Phenolic Profile of Croton urucurana Baill. Leaves, Stems and Bark: Pairwise Influence of Drying Temperature and Extraction Solvent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Profiles of Leaves, Stems, and Bark of C. urucurana
2.2. Effect of Drying Temperature and Extraction Solvent Over Phenolic Profiles
2.3. Linear Discriminant Analysis
3. Materials and Methods
3.1. Standards and Reagents
3.2. Plant Material and Kinetic Temperature
3.3. Hydroethanolic Extract and Decoction Preparation
3.4. Phenolic Composition of the Hydroethanolic Extracts and Decoctions
3.5. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Franco, E.A.P.; Barros, R.F.M. Uso e diversidade de plantas medicinais no Quilombo Olho D’agua dos Pires, Esperantina, Piauí. Rev. Bras. Plantas Med. 2006, 8, 78–88. [Google Scholar]
- Vila Verde, G.M.; Paula, J.R.; Caneiro, D.M. Levantamento etnobotânico das plantas medicinais do cerrado utilizadas pela população de Mossâmedes (GO). Rev. Bras. Farmacogn. 2003, 13, 64–66. [Google Scholar] [CrossRef]
- Maciel, M.A.M.; Pinto, A.C.; Veiga, V.F.; Grynberg, N.F.; Echevarria, A. Plantas medicinais: A necessidade de estudos multidisciplinares. Quim. Nova 2002, 25, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.D. De; Felfili, J.M. Uso de plantas medicinais na região de Alto Paraíso de Goiás, GO, Brasil. Acta Botânica Bras. 2006, 20, 135–142. [Google Scholar] [CrossRef]
- Soldera, C.C.; Zanella, G.N.; Frasson, A.P.Z. Avaliação da atividade antibacteriana de Croton urucurana. Rev. Context. Saúde 2013, 10, 25–31. [Google Scholar] [CrossRef]
- Dos Santos Carvalho, G.; Da Silva, L.S.; Silva, L.B.; Dos Santos Almeida, M.L.; Pavam, B.E.; Peres, M.T.L.P. Mortalidade e comprometimento do desenvolvimento de Zabrotes subfasciatus Boh. (Coleoptera: Chrysomelidae), induzido pelo extrato de sangra d’água Croton urucurana Baill (Euphorbiaceae). Comun. Sci. 2014, 5, 331–338. [Google Scholar]
- Rao, V.S.; Gurgel, L.A.; Lima-Júnior, R.C.P.; Martins, D.T.O.; Cechinel-Filho, V.; Santos, F.A. Dragon’s blood from Croton urucurana (Baill.) attenuates visceral nociception in mice. J. Ethnopharmacol. 2007, 113, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Koche, D.; Shirsat, R.; Imran, S.; Bhadange, D.G. Phytochemical screening of eight traditionally used ethnomedicinal plants from Akola district (MS) India. Int. J. Pharma Bio Sci. 2010, 1, B-253–B-256. [Google Scholar]
- Pizzolatti, M.G.; Bortoluzzi, A.J.; Brighente, I.M.C.; Zuchinalli, A.; Carvalho, F.K.; Candido, A.C.S.; Peres, M.T.L.P. Clerodane diterpenes from bark of Croton urucurana baillon. J. Braz. Chem. Soc. 2013, 24, 609–614. [Google Scholar] [CrossRef]
