications, Causes, and Means of Prevention. Postharvest Biol. Technol. 2018, 139, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Alfonso, C.O.; Martínez-Romero, D.; Zapata, P.J.; Serrano, M.; Valero, D.; Castillo, S. The Effects of Essential Oils Carvacrol and Thymol on Growth of Penicillium digitatum and P. italicum Involved in Lemon Decay. Int. J. Food Microbiol. 2012, 158, 101–106. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal Activity of Zinc Oxide Nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011, 166, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, W.; Zhou, Y.; Yao, S.; Deng, L.; Zeng, K. Isolation, Identification and in Vitro Screening of Chongqing Orangery Yeasts for the Biocontrol of Penicillium Digitatum on Citrus Fruit. Biol. Control 2017, 110, 18–24. [Google Scholar] [CrossRef]
- Simas, D.L.R.; de Amorim, S.H.B.M.; Goulart, F.R.V.; Alviano, C.S.; Alviano, D.S.; da Silva, A.J.R. Citrus Species Essential Oils and Their Components Can Inhibit or Stimulate Fungal Growth in Fruit. Ind. Crops Prod. 2017, 98, 108–115. [Google Scholar] [CrossRef]
- Palou, L.; Valencia-Chamorro, S.A.; Pérez-Gago, M.B. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review. Coatings. 2015, 5, 962–986. [Google Scholar] [CrossRef] [Green Version]
- Romanazzi, G.; Smilanick, J.L.; Feliziani, E.; Droby, S. Integrated Management of Postharvest Gray Mold on Fruit Crops. Postharvest Biol. Technol. 2016, 113, 69–76. [Google Scholar] [CrossRef]
- Ncama, K.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z. Plant-Based Edible Coatings for Managing Postharvest Quality of Fresh Horticultural Produce: A Review. Food Packag. Shelf Life. 2018, 16, 157–167. [Google Scholar] [CrossRef]
- Bill, M.; Sivakumar, D.; Korsten, L.; Thompson, A.K. The Efficacy of Combined Application of Edible Coatings and Thyme Oil in Inducing Resistance Components in Avocado (Persea Americana Mill.) against Anthracnose during Post-Harvest Storage. Crop Prot. 2014, 64, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z.; Opara, U.L. Postharvest Factors Affecting Vitamin C Content of Citrus Fruits: A Review. Scientia Horticulturae 2017, 218, 95–104. [Google Scholar] [CrossRef]
- Perez, M.F.; Perez Ibarreche, J.; Isas, A.S.; Sepulveda, M.; Ramallo, J.; Dib, J.R. Antagonistic Yeasts for the Biological Control of Penicillium digitatum on Lemons Stored under Export Conditions. Biol. Control 2017, 115, 135–140. [Google Scholar] [CrossRef]
- Ferraz, L.P.; Cunha, T.d.; da Silva, A.C.; Kupper, K.C. Biocontrol Ability and Putative Mode of Action of Yeasts against Geotrichum Citri-Aurantii in Citrus Fruit. Microbiol. Res. 2016, 188, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Sperandio, E.M.; Martins do Vale, H.M.; Moreira, G.A.M. Yeasts from Native Brazilian Cerrado Plants: Occurrence, Diversity and Use in the Biocontrol of Citrus Green Mould. Fungal Biol. 2015, 119, 984–993. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, D.; Bautista-Baños, S. A Review on the Use of Essential Oils for Postharvest Decay Control and Maintenance of Fruit Quality during Storage. Crop Prot. 2014, 64, 27–37. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Mancini, E.; Camele, I.; Martino, L.D.; de Feo, V. In Vivo Antifungal Activity of Two Essential Oils from Mediterranean Plants against Postharvest Brown Rot Disease of Peach Fruit. Ind. Crops Prod. 2015, 66, 11–15. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Nanoemulsions as Edible Coatings. Curr. Opin. Food Sci. 2017, 15, 43–49. [Google Scholar] [CrossRef]
