Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies
Abstract
:1. Why is Studying Monoclonal Antibody Adsorption Important?
2. Biopharmaceutical Production
2.1. Upstream Process
2.2. Downstream Process
2.3. Fill/Finish
3. Introduction to Proteins, Monoclonal Antibodies and Adsorption
3.1. Structure of Bioengineered IgG mAbs
3.2. Main Techniques Used for Studying mAb Adsorption
3.2.1. Spectroscopic Techniques
3.2.2. Imaging Techniques
3.3. Studies of Adsorption of Natural Model Proteins
3.4. Adsorption of IgG Proteins
4. Recent Advances in Adsorption Studies of Bioengineered mAbs at Different Interfaces
4.1. The Air/Water Interface
4.2. The SiO2/Water Interface
4.3. The Stainless Steel/Water Interface
4.4. The Oil/Water Interface
5. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dempke, W.C.M.; Fenchel, K.; Uciechowski, P.; Dale, S.P. Second- and third-generation drugs for immuno-oncology treatment—The more the better? Eur. J. Cancer 2017, 74, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.R.; Zhao, X.; Yaseen, M. Protein adsorption studied by neutron reflection. Curr. Opin. Colloid Interface Sci. 2007, 12, 9–16. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, F.; Lu, J.R. Interfacial assembly of proteins and peptides: Recent examples studied by neutron reflection. J. R. Soc. Interface 2009, 6, S659–S670. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Perumal, S.; Zhao, X.; Du, N.; Liu, X.Y.; Jia, Z.; Lu, J.R. Interfacial adsorption of antifreeze proteins: A neutron reflection study. Biophys. J. 2008, 94, 4405–4413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaseen, M.; Salacinski, H.J.; Seifalian, A.M.; Lu, J.R. Dynamic protein adsorption at the polyurethane copolymer/water interface. Biomed. Mater. 2008, 3. [Google Scholar] [CrossRef]
- Yaseen, M.; Zhao, X.; Freund, A.; Seifalian, A.M.; Lu, J.R. Surface structural conformations of fibrinogen polypeptides for improved biocompatibility. Biomaterials 2010, 31, 3781–3792. [Google Scholar] [CrossRef]
- Ecker, D.M.; Jones, S.D.; Levine, H.L. The therapeutic monoclonal antibody market. MAbs 2015, 7, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Global Monoclonal Antibody Therapeutics Market Size, Share, Types, Analysis and Forecast 2017–2023. Available online: https://www.zionmarketresearch.com/report/monoclonal-antibody-therapeutics-market (accessed on 27 January 2020).
- USP <788>, <787> and EP2.9.19 - Beckman Coulter. Available online: https://www.mybeckman.uk/resources/industry-standards/usp-788 (accessed on 2 March 2020).
- Patil, R.; Walther, J. Continuous manufacturing of recombinant therapeutic proteins: Upstream and downstream technologies. In Advances in Biochemical Engineering/Biotechnology; Springer Science and Business Media Deutschland GmbH: Houston, TX, USA, 2018; Volume 165, pp. 277–322. [Google Scholar]
- Papachristodoulou, M.; Doutch, J.; Leung, H.S.B.; Church, A.; Charleston, T.; Clifton, L.A.; Butler, P.D.; Roberts, C.J.; Bracewell, D.G. In situ neutron scattering of antibody adsorption during protein A chromatography. J. Chromatogr. A 2020. [Google Scholar] [CrossRef]
- Gjörstrup, P.; Watt, R.M. Therapeutic protein A immunoadsorption. A review. Transfus. Sci. 1990, 11, 281–302. [Google Scholar] [CrossRef]
- Lu, B.; Smyth, M.R.; O’Kennedy, R. Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. Analyst 1996, 121. [Google Scholar]
