A New Tetradentate Mixed Aza-Thioether Macrocycle and Its Complexation Behavior towards Fe(II), Ni(II) and Cu(II) Ions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of [13]ane(phenN2)S2
2.2. Synthesis and Characterization of [13]ane(phenN2)S2-Containing Transition Metal Complexes
3. Materials and Methods
3.1. General Procedures
3.2. Solution Magnetic Susceptibility Measurements
3.3. Geometry Index
3.4. Synthesis of ([13]ane(phenN2)S2) and [13]ane(phenN2)S2-containing Fe(II), Ni(II), Cu(II) complexes
3.5. X-ray Crstayllographic Data
3.6. Computational Methodology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hubin, T.J. Synthesis and coordination chemistry of topologically constrained azamacrocycles. Coord. Chem. Rev. 2003, 241, 27–46. [Google Scholar] [CrossRef]
- MacKay, B.A.; Fryzuk, M.D. Dinitrogen Coordination Chemistry: On the Biomimetic Borderlands. Chem. Rev. 2004, 104, 385–401. [Google Scholar] [CrossRef]
- Friedle, S.; Reisner, E.; Lippard, S.J. Current challenges of modeling diiron enzyme active sites for dioxygen activation by biomimetic synthetic complexes. Chem. Soc. Rev. 2010, 39, 2768–2779. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, L.; Levine, M. Biomimetic Catalysis. ACS Catal. 2011, 1, 1090–1118. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, H.-B.; Ji, L.-N.; Mao, Z.-W. Insights into metalloenzyme microenvironments: Biomimetic metal complexes with a functional second coordination sphere. Chem. Soc. Rev. 2013, 42, 8360–8375. [Google Scholar] [CrossRef]
- Ray, K.; Pfaff, F.F.; Wang, B.; Nam, W. Status of Reactive Non-Heme Metal-Oxygen Intermediates in Chemical and Enzymatic Reactions. J. Am. Chem. Soc. 2014, 136, 13942–13958. [Google Scholar] [CrossRef]
- Rebilly, J.-N.; Colasson, B.; Bistri, O.; Over, D.; Reinaud, O. Biomimetic cavity-based metal complexes. Chem. Soc. Rev. 2015, 44, 467–489. [Google Scholar] [CrossRef] [Green Version]
- Joshi, T.; Graham, B.; Spiccia, L. Macrocyclic Metal Complexes for Metalloenzyme Mimicry and Sensor Development. Acc. Chem. Res. 2015, 48, 2366–2379. [Google Scholar] [CrossRef]
- Sahu, S.; Goldberg, D.P. Activation of Dioxygen by Iron and Manganese Complexes: A Heme and Nonheme Perspective. J. Am. Chem. Soc. 2016, 138, 11410–11428. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, X.; Monte-Pérez, I.; Ray, K. Oxidation Reactions with Bioinspired Mononuclear Non-Heme Metal-Oxo Complexes. Angew. Chem. Int. Ed. 2016, 55, 7632–7649. [Google Scholar] [CrossRef]
- Baglia, R.A.; Zaragoza, J.P.T.; Goldberg, D.P. Biomimetic Reactivity of Oxygen-Derived Manganese and Iron Porphyrinoid Complexes. Chem. Rev. 2017, 117, 13320–13352. [Google Scholar] [CrossRef]
- Joshi, T.; Kubeil, M.; Nsubuga, A.; Singh, G.; Gasser, G.; Stephan, H. Harnessing the Coordination Chemistry of 1,4,7-Triazacyclononane for Biomimicry and Radiopharmaceutical Applications. ChemPlusChem 2018, 83, 554–564. [Google Scholar] [CrossRef]