- Usall, J.; Ippolito, A.; Sisquella, M.; Neri, F. Physical Treatments to Control Postharvest Diseases of Fresh Fruits and Vegetables. Postharvest Biol. Technol. 2016, 122, 30–40. [Google Scholar] [CrossRef]
- Manganyi, M.C.; Regnier, T.; Olivier, E.I. Antimicrobial Activities of Selected Essential Oils against Fusarium oxysporum Isolates and Their Biofilms. S. Afr. J. Bot. 2015, 99, 115–121. [Google Scholar] [CrossRef]
- Da Silva Bomfim, N.; Nakassugi, L.P.; Faggion Pinheiro Oliveira, J.; Kohiyama, C.Y.; Mossini, S.A.G.; Grespan, R.; Nerilo, S.B.; Mallmann, C.A.; Alves Abreu Filho, B.; Machinski, M. Antifungal Activity and Inhibition of Fumonisin Production by Rosmarinus Officinalis L. Essential Oil in Fusarium verticillioides (Sacc.) Nirenberg. Food Chem. 2015, 166, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Munhuweyi, K.; Caleb, O.J.; Lennox, C.L.; van Reenen, A.J.; Opara, U.L. In Vitro and In Vivo Antifungal Activity of Chitosan-Essential Oils against Pomegranate Fruit Pathogens. Postharvest Biol. Technol. 2017, 129, 9–22. [Google Scholar] [CrossRef]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential Oils as Antimicrobials in Food Systems—A Review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Frankova, A.; Smid, J.; Bernardos, A.; Finkousova, A.; Marsik, P.; Novotny, D.; Legarová, V.; Pulkrabek, J.; Kloucek, P. The Antifungal Activity of Essential Oils in Combination with Warm Air Flow against Postharvest Phytopathogenic Fungi in Apples. Food Control 2016, 68, 62–68. [Google Scholar] [CrossRef]
- Tzortzakis, N.G. Maintaining Postharvest Quality of Fresh Produce with Volatile Compounds. Innov. Food Sci. Emerg. Technol. 2007, 8, 111–116. [Google Scholar] [CrossRef]
- Sadgrove, N.; Jones, G. A Contemporary Introduction to Essential Oils: Chemistry, Bioactivity and Prospects for Australian Agriculture. Agriculture 2015, 5, 48–102. [Google Scholar] [CrossRef] [Green Version]
- Babushok, V.I.; Linstrom, P.J.; Zenkevich, I.G. Retention indices for frequently reported compounds of plant essential oils. J. Phys. Chem. Ref. Data 2011, 40, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Rota, M.C.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial Activity and Chemical Composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis Essential Oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Calvo-Irabien, L.M. Native Mexican Aromatic Flora and Essential Oils: Current Research Status, Gaps in Knowledge and Agro-Industrial Potential. Ind. Crops Prod. 2018, 111, 807–822. [Google Scholar] [CrossRef]
- Oxenham, S.K.; Svoboda, K.P.; Walters, D.R. Antifungal Activity of the Essential Oil of Basil (Ocimum Basilicum). J. Phytopathol. 2005, 153, 174–180. [Google Scholar] [CrossRef]
- Laird, K.; Phillips, C. Vapor Phase: A Potential Future Use for Essential Oils as Antimicrobials? Lett. Appl. Microbiol. 2012, 54, 169–174. [Google Scholar] [CrossRef]
- Inouye, S.; Tsuruoka, T.; Watanabe, M.; Takeo, K.; Akao, M.; Nishiyama, Y.; Yamaguchi, H. Inhibitory effect of essential oils on apical growth of Aspergillus fumigatus by vapor contact. Mycoses 2000, 43, 17–23. [Google Scholar] [CrossRef]
- Yahyazadeh, M.; Omidbaigi, R.; Zare, R.; Taheri, H. Effect of Some Essential Oils on Mycelial Growth of Penicillium digitatum Sacc. World J. Microbiol. Biotechnol. 2008, 24, 1445–1450. [Google Scholar] [CrossRef]
- Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M.; Lawrence, B.M. Menthol: A Simple Monoterpene with Remarkable Biological Properties. Phytochemistry 2013. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S.; Uchida, K.; Maruyama, N.; Yamaguchi, H.; Abe, S. A Novel Method to Estimate the Contribution of the Vapor Activity of Essential Oils in Agar Diffusion Assay. Jpn. J. Med. Mycol. 2006, 47, 91–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edris, A.E.; Farrag, E.S. Antifungal Activity of Peppermint and Sweet Basil Essential Oils and Their Major Aroma Constituents on Some Plant Pathogenic Fungi from the Vapor Phase. Nahrung Food 2003, 47, 117–121. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; de Feo, V. Essential Oils and Antifungal Activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Morsy, N.F.S. Chemical structure, quality indices and bioactivity of essential oil constituents. In Active Ingredients from Aromatic and Medicinal Plants; El-Shemy, H.A., Ed.; InTech: Rijeka, Croatia, 2017; pp. 189–191. [Google Scholar] [CrossRef] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils--a Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Arnon, H.; Zaitsev, Y.; Porat, R.; Poverenov, E. Effects of Carboxymethyl Cellulose and Chitosan Bilayer Edible Coating on Postharvest Quality of Citrus Fruit. Postharvest Biol. Technol. 2014, 87, 21–26. [Google Scholar] [CrossRef]
- Jiang, T.; Luo, Z.; Ying, T. Fumigation with Essential Oils Improves Sensory Quality and Enhanced Antioxidant Ability of Shiitake Mushroom (Lentinus Edodes). Food Chem. 2015, 172, 692–698. [Google Scholar] [CrossRef]
- Fan, F.; Tao, N.; Jia, L.; He, X. Use of Citral Incorporated in Postharvest Wax of Citrus Fruit as a Botanical Fungicide against Penicillium digitatum. Postharvest Biol. Technol. 2014, 90. [Google Scholar] [CrossRef]
- Léchaudel, M.; Darnaudery, M.; Joët, T.; Fournier, P.; Joas, J. Genotypic and Environmental Effects on the Level of Ascorbic Acid, Phenolic Compounds and Related Gene Expression during Pineapple Fruit Development and Ripening. Plant Physiol. Biochem. 2018, 130, 127–138. [Google Scholar] [CrossRef]
- Cindi, M.D.; Soundy, P.; Romanazzi, G.; Sivakumar, D. Different Defense Responses and Brown Rot Control in Two Prunus Persica Cultivars to Essential Oil Vapors after Storage. Postharvest Biol. Technol. 2016, 119, 9–17. [Google Scholar] [CrossRef]
- Vithana, M.D.K.; Singh, Z.; Johnson, S.K.; Gupta, R. Concentrations of Health-Promoting Phytochemicals in Ripe Mango Fruit Triggered by Postharvest Application of Elicitors. J. Sci. Food Agric. 2019, 99, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Romanazzi, G.; Sanzani, S.M.; Bi, Y.; Tian, S.; Gutiérrez Martínez, P.; Alkan, N. Induced Resistance to Control Postharvest Decay of Fruit and Vegetables. Postharvest Biol. Technol. 2016, 122, 82–94. [Google Scholar] [CrossRef]
- Bill, M.; Korsten, L.; Remize, F.; Glowacz, M.; Sivakumar, D. Effect of Thyme Oil Vapors Exposure on Phenylalanine Ammonia-Lyase (PAL) and Lipoxygenase (LOX) Genes Expression, and Control of Anthracnose in ‘Hass’ and ‘Ryan’ Avocado Fruit. Sci. Hortic. 2017, 224, 232–237. [Google Scholar] [CrossRef] [Green Version]
- European Pharmacopoeia; European Directorate for the Quality of Medicines & Healthcare (EDQM): Strasbourg, France, 1975; Volume 3, pp. 89–99.