- Norde, W.; Lyklema, J. Interfacial behaviour of proteins, with special reference to immunoglobulins. A physicochemical study. Adv. Colloid Interface Sci. 2012, 179–182, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.A.; Aranha, H. Viral clearance for biopharmaceutical downstream processes Pharmaceutical. Pharm. Bioprocess 2015, 3, 127–138. [Google Scholar] [CrossRef]
- Manning, M.C.; Liu, J.; Li, T.; Holcomb, R.E. Rational Design of Liquid Formulations of Proteins. Adv. Protein Chem. Struct. Biol. 2018, 112, 1–59. [Google Scholar] [CrossRef] [PubMed]
- Ghazvini, S.; Kalonia, C.; Volkin, D.B.; Dhar, P. Evaluating the Role of the Air-Solution Interface on the Mechanism of Subvisible Particle Formation Caused by Mechanical Agitation for an IgG1 mAb. J. Pharm. Sci. 2016, 105, 1643–1656. [Google Scholar] [CrossRef]
- Yoo, J.W.; Irvine, D.J.; Discher, D.E.; Mitragotri, S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat. Rev. Drug Discov. 2011, 10, 521–535. [Google Scholar] [CrossRef]
- Vacchelli, E.; Aranda, F.; Eggermont, A.; Galon, J.; Sautès-Fridman, C.; Zitvogel, L.; Kroemer, G.; Galluzzi, L. Trial Watch: Tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2014, 3, e27048. [Google Scholar] [CrossRef] [Green Version]
- Reichert, J.M. Antibodies to watch in 2015. MAbs 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, Y.; Qiao, L. Protein adsorption on implant metals with various deformed surfaces. Colloids Surf. B Biointerfaces 2017, 156, 62–70. [Google Scholar] [CrossRef]
- Johnston, R.L.; Spalton, D.J.; Hussain, A.; Marshall, J. In vitro protein adsorption to 2 intraocular lens materials. J. Cataract Refract. Surg. 1999, 25, 1109–1115. [Google Scholar] [CrossRef]
- Fukuzaki, S.; Urano, H.; Nagata, K. Adsorption of Bovine Serum Albumin onto Metal Oxide Surfaces. J. Ferment. Bioeng. 1996, 81, 163–167. [Google Scholar] [CrossRef]
- Bode, K.; Hooper, R.J.; Paterson, W.R.; Ian Wilson, D.; Augustin, W.; Scholl, S. Pulsed Flow Cleaning of Whey Protein Fouling Layers. Heat Transf. Eng. 2007, 28, 202–209. [Google Scholar] [CrossRef]
- Pavithra, D.; Doble, M. Biofilm formation, bacterial adhesion and host response on polymeric implants - Issues and prevention. Biomed. Mater. 2008, 3. [Google Scholar] [CrossRef] [PubMed]
- Bansal, B.; Chen, X.D. A Critical Review of Milk Fouling in Heat Exchangers. Compr. Rev. Food Sci. Food Saf. 2006, 5, 27–33. [Google Scholar] [CrossRef]
- Talha, M.; Ma, Y.; Kumar, P.; Lin, Y.; Singh, A. Role of protein adsorption in the bio corrosion of metallic implants—A review. Colloids Surf. B Biointerfaces 2019, 176, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Hu, W.; Qin, X. The Role of Complement in the Mechanism of Action of Rituximab for B-Cell Lymphoma: Implications for Therapy. Oncologist 2008, 13, 954–966. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Erbe, A.K.; Hank, J.A.; Morris, Z.S.; Sondel, P.M. NK cell-mediated antibody-dependent cellular cytotoxicity in cancer immunotherapy. Front. Immunol. 2015, 6, 368. [Google Scholar] [CrossRef] [Green Version]
- Kyi, C.; Postow, M.A. Checkpoint blocking antibodies in cancer immunotherapy. Febs Lett. 2014, 588, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Kendrew, J.C.; Bodo, G.; Dintzis, H.M.; Parrish, R.G.; Wyckoff, H.; Phillips, D.C. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 1958, 181, 662–666. [Google Scholar] [CrossRef]
- Saibil, H.R. Macromolecular structure determination by cryo-electron microscopy. Acta Cryst. Sect. D Biol. Cryst. 2000, 56, 1215–1222. [Google Scholar] [CrossRef] [Green Version]
- Tugarinov, V.; Muhandiram, R.; Ayed, A.; Kay, L.E. Four-dimensional NMR spectroscopy of a 723-residue protein: Chemical shift assignments and secondary structure of malate synthase G. J. Am. Chem. Soc. 2002, 124, 10025–10035. [Google Scholar] [CrossRef]