- Sun, W.; Sun, Q. Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond. Acc. Chem. Res. 2019, 52, 2370–2381. [Google Scholar] [CrossRef]
- Guo, M.; Corona, T.; Ray, K.; Nam, W. Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. ACS Cent. Sci. 2019, 5, 13–28. [Google Scholar] [CrossRef]
- Dearle, A.E.; Cutler, D.J.; Fraser, H.W.L.; Sanz, S.; Lee, E.; Dey, S.; Diaz-Ortega, I.F.; Nichol, G.S.; Nojiri, H.; Evangelisti, M.; et al. An [FeIII34] Molecular Metal Oxide. Angew. Chem. Int. Ed. 2019, 58, 16903–16906. [Google Scholar] [CrossRef]
- Wong, C.-Y.; Lai, L.-M.; Lam, C.-Y.; Zhu, N. Ruthenium Carbene and Allenylidene Complexes Supported by the Tertiary Amine-Aromatic Diimine Ligand Set: Structural, Spectroscopic, and Theoretical Studies. Organometallics 2008, 27, 5806–5814. [Google Scholar] [CrossRef]
- Wong, C.-Y.; Lai, L.-M.; Pat, P.-K. Ruthenium Acetylide Complexes Supported by Trithiacyclononane and Aromatic Diimine: Structural, Spectroscopic, and Theoretical Studies. Organometallics 2009, 28, 5656–5660. [Google Scholar] [CrossRef]
- Wong, C.-Y.; Lai, L.-M.; Chan, S.-C.; Tai, L.-H. Photophysical and Theoretical Studies of Ruthenium(II)-Acetylide and -Cyanide Complexes with Aromatic Diimine and Trithiacyclononane. Organometallics 2010, 29, 6259–6266. [Google Scholar] [CrossRef]
- Chung, L.-H.; Wong, C.-Y. Isolation of Ruthenium-Indolizine Complexes: Insight into the Metal-Induced Cycloisomerization of Propargylic Pyridines. Organometallics 2013, 32, 3583–3586. [Google Scholar] [CrossRef]
- Chung, L.-H.; Yeung, C.-F.; Ma, D.-L.; Leung, C.-H.; Wong, C.-Y. Metal-Indolizine Zwitterion Complexes as a New Class of Organometallic Material: A Spectroscopic and Theoretical Investigation. Organometallics 2014, 33, 3443–3452. [Google Scholar] [CrossRef]
- Tsui, W.-K.; Chung, L.-H.; Tsang, W.-H.; Yeung, C.-F.; Chiu, C.-H.; Lo, H.-S.; Wong, C.-Y. Synthesis, Spectroscopic and Theoretical Studies of Ruthenafuran and Osmafuran Prepared by Activation of Ynone in Alcohol. Organometallics 2015, 34, 1005–1012. [Google Scholar] [CrossRef]
- Yeung, C.-F.; Chung, L.-H.; Lo, H.-S.; Chiu, C.-H.; Cai, J.; Wong, C.-Y. Isolation of Ruthenium-Indoline and -Indole Zwitterion Complexes: Insight into the Metal-Induced Cyclization of Aniline-Tethered Alkynes and Strategy to Lower the Activation Barrier of Metal-Vinylidene Formation. Organometallics 2015, 34, 1963–1968. [Google Scholar] [CrossRef]
- Ng, S.-W.; Chung, L.-H.; Yeung, C.-F.; Lo, H.-S.; Shek, H.-L.; Kang, T.-S.; Leung, C.-H.; Ma, D.-L.; Wong, C.-Y. Metalated Chromene and Chromone Complexes: pH Switchable Metal-Carbon Bonding Interaction, Photo-triggerable Chromone Delivery Application, and Antioxidative Activity. Chem. Eur. J. 2018, 24, 1779–1783. [Google Scholar] [CrossRef]
- Chung, L.-H.; Ng, S.-W.; Yeung, C.-F.; Shek, H.-L.; Tse, S.-Y.; Lo, H.-S.; Chan, S.-C.; Tse, M.-K.; Yiu, S.-M.; Wong, C.-Y. Ruthenium-indolizinone complexes as a new class of metalated heterocyclic compounds: Insight into unconventional alkyne activation pathways, revelation of unexpected electronic properties and exploration of medicinal application. Dalton Trans. 2018, 47, 12838–12842. [Google Scholar] [CrossRef]