- Goneli, A.L.D.; Pire, O.V.; Vilhasanti, H.D.C.B.; Gonçalves, A.A. Modelagem matemática e difusividade efetiva de folhas de aroeira durante a secagem. Pesqui. Agropecu. Trop. 2014, 44, 56–64. [Google Scholar] [CrossRef]
- Tabaldi, L.A.; Vieira, M.D.C.; Zárate, N.A.H.; Silva, L.R.D.; Gonçalves, W.L.F.; Pilecco, M.; Formagio, A.S.N.; Gassi, R.P.; Padovan, M.P. Cover crops and their effects on the biomass yield of Serjania marginata plants. Ciência Rural 2012, 42, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Sousa, F.C.; Martins, J.J.A.; Rocha, A.P.T.; Gomes, J.P.; Pessoa, T.; Martins, J.N. Predição de modelos sobre a cinética de secagem de folhas de Ziziphus joazeiro Mart. Rev. Bras. Plantas Med. 2015, 17, 195–200. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; Gonzalez-Manzano, S.; Dueñas, M.; Gonzalez-Paramas, A.M. Extraction and isolation of phenolic compounds. In Natural Products Isolation. Methods in Molecular Biology (Methods and Protocols)—Chapter 17; Sarker, S., Nahar, L., Eds.; Humana Press: Totowa, NJ, USA, 2012; Volume 864, pp. 427–464. [Google Scholar]
- Furlan, C.M.; Santos, K.P.; Sedano-Partida, M.D.; Motta, L.B. da; Santos, D.Y.A.C.; Salatino, M.L.F.; Negri, G.; Berry, P.E.; van Ee, B.W.; Salatino, A. Flavonoids and antioxidant potential of nine Argentinian species of Croton (Euphorbiaceae). Rev. Bras. Bot. 2015, 38, 693–702. [Google Scholar] [CrossRef]
- Cordeiro, K.W.; Felipe, J.L.; Malange, K.F.; Do Prado, P.R.; De Oliveira Figueiredo, P.; Garcez, F.R.; De Cássia Freitas, K.; Garcez, W.S.; Toffoli-Kadri, M.C. Anti-inflammatory and antinociceptive activities of Croton urucurana Baillon bark. J. Ethnopharmacol. 2016, 183, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Ferreres, F.; Silva, B.M.; Andrade, P.B.; Seabra, R.M.; Ferreira, M.A. Approach to the study of C-glycosyl flavones by ion trap HPLC-PAD-ESI/MS/MS: Application to seeds of quince (Cydonia oblonga). Phytochem. Anal. 2003, 14, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.I.; Barros, L.; Fernandes, I.P.; Ruphuy, G.; Oliveira, M.B.P.; Santos-Buelga, C.; Barreiro, M.F.; Ferreira, I.C.F.R. A bioactive formulation based on Fragaria vesca L. vegetative parts: Chemical characterisation and application in κ-carrageenan gelatin. J. Funct. Foods 2015, 16, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Escobar-Avello, D.; Lozano-Castellón, J.; Mardones, C.; Pérez, A.J.; Saéz, V.; Riquelme, S.; Von Baer, D.; Vallverdú-Queralt, A. Phenolic profile of grape canes: Novel compounds identified by LC-ESI-LTQ-orbitrap-MS. Molecules 2019, 24, 3763. [Google Scholar] [CrossRef] [Green Version]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic profile and antioxidant activity of Coleostephus myconis (L.) Rchb.f.: An underexploited and highly disseminated species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: All samples are available in the dry form. |