- Saphire, E.O.; Parren, P.W.H.I.; Pantophlet, R.; Zwick, M.B.; Morris, G.M.; Rudd, P.M.; Dwek, R.A.; Stanfield, R.L.; Burton, D.R.; Wilson, I.A. Crystal structure of a neutralizing human IgG against HIV-1: A template for vaccine design. Science 2001, 293, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, R.; Smith, C.; Pan, F.; Campana, M.; Webster, J.R.P.; Van Der Walle, C.F.; Uddin, S.; Bishop, S.M.; Narwal, R.; et al. Neutron Reflection Study of Surface Adsorption of Fc, Fab, and the Whole mAb. Acs Appl. Mater. Interfaces 2017, 9, 23202–23211. [Google Scholar] [CrossRef] [PubMed]
- Chames, P.; Van Regenmortel, M.; Weiss, E.; Baty, D. Therapeutic antibodies: Successes, limitations and hopes for the future. Br. J. Pharm. 2009, 157, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Fekete, S.; Gassner, A.L.; Rudaz, S.; Schappler, J.; Guillarme, D. Analytical strategies for the characterization of therapeutic monoclonal antibodies. Trac-Trends Anal. Chem. 2013, 42, 74–83. [Google Scholar] [CrossRef]
- Tarasevich, B.J.; Perez-Salas, U.; Masica, D.L.; Philo, J.; Kienzle, P.; Krueger, S.; Majkrzak, C.F.; Gray, J.L.; Shaw, W.J. Neutron reflectometry studies of the adsorbed structure of the amelogenin, LRAP. J. Phys. Chem. B 2013, 117, 3098–3109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Chen, S.; Jiang, S. Orientation of adsorbed antibodies on charged surfaces by computer simulation based on a united-residue model. Langmuir 2003, 19, 3472–3478. [Google Scholar] [CrossRef]
- Zhou, J.; Tsao, H.K.; Sheng, Y.J.; Jiang, S. Monte Carlo simulations of antibody adsorption and orientation on charged surfaces. J. Chem. Phys. 2004, 121, 1050–1057. [Google Scholar] [CrossRef]
- Haugstad, G. Atomic Force Microscopy; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; ISBN 9781118360668. [Google Scholar]
- Vilhena, J.G.; Dumitru, A.C.; Herruzo, E.T.; Mendieta-Moreno, J.I.; Garcia, R.; Serena, P.A.; Pérez, R. Adsorption orientations and immunological recognition of antibodies on graphene. Nanoscale 2016, 8, 13463–13475. [Google Scholar] [CrossRef]
- Defante, A.P.; Kalonia, C.K.; Keegan, E.; Bishop, S.M.; Satish, H.A.; Hudson, S.D.; Santacroce, P.V. The Impact of the Metal Interface on the Stability and Quality of a Therapeutic Fusion Protein. Mol. Pharm. 2020. [Google Scholar] [CrossRef]
- Kapp, S.J.; Larsson, I.; Van De Weert, M.; Cárdenas, M.; Jorgensen, L. Competitive adsorption of monoclonal antibodies and nonionic surfactants at solid hydrophobic surfaces. J. Pharm. Sci. 2015, 104, 593–601. [Google Scholar] [CrossRef]
- Höök, F.; Rodahl, M.; Brzezinski, P.; Kasemo, B. Measurements using the quartz crystal microbalance technique of ferritin monolayers on methyl-thiolated gold: Dependence of energy dissipation and saturation coverage on salt concentration. J. Colloid Interface Sci. 1998, 208, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Su, T.J.; Lu, J.R.; Thomas, R.K.; Cui, Z.F.; Penfold, J. The adsorption of lysozyme at the silica-water interface: A neutron reflection study. J. Colloid Interface Sci. 1998, 203, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.R.; Su, T.J.; Penfold, J. Adsorption of serum albumins at the air/water interface. Langmuir 1999, 15, 6975–6983. [Google Scholar] [CrossRef]
- Lu, J.R.; Swann, M.J.; Peel, L.L.; Freeman, N.J. Lysozyme adsorption studies at the silica/water interface using dual polarization interferometry. Langmuir 2004, 20, 1827–1832. [Google Scholar] [CrossRef]