- Chung, L.-H.; Wong, C.-Y. Ruthenium-Induced Alkyne Cycloisomerization: Construction of Metalated Heterocycles, Revelation of Unconventional Reaction Pathways, and Exploration of Functional Applications. Chem. Eur. J. 2019, 25, 2889–2897. [Google Scholar] [CrossRef]
- Yeung, C.-F.; Chung, L.-H.; Ng, S.-W.; Shek, H.-L.; Tse, S.-Y.; Chan, S.-C.; Tse, M.-K.; Yiu, S.-M.; Wong, C.-Y. Phosphonium-Ring-Fused Bicyclic Metallafuran Complexes of Ruthenium and Osmium. Chem. Eur. J. 2019, 25, 9159–9163. [Google Scholar] [CrossRef]
- Chung, L.-H.; Yeung, C.-F.; Shek, H.-L.; Wong, C.-Y. Isolation of a C3-metalated indolizine complex and a phosphonium ring-fused bicyclic metallafuran from the osmium-induced transformation of pyridine-tethered alkynes. Faraday Discuss. 2019, 220, 196–207. [Google Scholar] [CrossRef]
- Aoki, Y.; Bauer, M.; Braun, T.; Cadge, J.A.; Clarke, G.E.; Durand, D.J.; Eisenstein, O.; Gallarati, S.; Greaves, M.; Harvey, J.; et al. Mechanistic insight into organic and industrial transformations: General discussion. Faraday Discuss. 2019, 220, 282–316. [Google Scholar] [CrossRef]
- Ng, S.-W.; Tse, S.-Y.; Yeung, C.-F.; Chung, L.-H.; Tse, M.-K.; Yiu, S.-M.; Wong, C.-Y. Ru(II)- and Os(II)-Induced Cycloisomerization of Phenol-Tethered Alkyne for Functional Chromene and Chromone Complexes. Organometallics 2020, 39, 1299–1309. [Google Scholar] [CrossRef]
- Contu, F.; Demartin, F.; Devillanova, F.A.; Garau, A.; Isaia, F.; Lippolis, V.; Salis, A.; Verani, G. Conformationally locked mixed aza-thioether macrocycles: Synthesis and structures of complexes of PdII, PtII and RhIII of 2,5,8-trithia-[9](2,9)-1,10-phenanthrolinophane. J. Chem. Soc. Dalton Trans. 1997, 4401–4405. [Google Scholar] [CrossRef]
- Blake, A.J.; Casabò, J.; Devillanova, F.A.; Escriche, L.; Garau, A.; Isaia, F.; Lippolis, V.; Kivekas, R.; Muns, V.; Schröder, M.; et al. Mixed aza–thioether crowns containing the 1,10-phenanthroline sub-unit. Substitution reactions in [NiL(MeCN)][BF4]2 {L = 2,5,8-trithia[9](2,9)-1,10-phenanthrolinophane}. J. Chem. Soc. Dalton Trans. 1999, 1085–1092. [Google Scholar] [CrossRef]
- Shamsipur, M.; Javanbakht, M.; Mousavi, M.F.; Ganjali, M.R.; Lippolis, V.; Garau, A.; Tei, L. Copper(II)-selective membrane electrodes based on some recently synthesized mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit. Talanta 2001, 55, 1047–1054. [Google Scholar] [CrossRef]
- Arca, M.; Blake, A.J.; Casabò, J.; Demartin, F.; Devillanova, F.A.; Garau, A.; Isaia, F.; Lippolis, V.; Kivekas, R.; Muns, V.; et al. Conformationally locked pentadentate macrocycles containing the 1,10-phenanthroline unit. Synthesis and crystal structure of 5-oxa-2,8-dithia[9](2,9)-1,10-phenanthrolinophane (L) and its coordination properties to NiII, PdII, PtII, RhIII and RuII. J. Chem. Soc. Dalton Trans. 2001, 1180–1188. [Google Scholar] [CrossRef]
