New 8-C-p-Hydroxylbenzylflavonol Glycosides from Pumpkin (Cucurbita moschata Duch.) Tendril and Their Osteoclast Differentiation Inhibitory Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation of the Isolated Compounds
2.2. Inhibition of RANKL-Induced Osteoclast Differentiation in Bone Marrow Derived Macrophages (BMDMs) by the Isolated Compounds
2.3. Inhibitory Effect of Isolated Compounds on Production of Reactive Oxygen Species (ROS) during Osteoclast Differentiation
3. Experimental Section
3.1. General Experimental Procedures
3.2. Materials and Chemicals
3.3. Extraction and Partitioning
3.4. Isolation of the EtOAc Fraction
3.4.1. 8-C-p-Hydroxybenzylquercetin 3-O-rutinoside (1)
3.4.2. 8-C-p-Hydroxybenzoylquercetin 3-O-β-D-glucopyranoside (2)
3.4.3. 8-C-p-Hydroxybenzylkaempferol 3-O-(α-L-rhamnopyranosyl(1→6)-β-D-galactopyranoside (3)
3.4.4. 8-C-p-Hydroxybenzoylkaempferol 3-O-rutinoside (4)
3.4.5. Mixture of 8-C-p-hydroxybenzylisorhamnetin 3-O-rutinoside (5) and 8-C-p-hydroxybenzyl isorhamnetin 3-O-(α-L-rhamnopyranosyl(1→6)-β-D-galactopyranoside (6)
3.5. Determination of the Osteoclast Differentiation Inhibitory Activity of the Isolated Compounds
3.5.1. Osteoclast Differentiation and TRAP Staining
3.5.2. Cell Viability Assay
3.5.3. Real-Time Quantitative Polymerase Chain Reaction (qPCR)
3.5.4. Bone Pit Formation Assay
3.5.5. Intracellular ROS Detection
3.5.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast differentiation and activation. Nature 2003, 423, 337–342. [Google Scholar] [CrossRef]
- Pierce, A.M.; Lindskog, S.; Hammarstrom, L. Osteoclasts: Structure and function. Electron. Microsc. Rev. 1991, 4, 1–45. [Google Scholar] [CrossRef]
- Xu, H.; Liu, T.; Li, J.; Xu, J.; Chen, F.; Hu, L.; Zhang, B.; Zi, C.; Wang, X.; Sheng, J. Oxidation derivative of (-)-epigallocatechin-3-gallate (EGCG) inhibits RANKL-induced osteoclastogenesis by suppressing RANK signaling pathways in RAW 264.7 cells. Biomed. Pharmacother. 2019, 118, 109237. [Google Scholar] [CrossRef] [PubMed]
- Fumimoto, R.; Sakai, E.; Yamaguchi, Y.; Sakamoto, H.; Fukuma, Y.; Nishihita, K.; Okamto, K.; Tsukuba, T. The coffee diterpene kahweol prevents osteoclastogenesis via impairment of NFATc1 expression and blocking of Erk phosphorylation. J. Pharmacol. Sci. 2012, 118, 479–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gohda, J.; Akiyama, T.; Koga, T.; Takayanagi, H.; Tanaka, S.; Imoue, J. RANK-mediated amplification of TRAF6 signaling leads to NFATc1 induction during osteoclastogenesis. EMBO J. 2005, 24, 790–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappariello, A.; Raone, R.; Maurizi, A.; Capulli, M.; Rucci, N.; Muraca, M.; Teti, A. Biotechnological approach for systemic delivery of membrane receptor activator of NF-κB ligand (RANKL) active domain into the circulation. Biomaterials 2015, 46, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Lu, L.; Hu, F.; Shetti, D.; Wei, K. Piceatannol attenuates RANKL-induced osteoclast differentiation and bone resorption by suppressing MAPK, NF-kappa B and AKT signalling pathways and promotes caspase 3-mediated apoptosis of mature osteoclasts. Roy. Soc. Open Sci. 2019, 6, 190360. [Google Scholar] [CrossRef] [Green Version]
- Makni, M.; Fetoui, H.; Gargouri, N.K.; Garouiel, M.; Jaber, H.; Makni, J.; Boudawara, T.; Zeghal, N. Hypolipidemic and hepatoprotective effects of flax and pumpkin seed mixture rich in omega-3 and omega-6 fatty acids in hypercholesterolemic rats. Food Chem. Toxicol. 2008, 46, 3714–3720. [Google Scholar] [CrossRef]