- Su, T.J.; Lu, J.R.; Thomas, R.K.; Cui, Z.F. Effect of pH on the adsorption of bovine serum albumin at the silica/water interface studied by neutron reflection. J. Phys. Chem. B 1999, 103, 3727–3736. [Google Scholar] [CrossRef]
- Pan, F.; Zhao, X.; Waigh, T.A.; Lu, J.R.; Miano, F. Interfacial adsorption and denaturization of human milk and recombinant rice lactoferrin. Biointerphases 2008, 3, FB36–FB43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fragneto, G.; Su, T.J.; Lu, J.R.; Thomas, R.K.; Rennie, A.R. Adsorption of proteins from aqueous solutions on hydrophobic surfaces studied by neutron reflection. Phys. Chem. Chem. Phys. 2000, 2, 5214–5221. [Google Scholar] [CrossRef]
- Su, T.J.; Green, R.J.; Wang, Y.; Murphy, E.F.; Lu, J.R.; Ivkov, R.; Satija, S.K. Adsorption of Lysozyme onto the Silicon Oxide Surface Chemically Grafted with a Monolayer of Pentadecyl-1-ol. Langmuir 2000, 16, 4999–5007. [Google Scholar] [CrossRef]
- Wang, Y.; Su, T.J.; Green, R.; Tang, Y.; Styrkas, D.; Danks, T.N.; Bolton, R.; Lu, J.R. Covalent coupling of an phospholipid monolayer on the surface of ceramic materials. Chem. Commun. 2000, 587–588. [Google Scholar] [CrossRef]
- Murphy, E.F.; Lu, J.R.; Lewis, A.L.; Brewer, J.; Russell, J.; Stratford, P. Characterization of protein adsorption at the phosphorylcholine incorporated polymer-water interface. Macromolecules 2000, 33, 4545–4554. [Google Scholar] [CrossRef]
- Murphy, E.F.; Lu, J.R.; Brewer, J.; Russell, J.; Penfold, J. The Reduced Adsorption of Proteins at the Phosphoryl Choline Incorporated Polymer-Water Interface. Langmuir 1999, 15, 1313–1322. [Google Scholar] [CrossRef]
- Su, T.J.; Lu, J.R.; Thomas, R.K.; Cui, Z.F.; Penfold, J. The Conformational Structure of Bovine Serum Albumin Layers Adsorbed at the Silica−Water Interface. J. Phys. Chem. B 1998, 102, 8100–8108. [Google Scholar] [CrossRef]
- Green, R.J.; Su, T.J.; Lu, J.R.; Webster, J.; Penfold, J. Competitive adsorption of lysozyme and C12E5 at the air/liquid interface. Phys. Chem. Chem. Phys. 2000, 2, 5222–5229. [Google Scholar] [CrossRef]
- Green, R.J.; Su, T.J.; Joy, H.; Lu, J.R. Interaction of lysozyme and sodium dodecyl sulfate at the air-liquid interface. Langmuir 2000, 16, 5797–5805. [Google Scholar] [CrossRef]
- Green, R.J.; Su, T.J.; Lu, J.R.; Penfold, J. The Interaction between SDS and Lysozyme at the Hydrophilic Solid−Water Interface. J. Phys. Chem. B 2001, 105, 1594–1602. [Google Scholar] [CrossRef]
- Lu, J.R.; Su, T.J.; Thomas, R.K. Binding of Surfactants onto Preadsorbed Layers of Bovine Serum Albumin at the Silica−Water Interface. J. Phys. Chem. B 1998, 102, 10307–10315. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Xu, H.; Shan, H.; Lu, J.R. Dynamic adsorption of monoclonal antibody layers on hydrophilic silica surface: A combined study by spectroscopic ellipsometry and AFM. J. Colloid Interface Sci. 2008, 323, 18–25. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, X.; Grant, C.; Lu, J.R.; Williams, D.E.; Penfold, J. Orientation of a monoclonal antibody adsorbed at the solid/solution interface: A combined study using atomic force microscopy and neutron reflectivity. Langmuir 2006, 22, 6313–6320. [Google Scholar] [CrossRef]
- Xu, H.; Lu, J.R.; Williams, D.E. Effect of surface packing density of interfacially adsorbed monoclonal antibody on the binding of hormonal antigen human chorionic gonadotrophin. J. Phys. Chem. B 2006, 110, 1907–1914. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, F.; Garcia-Gancedo, L.; Flewitt, A.J.; Ashley, G.M.; Luo, J.; Lu, J.R. Interfacial recognition of human prostate-specific antigen by immobilized monoclonal antibody: Effects of solution conditions and surface chemistry. J. R. Soc. Interface 2012, 9, 2457–2467. [Google Scholar] [CrossRef]