- Shamsipur, M.; Javanbakht, M.; Lippolis, V.; Garau, A.; De Filippo, G.; Ganjali, M.R.; Yari, A. Novel Ag+ ion-selective electrodes based on two new mixed azathioether crowns containing a 1,10-phenanthroline sub-unit. Anal. Chim. Acta 2002, 462, 225–234. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Arca, M.; Demartin, F.; Devillanova, F.A.; Isaia, F.; Garau, A.; Lippolis, V.; Jalali, F.; Papke, U.; Shamsipur, M.; et al. Fluorometric Chemosensors. Interaction of Toxic Heavy Metal Ions PbII, CdII, and HgII with Novel Mixed-Donor Phenanthroline-Containing Macrocycles: Spectrofluorometric, Conductometric, and Crystallographic Studies. Inorg. Chem. 2002, 41, 6623–6632. [Google Scholar] [CrossRef] [PubMed]
- Shamsipur, M.; Javanbakht, M.; Ganjali, M.R.; Mousavi, M.F.; Lippolis, V.; Garau, A. Mixed Aza-Thioether Crowns Containing a 1,10-Phenanthroline Sub-Unit as Neutral Ionophores for Silver Ion. Electroanalysis 2002, 14, 1691–1698. [Google Scholar] [CrossRef]
- Blake, A.J.; Caçote, M.H.M.; Devillanova, F.A.; Garau, A.; Isaia, F.; Lippolis, V.; Pereira, C.M.; Silva, F.; Tei, L. Coordination Chemistry of 2,5,8-Trithia[9],(2,9)-1,10-phenanthrolinophane (L) toward Rhodium(III) at the Polarised Water/1,2-Dichloroethane Interface—A Possible New Approach to the Problem of Separating RhIII from Chloride Media. Eur. J. Inorg. Chem. 2002, 1816–1822. [Google Scholar] [CrossRef]
- Shamsipur, M.; Kazemi, S.Y.; Azimi, G.; Madaeni, S.S.; Lippolis, V.; Garau, A.; Isaia, F. Selective transport of silver ion through a supported liquid membrane using some mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit as specific ion carriers. J. Membr. Sc. 2003, 215, 87–93. [Google Scholar] [CrossRef]
- De Filippo, G.; Demartin, F.; Garau, A.; Lippolis, V.; Yari, A.; Shokrollahi, A.; Shamsipur, M. Complexes of Ag+ with mixed donor phenanthroline-containing macrocycles: Spectrofluorimetric, spectrophotometric, conductometric and potentiometric studies. Inorg. Chim. Acta 2005, 358, 801–807. [Google Scholar] [CrossRef]
- Shamsipur, M.; Hashemi, O.R.; Lippolis, V. A supported liquid membrane system for simultaneous separation of silver(I) and mercury(II) from dilute feed solutions. J. Membr. Sc. 2006, 282, 322–327. [Google Scholar] [CrossRef]
- Ferreira, E.S.; Garau, A.; Lippolis, V.; Pereira, C.M.; Silva, F. Electrochemistry of 2,8-dithia[9],(2,9)-1,10-phenanthrolinophane (L) at the polarized water/1,2-dichloroethane interface: Evaluation of the complexation properties towards transition and post-transition metal ions. J. Electroanal. Chem. 2006, 587, 155–160. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Arca, M.; Bencini, A.; Biagini, S.; Blake, A.J.; Caltagirone, C.; Demartin, F.; De Filippo, G.; Devillanova, F.A.; Garau, A.; et al. Interaction of Mixed-Donor Macrocycles Containing the 1,10-Phenanthroline Subunit with Selected Transition and Post-Transition Metal Ions: Metal Ion Recognition in Competitive Liquid-Liquid Solvent Extraction of CuII, ZnII, PbII, CdII, AgI, and HgII. Inorg. Chem. 2008, 47, 8391–8404. [Google Scholar] [CrossRef] [PubMed]