Peak | Rt (min) | λmax (nm) | Molecular Ion [M − H]− (m/z) | MS2 (m/z) | Tentative Identification | Sample |
---|---|---|---|---|---|---|
1 | 4.40 | 270 | 169 | 125 (100) | Gallic acid | S |
2 | 4.60 | 276 | 611 | 305 (100), 287 (11), 261 (41), 247 (14), 221 (87), 179 (50) | (Epi)gallocatechin A | B |
3 | 4.85 | 276 | 593 | 575 (5), 467 (12), 441 (8), 425 (100), 305 (2), 287 (8) | (Epi)gallocatechin–(epi)catechin A | B |
4 | 5.22 | 278 | 577 | 559 (10), 451 (23), 425 (100), 407 (22), 289 (11) | (Epi)catechin dimer I A | B + L + S |
5 | 5.99 | 279 | 577 | 559 (6), 451 (19), 425 (2), 407 (19), 289 (8) | (Epi)catechin dimer II A | B + L + S |
6 | 6.77 | 280 | 289 | 245 (100), 231 (9), 205 (36), 179 (13) | Catechin A | B + L + S |
7 | 7.12 | 279 | 1153 | 577 (55), 559 (15), 451 (5), 425 (5), 407 (4), 289 (6) | (Epi)catechin tetramer A | L |
8 | 13.05 | 331 | 593 | 473 (100), 431 (31), 353 (29), 341 (4), 311 (2) | Apigenin-6,8-C-di-hexoside B | L |
9 | 13.59 | 347 | 625 | 301 (100) | Quercetin-O-di-hexoside C | B + L + S |
10 | 14.18 | 352 | 625 | 317 (100) | Myricetin-O-deoxyhexosyl-hexoside D | B + S |
11 | 14.41 | 350 | 625 | 317 (100) | Myricetin-3-O-rutinoside D | S |
12 | 15.1 | 354 | 741 | 609 (13), 301 (100) | Quercetin-O-pentosyl-rutinoside C | L |
13 | 15.23 | 341 | 771 | 609 (27), 301 (100) | Quercetin-O-hexosyl-rutinoside I C | S |
14 | 15.61 | 342 | 771 | 609 (22), 301 (100) | Quercetin-O-hexosyl-rutinoside II C | S |
15 | 15.86 | 336 | 431 | 413 (2), 341 (5), 311 (100), 283 (3) | Apigenin-8-C-glucoside B | L |
16 | 15.89 | 329 | 771 | 301 (100) | Quercetin-O-hexosyl-rutinoside III C | S |
17 | 16.94 | 350 | 609 | 301 (100) | Quercetin-O-deoxyhexosyl-hexoside C | B + L + S |
18 | 17.17 | 356 | 609 | 301 (100) | Quercetin-3-O-rutinoside C | B + L + S |
19 | 17.54 | 337 | 431 | 413 (6), 341 (27), 311 (100), 283 (3) | Apigenin-6-C-glucoside B | L |
20 | 18.3 | 354 | 463 | 301 (100) | Quercetin-3-O-glucoside C | B + L |
21 | 18.98 | 348 | 593 | 285 (100) | Kaempferol-O-deoxyhexosyl-hexoside C | L |
22 | 20.29 | 346 | 593 | 285 (100) | Kaempferol-3-O-rutinoside C | L + S |
23 | 20.79 | 334 | 623 | 315 (100) | Isorhametin-3-O-rutinoside C | S |
24 | 21.3 | 329 | 623 | 315 (100) | Isorhamnetin-O-deoxyhexosyl-hexoside C | S |
25 | 21.86 | 339 | 653 | 345 (100) | Syringetin-O-rutinoside C | B |