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage; Springer: New York, NY, USA, 2009; pp. 53–142. [Google Scholar]
- Santos, D.A.; Lima, K.P.; Março, P.H.; Valderrama, P. Vitamin C Determination by Ultraviolet Spectroscopy and Multiproduct Calibration. J. Braz. Chem. Soc. 2016, 27, 1912–1917. [Google Scholar] [CrossRef]
Sample Availability: Samples of BEO, MEO, and LEO are available from the authors. |
Compounds | Type | LRIc/LRIr | MEO | BEO | LEO |
---|---|---|---|---|---|
α-Pinene | MH | 1021/1015 | 0.62 | - | - |
β-Pinene | MH | 1106/1096 | 0.89 | 0.40 | - |
Thujene | MH | 1118/1122 | 0.50 | - | - |
β-Myrcene | MH | 1158/1164 | 0.31 | - | 0.36 |
p-Mentha-2,4(8)-diene | MH | 1176/1180 | 0.23 | - | - |
d-Limonene | MH | 1196/1193 | 3.06 | 0.39 | 0.62 |
Eucalyptol | MO | 1204/1209 | 7.44 | 3.46 | 1.48 |
trans-β-Ocimene | MH | 1228/1230 | - | - | 4.75 |
Gamma Terpinene | MH | 1241/1242 | 0.43 | - | - |
cis-β-Ocimene | MH | 1245/1250 | - | 0.62 | 4.02 |
p-Cymol | MH | 1263/1264 | - | - | 0.35 |
o-Cymol | MH | 1265/1268 | - | 0.31 | - |
6-Methyl hept-5-en-2-one | MO | 1325/1325 | - | 0.30 | - |
Octen-1-ol acetate | MO | 1364/1365 | - | - | 1.20 |
p-Menthan-3-one | MO | 1457/1458 | 31.00 | - | - |
cis-Linaloloxide | MO | 1460/1463 | - | - | 0.14 |
Menthofurane | MO | 1474/1477 | 1.38 | - | - |
d-Menthone | MO | 1484/1486 | 3.19 | - | - |
Camphor | MO | 1507/1518 | - | - | 0.26 |
Linalool | MO | 1533/1537 | 0.39 | 41.49 | 31.44 |
Linalyl acetate | MO | 1541/1543 | 0.94 | - | 31.78 |
Menthyl acetate | MO | 1552/1551 | 2.20 | - | - |
p-Menth-8-en-3-one | MO | 1562/1561 | 0.19 | - | - |
1-Terpineol | MO | 1565/1562 | - | - | 0.17 |
Alfa Santalene | SH | 1571/1574 | - | - | 0.56 |
4-Terpineol | MO | 1593/1592 | - | -- | 8.43 |
Caryophyllene | SH | 1598/1599 | 2.35 | - | 5.39 |
Cyclohexanone,5 methyl-2-(1 methylethyliden) | MO | 1635/1633 | 2.07 | - | - |
Estragole/Methyl chavicol | MO | 1652/1650 | - | 49.94 | - |
Beta Farnesene | SH | 1653/1652 | - | - | 1.35 |
8-p-Menthen-2-ol | MO | 1655/1656 | 0.24 | - | |
Cryptone | MO | 1658/1661 | - | - | 0.47 |
Cis Citral | MO | 1664/1668 | - | 0.66 | - |
Alfa Terpineol | MO | 1694/1697 | - | - | 0.13 |
Germacrene D | SH | 1708/1708 | 0.57 | - | 0.45 |
Trans Citral | MO | 1712/1714 | - | 0.80 | - |
3-Carvomenthenone | MO | 1713/1710 | 0.32 | - | - |
Carvone | MO | 1719/1718 | 6.72 | - | - |
Alfa Bisabolene | SH | 1734/1736 | - | 0.94 | - |
3-Isopropylbenzaldehyde | MO | 1765/1765 | - | - | 0.13 |
Menthol | MO | 1801/1788 | 25.19 | - | - |
Anethole | MO | 1807/1817 | - | - | 0.69 |
Lavandulol | MO | 1879/1879 | - | - | 5.24 |
Caryophyllene oxide | SO | 1998/1989 | - | - | 0.35 |
Eugenol | MO | 2198/2186 | - | 0.37 | - |
1,3,12-Nonadecatriene | SH | 2405/2400 | 9.76 | - | - |
Total (%) | 99.99 | 99.68 | 99.76 | ||
from which | MH | 6.06 | 1.72 | 10.10 | |
MO | 81.28 | 97.02 | 81.56 | ||
SH | 12.65 | 0.94 | 7.75 | ||
SO | - | - | 0.35 |
EO Treatment | Effect | EO Doses (µL) | |||||||
---|---|---|---|---|---|---|---|---|---|