- Gulaboski, R.; Ferreira, E.S.; Pereira, C.M.; Cordeiro, M.N.D.S.; Garau, A.; Lippolis, V.; Silva, A.F. Coupling of Cyclic Voltammetry and Electrochemical Impedance Spectroscopy for Probing the Thermodynamics of Facilitated Ion Transfer Reactions Exhibiting Chemical Kinetic Hindrances. J. Phys. Chem. C 2008, 112, 153–161. [Google Scholar] [CrossRef]
- Shamsipur, M.; Hashemi, B.; Dehdashtian, S.; Mohammadi, M.; Gholivand, M.B.; Garau, A.; Lippolis, V. Silver ion imprinted polymer nanobeads based on a aza-thioether crown containing a 1,10-phenanthroline subunit for solid phase extraction and for voltammetric and potentiometric silver sensors. Anal. Chim. Acta 2014, 852, 223–235. [Google Scholar] [CrossRef]
- Casula, A.; Nairi, V.; Fernández-Moreira, V.; Laguna, A.; Lippolis, V.; Garau, A.; Gimeno, M.C. Re(I) derivatives functionalised with thioether crowns containing the 1,10-phenanthroline subunit as a new class of chemosensors. Dalton Trans. 2015, 44, 18506–18517. [Google Scholar] [CrossRef]
- Blake, A.J.; Demartin, F.; Devillanova, F.A.; Garau, A.; Isaia, F.; Lippolis, V.; Schröder, M.; Verani, G. A new class of mixed aza-thioether crown containing a 1,10-phenanthroline sub-unit. J. Chem. Soc. Dalton Trans. 1996, 3705–3712. [Google Scholar] [CrossRef]
- Arca, M.; Azimi, G.; Demartin, F.; Devillanova, F.A.; Escriche, L.; Garau, A.; Isaia, F.; Kivekas, R.; Lippolis, V.; Muns, V.; et al. Complexes of CuII with mixed-donor phenanthroline-containing macrocycles: Analysis of their structural, redox and spectral properties in the context of Type-1 blue copper proteins biomimetic models. Inorg. Chim. Acta. 2005, 358, 2403–2412. [Google Scholar] [CrossRef]
- Newkome, G.R.; Kiefer, G.E.; Puckett, W.E.; Vreeland, T. α-Methyl Functionalization of Electron-Poor Heterocycles: 2,9-Bis(chloromethyl)-1,10-phenanthroline. Synthesis of a [3.3]Cyclophane Containing the 1,10-Phenanthrolino Moiety. J. Org. Chem. 1983, 48, 5112–5114. [Google Scholar] [CrossRef]
- Weijnen, J.G.J.; Engbersen, J.F.J. Catalytic hydrolysis of phosphate esters by metallocomplexes of 1,10-phenanthroline derivatives in micellar solution. Recl. Trav. Chim. Pays-Bas 1993, 112, 351–357. [Google Scholar] [CrossRef]
- De Cian, A.; DeLemos, E.; Mergny, J.-L.; Teulade-Fichou, M.-P.; Monchaud, D. Highly Efficient G-Quadruplex Recognition by Bisquinolinium Compounds. J. Am. Chem. Soc. 2007, 129, 1856–1857. [Google Scholar] [CrossRef]
- Higashi, T.; Inami, K.; Mochizuki, M. Synthesis and DNA-binding Properties of 1,10-Phenanthroline Analogues as Intercalating-Crosslinkers. J. Heterocyclic Chem. 2008, 45, 1889–1892. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Yang, L.; Li, K.; Zhang, H.; Luo, S.; Rao, L. Probing the difference in covalence by enthalpy measurements: A new heterocyclic N-donor ligand for actinide/lanthanide separation. Dalton Trans. 2015, 44, 8959–8970. [Google Scholar] [CrossRef] [PubMed]