Compound | Tentative Identification (Standard Used for Quantification) | Quantification (mg/100 g dw − Dry Weight) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Drying Temperature (DT) | p-Value (n = 18) | Extraction Solvent (ES) | p-Value (n = 36) | DT × ES | ||||||
40 °C | 50 °C | 60 °C | 70 °C | Water | Hydroalcoholic | p-Value (n = 72) | ||||
4 | (Epi)catechin dimer I | 43 ± 5 | 51 ± 8 | 35 ± 13 | 41 ± 2 | <0.001 | 42 ± 4 | 43 ± 13 | 0.879 | <0.001 |
5 | (Epi)catechin dimer II | 79 ± 18 | 163 ± 101 | 90 ± 7 | 172 ± 68 | <0.001 | 82 ± 20 | 170 ± 81 | <0.001 | <0.001 |
6 | Catechin | 36 ± 14 | 61 ± 34 | 40 ± 3 | 75 ± 25 | <0.001 | 48 ± 31 | 58 ± 22 | 0.109 | <0.001 |
7 | (Epi)catechin tetramer | 13 ± 3 | 28 ± 3 | 13 ± 6 | 21 ± 12 | <0.001 | 14 ± 10 | 23 ± 6 | <0.001 | <0.001 |
8 | Apigenin-6,8-C-dihexoside | 1 ± 1 | 0.7 ± 0.2 | 4 ± 1 | 1.0 ± 0.1 | <0.001 | 2 ± 2 | 1 ± 1 | 0.001 | <0.001 |
9 | Quercetin-O-dihexoside | 25 ± 2 | 24 ± 4 | 24 ± 5 | 23 ± 4 | 0.657 | 21 ± 2 | 27 ± 1 | <0.001 | <0.001 |
12 | Quercetin-O-pentosyl-rutinoside | 26 ± 1 | 25 ± 3 | 25 ± 3 | 25 ± 3 | 0.274 | 23 ± 2 | 27 ± 1 | <0.001 | <0.001 |
15 | Apigenin-8-C-glucoside | 69 ± 10 | 67 ± 16 | 69 ± 5 | 68 ± 6 | 0.950 | 60 ± 5 | 77 ± 5 | <0.001 | <0.001 |
17 | Quercetin-O-deoxyhexosyl-hexoside | 55 ± 6 | 60 ± 6 | 49 ± 7 | 62 ± 4 | <0.001 | 51 ± 7 | 62 ± 5 | <0.001 | <0.001 |
18 | Quercetin-3-O-rutinoside | 292 ± 33 | 364 ± 41 | 354 ± 20 | 331 ± 21 | <0.001 | 333 ± 24 | 338 ± 52 | 0.596 | <0.001 |
19 | Apigenin-6-C-glucoside | 142 ± 36 | 104 ± 17 | 112 ± 12 | 102 ± 11 | <0.001 | 98 ± 9 | 132 ± 27 | <0.001 | <0.001 |
20 | Quercetin-3-O-glucoside | 33 ± 2 | 33 ± 5 | 32 ± 2 | 32 ± 3 | 0.877 | 30 ± 2 | 35 ± 2 | <0.001 | <0.001 |
21 | Kaempferol-O-deoxyhexosyl-hexoside | 30 ± 2 | 28 ± 3 | 28 ± 4 | 28 ± 4 | 0.410 | 26 ± 2 | 31 ± 1 | <0.001 | 0.001 |
22 | Kaempferol-3-O-rutinoside | 53 ± 4 | 49 ± 5 | 48 ± 2 | 48 ± 5 | 0.001 | 47 ± 3 | 53 ± 3 | <0.001 | <0.001 |
Total phenols | 897 ± 71 | 1059 ± 235 | 922 ± 18 | 1029 ± 110 | 0.001 | 877 ± 50 | 1077 ± 148 | <0.001 | <0.001 |
Compound | Tentative Identification (Standard Used for Quantification) | Quantification (mg/100 g dw) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Drying Temperature (DT) | p-Value (n = 18) | Extraction Solvent (ES) | p-Value (n = 54) | DT × ES | ||||||||
40 °C | 50 °C | 60 °C | 70 °C | 80 °C | 103 °C | Water | Hydroalcoholic | p-Value (n = 108) | ||||
2 | (Epi)gallocatechin | 60 ± 13 | 30 ± 9 | 11 ± 7 | 18 ± 3 | 18 ± 2 | 5 ± 5 * | <0.001 | 21 ± 14 | 27 ± 24 | 0.105 | <0.001 |
3 | (Epi)gallocatechin–(epi)catechin | 36 ± 8 | 12 ± 1 | 14 ± 4 | 20 ± 12 | 20 ± 19 | 11 ± 11 * | <0.001 | 25 ± 9 | 12 ± 15 | <0.001 | <0.001 |