- Zhao, X.; Pan, F.; Ashley, G.M.; Garcia-Gancedo, L.; Luo, J.; Flewitt, A.J.; Milne, W.I.; Lu, J.R. Label-free detection of human prostate-specific antigen (hPSA) using film bulk acoustic resonators (FBARs). Sens. Actuators B Chem. 2014, 190, 946–953. [Google Scholar] [CrossRef]
- Weiner, G.J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer 2015, 15, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, C.; Li, Z.; Holman, R.; Pan, F.; Campbell, R.A.; Campana, M.; Li, P.; Webster, J.R.P.; Bishop, S.; Narwal, R.; et al. Antibody adsorption on the surface of water studied by neutron reflection. MAbs 2017, 9, 466–475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shieh, I.C.; Patel, A.R. Predicting the Agitation-Induced Aggregation of Monoclonal Antibodies Using Surface Tensiometry. Mol. Pharm. 2015, 12, 3184–3193. [Google Scholar] [CrossRef]
- Lin, G.L.; Pathak, J.A.; Kim, D.H.; Carlson, M.; Riguero, V.; Kim, Y.J.; Buff, J.S.; Fuller, G.G. Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions. Soft Matter 2016, 12, 3293–3302. [Google Scholar] [CrossRef]
- Kannan, A.; Shieh, I.C.; Leiske, D.L.; Fuller, G.G. Monoclonal Antibody Interfaces: Dilatation Mechanics and Bubble Coalescence. Langmuir 2018, 34, 630–638. [Google Scholar] [CrossRef]
- Leiske, D.L.; Shieh, I.C.; Tse, M.L. A Method to Measure Protein Unfolding at an Air-Liquid Interface. Langmuir 2016, 32, 9930–9937. [Google Scholar] [CrossRef]
- Koepf, E.; Richert, M.; Braunschweig, B.; Schroeder, R.; Brezesinski, G.; Friess, W. Impact of formulation pH on physicochemical protein characteristics at the liquid-air interface. Int. J. Pharm. 2018, 541, 234–245. [Google Scholar] [CrossRef]
- Couston, R.G.; Skoda, M.W.; Uddin, S.; van der Walle, C.F. Adsorption behavior of a human monoclonal antibody at hydrophilic and hydrophobic surfaces. MAbs 2013, 5, 126–139. [Google Scholar] [CrossRef] [Green Version]
- Broschard, T.H.; Glowienke, S.; Bruen, U.S.; Nagao, L.M.; Teasdale, A.; Stults, C.L.M.; Li, K.L.; Iciek, L.A.; Erexson, G.; Martin, E.A.; et al. Assessing safety of extractables from materials and leachables in pharmaceuticals and biologics–Current challenges and approaches. Regul. Toxicol. Pharm. 2016, 81, 201–211. [Google Scholar] [CrossRef]
- Pan, F.; Li, Z.; Leyshon, T.; Rouse, D.; Li, R.; Smith, C.; Campana, M.; Webster, J.R.P.; Bishop, S.M.; Narwal, R.; et al. Interfacial Adsorption of Monoclonal Antibody COE-3 at the Solid/Water Interface. Acs Appl. Mater. Interfaces 2018, 10, 1306–1316. [Google Scholar] [CrossRef] [PubMed]
- Larson, N.R.; Wei, Y.; Prajapati, I.; Chakraborty, A.; Peters, B.; Kalonia, C.; Hudak, S.; Choudhary, S.; Esfandiary, R.; Dhar, P.; et al. Comparison of Polysorbate 80 Hydrolysis and Oxidation on the Aggregation of a Monoclonal Antibody. J. Pharm. Sci. 2020, 109, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.L.; McAuley, A.; Livesay, B.; Gray, W.D.; McGuire, J. Modulation of protein adsorption by poloxamer 188 in relation to polysorbates 80 and 20 at solid surfaces. J. Pharm. Sci. 2014, 103, 1043–1049. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pan, F.; Li, R.; Pambou, E.; Hu, X.; Ruane, S.; Ciumac, D.; Li, P.; Welbourn, R.J.L.L.; Webster, J.R.P.P.; et al. Coadsorption of a Monoclonal Antibody and Nonionic Surfactant at the SiO2/Water Interface. ACS Appl. Mater. Interfaces 2018, 10, 44257–44266. [Google Scholar] [CrossRef] [Green Version]