- Evans, D. 400. The Determination of the Paramagnetic Susceptibility of Substances in Solution by Nuclear Magnetic Resonance. J. Chem. Soc. 1959, 2003–2005. [Google Scholar] [CrossRef]
- Grant, D.H. Paramagnetic Susceptibility by NMR: The “Solvent Correction” Reexamined. J. Chem. Educ. 1995, 72, 39–40. [Google Scholar] [CrossRef]
- Britovsek, G.J.P.; England, J.; White, A.J.P. Non-heme Iron(II) Complexes Containing Tripodal Tetradentate Nitrogen Ligands and Their Application in Alkane Oxidation Catalysis. Inorg. Chem. 2005, 44, 8125–8134. [Google Scholar] [CrossRef]
- England, J.; Gondhia, R.; Bigorra-Lopez, L.; Petersen, A.R.; White, A.J.P. Towards robust alkane oxidation catalysts: Electronic variations in non-heme iron(II) complexes and their effect in catalytic alkane oxidation. Dalton Trans. 2009, 5319–5334. [Google Scholar] [CrossRef] [Green Version]
- Ayad, M.; Klein Gebbink, R.J.M.; Le Mest, Y.; Schollhammer, P.; Le Poul, N.; Pétillon, F.Y.; Mandon, D. Mononuclear iron(II) complexes containing a tripodal and macrocyclic nitrogen ligand: Synthesis, reactivity and application in cyclohexane oxidation catalysis. Dalton Trans. 2018, 47, 15596–15612. [Google Scholar] [CrossRef]
- Ossinger, S.; Naggert, H.; Bill, E.; Näther, C.; Tuczek, F. Electronic Structure, Vibrational Spectra, and Spin-Crossover Properties of Vacuum-Evaporable Iron(II) Bis(dihydrobis(pyrazolyl)borate) Complexes with Diimine Coligands. Origin of Giant Raman Features. Inorg. Chem. 2019, 58, 12873–12887. [Google Scholar] [CrossRef]
- Hughes, D.L.; Jimenez-Tenorio, M.; Leigh, G.J.; Houlton, A.; Silver, J. Iron Complexes with Polythioether Ligands: The Relation of Unusually Large Mössbauer Quadrupole Splittings to Structure. J. Chem. Soc. Dalton Trans. 1992, 2033–2037. [Google Scholar] [CrossRef]
- Benhamou, L.; Thibon, A.; Brelot, L.; Lachkar, M.; Mandon, D. Structural bases of oxygen-sensitivity in Fe(II) complexes with tripodal ligands. Steric effects, Lewis acidity and the role of ancillary ligands. Dalton Trans. 2012, 41, 14369–14380. [Google Scholar] [CrossRef]
- Panchbhai, G.; Singh, W.M.; Das, B.; Jane, R.T.; Thapper, A. Mononuclear Iron Complexes with Tetraazadentate Ligands as Water Oxidation Catalysts. Eur. J. Inorg. Chem 2016, 3262–3268. [Google Scholar] [CrossRef]
- Li, J.; Molenda, M.A.; Biros, S.M.; Staples, R.J.; Chavez, F.A. Assembly of a mononuclear ferrous site using a bulky aldehyde-imidazole ligand. Inorg. Chim. Acta 2017, 464, 152–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addison, A.W.; Nageswara Rao, T.; Reedijk, J.; Van Rijn, J.; Verschoor, G.C. Synthesis, Structure, and Spectroscopic Properties of Copper(II) Compounds containing Nitrogen-Sulphur Donor Ligands; the Crystal and Molecular Structure of Aqua[l,7-bis(N-methylbenzimidazol-2’-yl)-2,6-dithiaheptane]copper(II) Perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349–1356. [Google Scholar] [CrossRef]