4 | (Epi)catechin dimer I | 56 ± 17 | 34 ± 14 | 46 ± 8 | 55 ± 6 | 35 ± 13 | 30 ± 24 | <0.001 | 48 ± 31 | 58 ± 22 | <0.001 | <0.001 |
5 | (Epi)catechin dimer II | 75 ± 28 | 24 ± 15 | 17 ± 9 | 23 ± 7 | 18 ± 11 | 9 ± 4 | <0.001 | 16 ± 15 | 40 ± 29 | <0.001 | <0.001 |
6 | Catechin | 81 ± 46 | 36 ± 25 | 33 ± 9 | 42 ± 12 | 25 ± 10 | 12 ± 6 | <0.001 | 21 ± 11 | 56 ± 34 | <0.001 | <0.001 |
9 | Quercetin-O-dihexoside | 18 ± 2 | 17 ± 2 | 19 ± 2 | 17 ± 3 | 16 ± 3 | 15 ± 6 | 0.006 | 14 ± 2 | 20 ± 1 | <0.001 | <0.001 |
10 | Myricetin-O-deoxyhexosyl-hexoside | 19 ± 2 | 17 ± 2 | 18 ± 2 | 17 ± 3 | 15 ± 2 | 9 ± 1* | <0.001 | 14 ± 3 | 16 ± 7 | 0.048 | <0.001 |
17 | Quercetin-O-deoxyhexosyl-hexoside | 18 ± 2 | 17 ± 2 | 18 ± 2 | 17 ± 3 | 15 ± 2 | 14 ± 5 | <0.001 | 14 ± 3 | 19 ± 1 | <0.001 | <0.001 |
18 | Quercetin-3-O-rutinoside | 19 ± 2 | 16 ± 2 | 19 ± 2 | 17 ± 3 | 15 ± 2 | 15 ± 5 | <0.001 | 14 ± 3 | 19 ± 2 | <0.001 | <0.001 |
20 | Quercetin-3-O-glucoside | 18 ± 2 | 17 ± 2 | 18 ± 2 | 17 ± 3 | 15 ± 2 | 14 ± 5 | <0.001 | 14 ± 2 | 19 ± 1 | <0.001 | <0.001 |
25 | Syringetin-O-rutinoside | 19 ± 2 | 16 ± 2 | 18 ± 2 | 17 ± 3 | 15 ± 2 | 14 ± 5 | <0.001 | 14 ± 3 | 19 ± 1 | <0.001 | <0.001 |
Total phenolics | 420 ± 125 | 235 ± 77 | 231 ± 39 | 260 ± 27 | 207 ± 30 | 144 ± 40 | <0.001 | 195 ± 61 | 304 ± 115 | <0.001 | <0.001 |
Compound | Tentative Identification (Standard Used for Quantification) | Quantification (mg/100 g dw) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Drying Temperature (DT) | p-Value (n = 18) | Extraction Solvent (ES) | p-Value (n = 54) | DT × ES | ||||||||
40 °C | 50 °C | 60 °C | 70 °C | 80 °C | 103 °C | Water | Hydroalcoholic | p-Value (n = 108) | ||||
1 | Gallic acid | 2 ± 1 | 2 ± 1 | 1 ± 1 | nd | 4 ± 1 * | 0.5 ± 0.1 | <0.001 | 1 ± 1 | 1 ± 1 | 0.184 | <0.001 |
4 | (Epi)catechin dimer I | 107 ± 71 | 137 ± 34 | 125 ± 63 | 13 ± 1 * | 50 ± 39 | 183 ± 62 | <0.001 | 59 ± 43 | 143 ± 80 | <0.001 | <0.001 |
5 | (Epi)catechin dimer II | 22 ± 1 | 33 ± 1 | 2.2 ± 0.1 | 21 ± 1 | 18 ± 1 | 18 ± 1 | 0.003 | nd | 19 ± 9 | - | - |
6 | Catechin | 6 ± 5 | 6 ± 5 | 3 ± 2 | 1 ± 1 | 0.7 ± 0.2 | 5 ± 2 | <0.001 | 1 ± 1 | 6 ± 4 | <0.001 | <0.001 |
9 | Quercetin-O-dihexoside | 1.0 ± 0.3 | 0.9 ± 0.2 | 0.7 ± 0.3 | 0.6 ± 0.3 | 0.6 ± 0.3 | 1.0 ± 0.2 | <0.001 | 0.5 ± 0.2 | 1.1 ± 0.2 | <0.001 | <0.001 |
10 | Myricetin-O-deoxyhexosyl-hexoside | 1.1 ± 0.4 | 1.1 ± 0.3 | 0.8 ± 0.3 | 0.5 ± 0.3 | 0.6 ± 0.2 | 1.1 ± 0.2 | <0.001 | 0.6 ± 0.2 | 1.1 ± 0.3 | <0.001 | <0.001 |
11 | Myricetin-3-O-rutinoside | 1.1 ± 0.4 | 1.0 ± 0.3 | 0.7 ± 0.3 | 0.5 ± 0.3 | 0.6 ± 0.3 | 1.0 ± 0.1 | <0.001 | 0.5 ± 0.2 | 1.1 ± 0.2 | <0.001 | <0.001 |