50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | ||
MEO | MFsD a | + | + | + | + | + | - | - | - |
MFdD b | + | + | + | ||||||
BEO | MFsD a | + | + | - | - | - | - | - | - |
MFdD b | + | + | + | - | - | - | |||
LEO | MFsD a | + | + | + | - | - | - | - | - |
MFdD b | + | + | + | - | - |
Rank | Treatment | Mean * | LEO C1 | BEO C1 | MEO C1 | BEO C2 | MEO C2 | LEO C2 | Control |
---|---|---|---|---|---|---|---|---|---|
1 | Control | 47.0 a | 30.1 | 29.4 | 26.4 | 25.4 | 22.8 | 16.1 | |
2 | LEO-C2 | 30.9 b | 14.0 | 13.3 | 10.3 | 9.3 | 6.6 | ||
3 | MEO-C2 | 24.3 c | 7.4 | 6.6 | 3.6 | 2.6 | |||
4 | BEO-C2 | 21.6 d | 4.8 | 4.0 | 1.0 | ||||
5 | MEO-C1 | 20.6 d | 3.8 | 3.0 | |||||
6 | BEO-C1 | 17.6 e | 0.8 | ||||||
7 | LEO-C1 | 16.9 e |
Treatment | Firmness a (N) | Weight Loss b (%) | pH b |
---|---|---|---|
Initial control | 45.0 ± 9.1 A | - | 2.57 ± 0.01 |
Control | 46.6 ± 8.8 A | 0.46 ± 0.1 | 2.56 ± 0.2 ns |
MEO-C1 | 59.0 ± 15.2 B | 0.44 ± 0.12 * | 2.66 ± 0.12 ns |
BEO-C1 | 45.9 ± 10.8 A | 0.51 ± 0.32 * | 2.63 ± 0.03 ns |
LEO-C1 | 53.6 ± 15 A,C | 0.33 ± 0.13 ns | 2.72 ± 0.06 ns |
MEO-C2 | 51.2 ± 19.5 A,C | 0.47 ± 0.09 * | 2.64 ± 0.01 ns |
BEO-C2 | 48.4 ± 9.5 A | 0.42 ± 0.07 * | 2.67 ± 0.00 ns |
LEO-C2 | 65.1 ± 7.3 B | 0.35 ± 0.11 * | 2.69 ± 0.00 ns |
EO Doses | IC50 In Vitro * | C1 In Vivo ** | C2 In Vivo *** | |||
---|---|---|---|---|---|---|
EO Doses µL | EO µL L−1 Air Space | EO Doses µL | EO µL L−1 Air Space | EO Doses µL | EO µL L−1 Air Space | |
MEO | 91.49 | 183.0 | 3660 | 183 | 1830 | 91.5 |
BEO | 23.28 | 46.0 | 932 | 46 | 466 | 23.0 |
LEO | 43.39 | 86.0 | 1736 | 86 | 868 | 43.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumalan, R.M.; Kuganov, R.; Obistioiu, D.; Popescu, I.; Radulov, I.; Alexa, E.; Negrea, M.; Salimzoda, A.F.; Sumalan, R.L.; Cocan, I. Assessment of Mint, Basil, and Lavender Essential Oil Vapor-Phase in Antifungal Protection and Lemon Fruit Quality. Molecules 2020, 25, 1831. https://doi.org/10.3390/molecules25081831
Sumalan RM, Kuganov R, Obistioiu D, Popescu I, Radulov I, Alexa E, Negrea M, Salimzoda AF, Sumalan RL, Cocan I. Assessment of Mint, Basil, and Lavender Essential Oil Vapor-Phase in Antifungal Protection and Lemon Fruit Quality. Molecules. 2020; 25(8):1831. https://doi.org/10.3390/molecules25081831
Chicago/Turabian StyleSumalan, Renata M., Raufdzhon Kuganov, Diana Obistioiu, Iuliana Popescu, Isidora Radulov, Ersilia Alexa, Monica Negrea, Amonullo F. Salimzoda, Radu L. Sumalan, and Ileana Cocan. 2020. "Assessment of Mint, Basil, and Lavender Essential Oil Vapor-Phase in Antifungal Protection and Lemon Fruit Quality" Molecules 25, no. 8: 1831. https://doi.org/10.3390/molecules25081831
APA StyleSumalan, R. M., Kuganov, R., Obistioiu, D., Popescu, I., Radulov, I., Alexa, E., Negrea, M., Salimzoda, A. F., Sumalan, R. L., & Cocan, I. (2020). Assessment of Mint, Basil, and Lavender Essential Oil Vapor-Phase in Antifungal Protection and Lemon Fruit Quality. Molecules, 25(8), 1831. https://doi.org/10.3390/molecules25081831