- Okuniewski, A.; Rosiak, D.; Chojnacki, J.; Becker, B. Coordination polymers and molecular structures among complexes of mercury(II) halides with selected 1-benzoylthioureas. Polyhedron 2015, 90, 47–57. [Google Scholar] [CrossRef]
- Chan, S.-C.; Gupta, P.; Engelmann, X.; Ang, Z.Z.; Ganguly, R.; Bill, E.; Ray, K.; Ye, S.; England, J. Observation of Carbodicarbene Ligand Redox Noninnocence in Highly Oxidized Iron Complexes. Angew. Chem. Int. Ed. 2018, 57, 15717–15722. [Google Scholar] [CrossRef] [PubMed]
- Britovsek, G.J.P.; Gibson, V.C.; Spitzmesser, S.K.; Tellmann, K.P.; White, A.J.P.; Williams, D.J. Cationic 2,6-bis(imino)pyridine iron and cobalt complexes: Synthesis, structures, ethylene polymerisation and ethylene/polar monomer co-polymerisation studies. J. Chem. Soc. Dalton Trans. 2002, 1159–1171. [Google Scholar] [CrossRef]
- Chan, S.-C.; Ang, Z.Z.; Gupta, P.; Ganguly, R.; Li, Y.; Ye, S.; England, J. Carbodicarbene Ligand Redox Noninnocence in Highly Oxidized Chromium and Cobalt Complexes. Inorg. Chem. 2020, 59, 4118–4128. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018, 8, e1327. [Google Scholar] [CrossRef]
Sample Availability: Samples of the newly prepared compounds are available from the authors. |
Conformers | I | II | III |
---|---|---|---|
N(1)-C(1) | 1.332 | 1.332 | 1.331 |
N(1)-C(5) | 1.349 | 1.348 | 1.348 |
N(2)-C(6) | 1.349 | 1.353 | 1.343 |
N(2)-C(10) | 1.332 | 1.327 | 1.330 |
C(1)-C(17) | 1.511 | 1.506 | 1.512 |
C(10)-C(13) | 1.511 | 1.522 | 1.511 |
S(1)-C(13) | 1.844 | 1.825 | 1.850 |
S(1)-C(14) | 1.845 | 1.850 | 1.846 |
S(2)-C(16) | 1.846 | 1.838 | 1.851 |
S(2)-C(17) | 1.846 | 1.851 | 1.856 |
C(1)-C(17)-S(2) | 114.5 | 112.9 | 111.6 |
C(10)-C(13)-S(1) | 114.4 | 116.9 | 111.9 |
C(13)-S(1)-C(14) | 102.7 | 101.7 | 101.8 |
C(16)-S(2)-C(17) | 102.6 | 103.6 | 105.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, S.-W.; Chan, S.-C.; Yeung, C.-F.; Yiu, S.-M.; Wong, C.-Y. A New Tetradentate Mixed Aza-Thioether Macrocycle and Its Complexation Behavior towards Fe(II), Ni(II) and Cu(II) Ions. Molecules 2020, 25, 2030. https://doi.org/10.3390/molecules25092030
Ng S-W, Chan S-C, Yeung C-F, Yiu S-M, Wong C-Y. A New Tetradentate Mixed Aza-Thioether Macrocycle and Its Complexation Behavior towards Fe(II), Ni(II) and Cu(II) Ions. Molecules. 2020; 25(9):2030. https://doi.org/10.3390/molecules25092030
Chicago/Turabian StyleNg, Sze-Wing, Siu-Chung Chan, Chi-Fung Yeung, Shek-Man Yiu, and Chun-Yuen Wong. 2020. "A New Tetradentate Mixed Aza-Thioether Macrocycle and Its Complexation Behavior towards Fe(II), Ni(II) and Cu(II) Ions" Molecules 25, no. 9: 2030. https://doi.org/10.3390/molecules25092030
APA StyleNg, S. -W., Chan, S. -C., Yeung, C. -F., Yiu, S. -M., & Wong, C. -Y. (2020). A New Tetradentate Mixed Aza-Thioether Macrocycle and Its Complexation Behavior towards Fe(II), Ni(II) and Cu(II) Ions. Molecules, 25(9), 2030. https://doi.org/10.3390/molecules25092030