- Mazzer, A.R.; Clifton, L.A.; Perevozchikova, T.; Butler, P.D.; Roberts, C.J.; Bracewell, D.G. Neutron reflectivity measurement of protein A–antibody complex at the solid-liquid interface. J. Chromatogr. A 2017, 1499, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, Y.; Wang, X.; Hedberg, J.; Lundin, M.; Blomberg, E.; Odnevall Wallinder, I. Surface-protein interactions on different stainless steel grades: Effects of protein adsorption, surface changes and metal release. J. Mater. Sci. Mater. Med. 2013, 24, 1015–1033. [Google Scholar] [CrossRef] [Green Version]
- Kalonia, C.K.; Heinrich, F.; Curtis, J.E.; Raman, S.; Miller, M.A.; Hudson, S.D. Protein Adsorption and Layer Formation at the Stainless Steel-Solution Interface Mediates Shear-Induced Particle Formation for an IgG1 Monoclonal Antibody. Mol. Pharm. 2018, 15, 1319–1331. [Google Scholar] [CrossRef]
- Bee, J.S.; Davis, M.; Freund, E.; Carpenter, J.F.; Randolph, T.W. Aggregation of a monoclonal antibody induced by adsorption to stainless steel. Biotechnol. Bioeng. 2010, 105, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.H.; Hsiao, Y.C. Surface and protein adsorption properties of 316L stainless steel modified with polycaprolactone film. Polymer (Basel) 2017, 9, 545. [Google Scholar] [CrossRef] [Green Version]
- Zarbakhsh, A.; Querol, A.; Bowers, J.; Webster, J.R.P.P. Structural studies of amphiphiles adsorbed at liquid-liquid interfaces using neutron reflectometry. Faraday Discuss. 2005, 129, 155–167. [Google Scholar] [CrossRef]
- Campana, M.; Hosking, S.L.; Petkov, J.T.; Tucker, I.M.; Webster, J.R.P.; Zarbakhsh, A.; Lu, J.R. Adsorption of Bovine Serum Albumin (BSA) at the Oil/Water Interface: A Neutron Reflection Study. Langmuir 2015, 31, 5614–5622. [Google Scholar] [CrossRef] [PubMed]
- Ruane, S.; Li, Z.; Campana, M.; Hu, X.; Gong, H.; Webster, J.R.P.; Uddin, F.; Kalonia, C.; Bishop, S.M.; Van Der Walle, C.F.; et al. Interfacial Adsorption of a Monoclonal Antibody and Its Fab and Fc Fragments at the Oil/Water Interface. Langmuir 2019. [Google Scholar] [CrossRef] [PubMed]
- Nejad, M.A.; Urbassek, H.M. Functionalized silica surfaces as carriers for monoclonal antibodies in targeted drug delivery systems: Accelerated molecular dynamics study. Chem. Phys. Lett. 2020, 739. [Google Scholar] [CrossRef]
Material | D2O | H2O | Silicon | SiO2 | Sapphire | Quartz | NRW | COE-3 (CMCOE-3) |
---|---|---|---|---|---|---|---|---|
SLD (Å−2 × 106) | 6.35 | −0.56 | 2.07 | 3.47 | 5.75 | 4.17 | 0.00 | 2.56 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hollowell, P.; Li, Z.; Hu, X.; Ruane, S.; Kalonia, C.; van der Walle, C.F.; Lu, J.R. Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies. Molecules 2020, 25, 2047. https://doi.org/10.3390/molecules25092047
Hollowell P, Li Z, Hu X, Ruane S, Kalonia C, van der Walle CF, Lu JR. Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies. Molecules. 2020; 25(9):2047. https://doi.org/10.3390/molecules25092047
Chicago/Turabian StyleHollowell, Peter, Zongyi Li, Xuzhi Hu, Sean Ruane, Cavan Kalonia, Christopher F. van der Walle, and Jian R. Lu. 2020. "Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies" Molecules 25, no. 9: 2047. https://doi.org/10.3390/molecules25092047
APA StyleHollowell, P., Li, Z., Hu, X., Ruane, S., Kalonia, C., van der Walle, C. F., & Lu, J. R. (2020). Recent Advances in Studying Interfacial Adsorption of Bioengineered Monoclonal Antibodies. Molecules, 25(9), 2047. https://doi.org/10.3390/molecules25092047