13 | Quercetin-O-hexosyl-rutinoside I | 1.0 ± 0.3 | 1.0 ± 0.2 | 0.7 ± 0.3 | 0.5 ± 0.3 | 0.6 ± 0.2 | 1.0 ± 0.2 | <0.001 | 0.5 ± 0.2 | 1.0 ± 0.2 | <0.001 | <0.001 |
14 | Quercetin-O-hexosyl-rutinoside II | 1.0 ± 0.3 | 0.9 ± 0.2 | 0.7 ± 0.3 | 0.5 ± 0.3 | 0.6 ± 0.3 | 1.0 ± 0.2 | <0.001 | 0.6 ± 0.2 | 1.1 ± 0.2 | <0.001 | <0.001 |
16 | Quercetin-O-hexosyl-rutinoside III | 1.0 ± 0.3c | 1.2 ± 0.3b | 0.8 ± 0.3d | 0.6 ± 0.3e | 0.6 ± 0.3e | 1.3 ± 0.3a | <0.001 | 0.6 ± 0.3 | 1.2 ± 0.3 | <0.001 | 0.870 |
17 | Quercetin-O-deoxyhexosyl-hexoside | 2 ± 1 | 3 ± 1 | 2 ± 1 | 0.7 ± 0.4 | 0.8 ± 0.4 | 2.6 ± 0.5 | <0.001 | 1 ± 1 | 3 ± 1 | <0.001 | <0.001 |
18 | Quercetin-3-O-rutinoside | 4 ± 2 | 6 ± 3 | 4 ± 2 | 1 ± 1 | 1 ± 1 | 6 ± 2 | <0.001 | 2 ± 1 | 5 ± 2 | <0.001 | <0.001 |
22 | Kaempferol-3-O-rutinoside | 0.9 ± 0.3 | 0.9 ± 0.3 | 0.7 ± 0.3 | 1.2 ± 0.5 | 1.1 ± 0.5 | 1.6 ± 0.5 | <0.001 | 0.6 ± 0.2 | 1.6 ± 0.4 | <0.001 | <0.001 |
23 | Isorhamnetin-3-O-rutinoside | 1.1 ± 0.5 | 1.2 ± 0.3 | 1.3 ± 0.5 | 4 ± 3 | 3 ± 2 | 3 ± 2 | <0.001 | 1.0 ± 0.4 | 4 ± 2 | <0.001 | <0.001 |
24 | Isorhamnetin-O-deoxyhexosyl-hexoside | 0.9 ± 0.3 | 1.0 ± 0.3 | 0.8 ± 0.3 | 0.5 ± 0.2 | 0.6 ± 0.2 | 1.1 ± 0.2 | <0.001 | 0.5 ± 0.2 | 1.1 ± 0.2 | <0.001 | <0.001 |
Total phenolics | 142 ± 95 | 179 ± 62 | 144 ± 74 | 29 ± 12 | 72 ± 51 | 218 ± 79 | <0.001 | 70 ± 47 | 191 ± 86 | <0.001 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes Alves, J.J.; Dias, M.I.; Barreira, J.C.M.; Barros, L.; Resende, O.; Ribeiro Aguiar, A.C.; Ferreira, I.C.F.R. Phenolic Profile of Croton urucurana Baill. Leaves, Stems and Bark: Pairwise Influence of Drying Temperature and Extraction Solvent. Molecules 2020, 25, 2032. https://doi.org/10.3390/molecules25092032
Lopes Alves JJ, Dias MI, Barreira JCM, Barros L, Resende O, Ribeiro Aguiar AC, Ferreira ICFR. Phenolic Profile of Croton urucurana Baill. Leaves, Stems and Bark: Pairwise Influence of Drying Temperature and Extraction Solvent. Molecules. 2020; 25(9):2032. https://doi.org/10.3390/molecules25092032
Chicago/Turabian StyleLopes Alves, Jáliston Júlio, Maria Inês Dias, João C. M. Barreira, Lillian Barros, Osvaldo Resende, Ana Carolina Ribeiro Aguiar, and Isabel C. F. R. Ferreira. 2020. "Phenolic Profile of Croton urucurana Baill. Leaves, Stems and Bark: Pairwise Influence of Drying Temperature and Extraction Solvent" Molecules 25, no. 9: 2032. https://doi.org/10.3390/molecules25092032
APA StyleLopes Alves, J. J., Dias, M. I., Barreira, J. C. M., Barros, L., Resende, O., Ribeiro Aguiar, A. C., & Ferreira, I. C. F. R. (2020). Phenolic Profile of Croton urucurana Baill. Leaves, Stems and Bark: Pairwise Influence of Drying Temperature and Extraction Solvent. Molecules, 25(9), 2032. https://doi.org/10.3390/molecules25092032