- Jiang, Z.; Du, Q. Glucose-lowering activity of novel tetrasaccharide glyceroglycolipids from the fruits of Cucurbita moschata. Bioorg. Med. Chem. Lett. 2011, 21, 1001–1003. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, H.; Xie, J.; Xu, C.; Chen, M.; Wang, C.; Yang, A.; Yin, Q. Cucurmosin induces apoptosis of BxPC-3 human pancreatic cancer cells via inactivation of the EGFR signaling pathway. Oncol. Rep. 2012, 27, 891–897. [Google Scholar]
- Choi, H.; Eo, H.; Park, K.; Jin, M.; Park, E.J.; Kim, S.H.; Park, J.E.; Kim, S.A. Water-soluble extract from Cucurbita moschata shows anti-obesity effects by controlling lipid metabolism in a high fat diet-induced obesity mouse model. Biochem. Biophys. Res. Commun. 2007, 359, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Y.; Huang, W.C.; Liu, C.C.; Wang, M.F.; Ho, C.S.; Huang, W.P.; Hou, C.C.; Chung, H.L.; Huang, C.C. Pumpkin (Cucurbita moschata) fruit extract improves physical fatigue and exercise performance in mice. Molecules 2012, 17, 11864–11876. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, D.; Choi, J.; Choi, H.; Ryu, J.H.; Jeong, J.; Park, E.J.; Kim, S.H.; Kim, S. Dehydrodiconiferyl alcohol isolated from Cucurbita moschata shows anti-adipogenic and anti-lipogenic effects in 3T3-L1 cells and primary mouse embryonic fibroblasts. J. Biol. Chem. 2012, 287, 8839–8851. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.; Kim, D.; Ko, K.R.; Kim, H.; Lee, D.S.; Nam, I.J.; Lim, S.; Kim, S. Dehydrodiconiferyl alcohol inhibits osteoclast differentiation and ovariectomy-induced bone loss through acting as an estrogen receptor agonist. J. Nat. Prod. 2018, 81, 1343–1356. [Google Scholar] [CrossRef]
- Lee, W.; Kim, D.; Ko, K.R.; Kim, H.; Lim, S.; Kim, S. Dehydrodiconiferyl alcohol promotes BMP-2-induced osteoblastogenesis through its agonistic effects on estrogen receptor. Biochem. Biophys. Res. Commun. 2018, 495, 2242–2248. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.N.; Choi, J.H.; Lee, H.N.; Lee, S.H.; Cho, S.C.; Park, J.H.; Kim, Y.M. Inflammation inhibitory effect of water extract from pumpkin’s tendril. Korean J. Food Preserv. 2017, 24, 1122–1128. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Jang, A.R.; Jeong, H.N.; Kim, K.K.; Kim, Y.M.; Cho, J.Y.; Park, J.H. Water extract of tendril of Cucurbita Moschata Duch. Suppresses RANKL-induced osteoclastogenesis by down-regulating p38 and ERK signaling. Int. J. Med. Sci. 2020, 17, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Merghem, R.M.; Jay, M.; Viricel, M.R.; Bayet, C.; Voirin, B. Five 8-C-benzylated flavonoids from Thymus hirtus (Labiateae). Phytochemistry 1995, 38, 637–640. [Google Scholar] [CrossRef]
- He, C.N.; Wang, C.L.; Guo, S.X.; Yang, J.S.; Xiao, P.G. A novel flavonoid glucoside from Anoectochilus roxburghii (Wall.) Lindl. J. Integr. Plant Biol. 2006, 48, 359–363. [Google Scholar] [CrossRef]
- Cui, Y.; Fu, S.; Hou, T.; Wu, X. Endothelial progenitor cells enhance the migration and osteoclastic differentiation of bone marrow-derived macrophages in vitro and in a mouse femur fracture model through Talin-1. Cell Physiol. Biochem. 2018, 49, 555–564. [Google Scholar] [CrossRef]
- Hayman, A.R. Tartrate-resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity 2008, 41, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Ohshiba, T.; Miyaura, C.; Inada, M.; Ito, A. Role of RANKL-induced osteoclast formation and MMP-dependent matrix degradation in bone destruction by breast cancer metastasis. Br. J. Cancer 2003, 88, 1318–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yagi, M.; Miyamoto, T.; Sawatani, Y.; Iwamoto, K.; Hosogane, N.; Fujita, N.; Morita, K.; Ninomiya, K.; Susuki, T.; Miyamoto, K.; et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 2005, 202, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaway, D.A.; Jiang, J.X. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases. J. Bone Miner. Metab. 2015, 33, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Ha, H.; Kwak, H.B.; Lee, S.W.; Jin, H.M.; Kim, H.M.; Kim, H.H.; Lee, Z.H. Reactive oxygen species mediate RANK signaling in osteoclasts. Exp. Cell Res. 2004, 301, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.K.; Choi, Y.G.; Baik, J.Y.; Han, S.Y.; Jeong, D.; Bae, Y.S.; Kim, N.; Lee, S.Y. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 2005, 106, 852–859. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Batubara, I.; Yamauchi, K.; Mitsunaga, K. Identification and structure-activity relationship (SAR) of chemical constituents from Daemonorops draco (Willd.) Blume and selected commercial flavonoids on anti-osteoclastogenesis activity. Fitoterapia 2019, 138, 104280. [Google Scholar] [CrossRef]
- Ghosh, M.; Kim, I.S.; Lee, Y.M.; Hong, S.M.; Lee, T.H.; Lim, J.H.; Debnath, T.; Lim, B.O. The effects of aronia melanocarpa ‘Viking’ extracts in attenuating RANKL-induced osteoclastic differentiation by inhibiting ROS generation and c-FOS/NFATc1 signaling. Molecules 2018, 23, 615. [Google Scholar] [CrossRef] [Green Version]
- Liou, S.F.; Hsu, J.H.; Lin, I.L.; Ho, M.L.; Hsu, P.C.; Chen, L.W.; Chen, I.J.; Yeh, J.L. KMUP-1 suppresses RANKL-induced osteoclastogenesis and prevents ovariectomy-induced bone loss: Roles of MAPKs, Akt, NF-kappa B and calcium/calcineurin/NFATc1 pathways. PLoS ONE 2013, 8, e69468. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Shin, H.H.; Lee, E.A.; Van Phan, T.; Choi, H.S. Stimulation of osteoclastogenesis by enhanced levels of MIP-1alpha in BALB/c mice in vitro. Exp. Hematol. 2007, 35, 1100–1108. [Google Scholar] [CrossRef]
- Wang, H.M.; Fu, L.; Cheng, C.C.; Gao, R.; Lin, M.Y.; Su, H.L.; Belinda, N.E.; Nguyen, T.H.; Lin, W.H.; Lee, P.C.; et al. Inhibition of LPS-Induced oxidative damages and potential anti-inflammatory effects of Phyllanthus emblica extract via down-regulating NF-κB, COX-2, and iNOS in RAW 264.7 Cells. Antioxidants 2019, 8, e270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.J.; Lee, Y.; Hwang, H.G.; Sung, S.H.; Lee, M.; Son, Y.J. Betulin suppresses osteoclast formation via down-regulating NFATc1. J. Clin. Med. 2018, 7, e154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds 1–6 are available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.; Choi, J.-H.; Oh, J.; Park, J.-Y.; Kim, Y.-M.; Moon, J.-H.; Park, J.-H.; Cho, J.-Y. New 8-C-p-Hydroxylbenzylflavonol Glycosides from Pumpkin (Cucurbita moschata Duch.) Tendril and Their Osteoclast Differentiation Inhibitory Activities. Molecules 2020, 25, 2077. https://doi.org/10.3390/molecules25092077
Kim K, Choi J-H, Oh J, Park J-Y, Kim Y-M, Moon J-H, Park J-H, Cho J-Y. New 8-C-p-Hydroxylbenzylflavonol Glycosides from Pumpkin (Cucurbita moschata Duch.) Tendril and Their Osteoclast Differentiation Inhibitory Activities. Molecules. 2020; 25(9):2077. https://doi.org/10.3390/molecules25092077
Chicago/Turabian StyleKim, Kiok, Joo-Hee Choi, Jisu Oh, Ji-Yeon Park, Young-Min Kim, Jae-Hak Moon, Jong-Hwan Park, and Jeong-Yong Cho. 2020. "New 8-C-p-Hydroxylbenzylflavonol Glycosides from Pumpkin (Cucurbita moschata Duch.) Tendril and Their Osteoclast Differentiation Inhibitory Activities" Molecules 25, no. 9: 2077. https://doi.org/10.3390/molecules25092077
APA StyleKim, K., Choi, J. -H., Oh, J., Park, J. -Y., Kim, Y. -M., Moon, J. -H., Park, J. -H., & Cho, J. -Y. (2020). New 8-C-p-Hydroxylbenzylflavonol Glycosides from Pumpkin (Cucurbita moschata Duch.) Tendril and Their Osteoclast Differentiation Inhibitory Activities. Molecules, 25(9), 2077. https://doi.org/10.3390/molecules25092077