Chemical Composition of a Novel Distillate from Fermented Mixture of Nine Anti-Inflammatory Herbs and Its UVB-Protective Efficacy in Mouse Dorsal Skin via Attenuating Collagen Disruption and Inflammation
Abstract
:1. Introduction
2. Results
2.1. Analysis of the Distillate
2.2. Skin Damage
2.3. Epidermal Thickening
2.4. Immunoreactivities of Collagen I and III
2.5. Immunoreactivities of TNF-α and IL-1β
3. Discussion
4. Materials and Methods
4.1. Preparation of the Distillate
4.2. Analysis of the Distillate
4.2.1. Chemical and Reagent
4.2.2. Sample Preparation
4.2.3. GC
4.2.4. GC/MS
4.3. Experimental Animals
4.4. Experimental Groups, Treatment of Distillate, and UVB Irradiation
4.5. Assessment of Clinical Severity of Skin Injury
4.6. Tissue Processing for Histology
4.7. Hematoxylin and Eosin Staining
4.8. Immunohistochemistry
4.9. Data Analyses
4.10. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hwa, C.; Bauer, E.A.; Cohen, D.E. Skin biology. Dermatol. Ther. 2011, 24, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.; Oresajo, C.; Hayward, J. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—A review. Int. J. Cosmet. Sci. 2005, 27, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Kim, D.W.; Park, C.W.; Kim, B.; Sim, H.; Kim, H.S.; Lee, T.K.; Lee, J.C.; Yang, G.E.; Her, Y.; et al. Laminarin Attenuates Ultraviolet-Induced Skin Damage by Reducing Superoxide Anion Levels and Increasing Endogenous Antioxidants in the Dorsal Skin of Mice. Mar. Drugs 2020, 18, 345. [Google Scholar] [CrossRef] [PubMed]
- Subedi, L.; Lee, T.H.; Wahedi, H.M.; Baek, S.H.; Kim, S.Y. Resveratrol-Enriched Rice Attenuates UVB-ROS-Induced Skin Aging via Downregulation of Inflammatory Cascades. Oxidative Med. Cell. Longev. 2017, 2017, 8379539. [Google Scholar] [CrossRef]
- Kligman, L.; Kligman, A. The nature of photoaging: Its prevention and repair. Photodermatology 1986, 3, 215–227. [Google Scholar]
- Kim, M.S.; Oh, G.H.; Kim, M.J.; Hwang, J.K. Fucosterol inhibits matrix metalloproteinase expression and promotes type-1 procollagen production in UVB-induced HaCaT cells. Photochem. Photobiol. 2013, 89, 911–918. [Google Scholar] [CrossRef]
- Choi, S.H.; Choi, S.I.; Jung, T.D.; Cho, B.Y.; Lee, J.H.; Kim, S.H.; Yoon, S.A.; Ham, Y.M.; Yoon, W.J.; Cho, J.H.; et al. Anti-Photoaging Effect of Jeju Putgyul (Unripe Citrus) Extracts on Human Dermal Fibroblasts and Ultraviolet B-induced Hairless Mouse Skin. Int. J. Mol. Sci. 2017, 18, 2052. [Google Scholar] [CrossRef] [Green Version]
- Ok, S.; Oh, S.R.; Jung, T.S.; Jeon, S.O.; Jung, J.W.; Ryu, D.S. Effects of Angelica gigas Nakai as an Anti-Inflammatory Agent in In Vitro and In Vivo Atopic Dermatitis Models. Evid.-Based Complement. Altern. Med. eCAM 2018, 2018, 2450712. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.C.; Liou, S.S.; Tzeng, T.F.; Lee, S.L.; Liu, I.M. Wound repair and anti-inflammatory potential of Lonicera japonica in excision wound-induced rats. BMC Complement. Altern. Med. 2012, 12, 226. [Google Scholar] [CrossRef] [Green Version]
- Choi, M.; Yi, J.K.; Kim, S.Y.; Ryu, J.H.; Lee, J.; Kwon, W.; Jang, S.; Kim, D.; Kim, M.; Kim, H.; et al. Anti-inflammatory effects of a methanol extract of dictamnus dasycarpus turcz. Root bark on imiquimod-induced psoriasis. BMC Complement. Altern. Med. 2019, 19, 347. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.; Liang, T.; Jin, Q.; Shen, C.; Zhang, Y.; Jing, P. Chinese yam (Dioscorea opposita Thunb.) alleviates antibiotic-associated diarrhea, modifies intestinal microbiota, and increases the level of short-chain fatty acids in mice. Food Res. Int. 2019, 122, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Park, T.H.; Lee, S.; Amatya, R.; Maharjan, P.; Kim, H.J.; Park, W.S.; Ahn, M.J.; Kim, S.Y.; Moon, C.; Cheong, H.; et al. Development and characterization of a superabsorbing hydrogel film containing Ulmus davidiana var. Japonica root bark and pullulan for skin wound healing. Saudi Pharm. J. 2020, 28, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Becker, T.; Qian, F.; Ring, J. Beer and beer compounds: Physiological effects on skin health. J. Eur. Acad. Dermatol. Venereol. 2014, 28, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.T.; Park, Y.M.; Won, J.H.; Jung, H.J.; Park, H.J.; Choi, J.W.; Lee, K.T. Methanol extract of Xanthium strumarium L. possesses anti-inflammatory and anti-nociceptive activities. Biol. Pharm. Bull. 2005, 28, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.B.; Ju, S.Y.; Park, J.H.; Lee, J.R.; Yun, K.W.; Kwon, S.T.; Lim, J.H.; Chung, G.Y.; Jeong, H.J. Antioxidant activity in essential oils of Cnidium officinale makino and Ligusticum chuanxiong hort and their inhibitory effects on DNA damage and apoptosis induced by ultraviolet b in mammalian cell. Cancer epidemiol. 2009, 33, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Shingnaisui, K.; Dey, T.; Manna, P.; Kalita, J. Therapeutic potentials of Houttuynia cordata Thunb. against inflammation and oxidative stress: A review. J. Ethnopharmacol. 2018, 220, 35–43. [Google Scholar] [CrossRef]
- Han, C.C.; Wei, H.; Guo, J. Anti-inflammatory effects of fermented and non-fermented Sophora flavescens: A comparative study. BMC Complement. Altern. Med. 2011, 11, 100. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.E.; Kim, K.T.; Paik, H.D. Improved Antioxidant, Anti-inflammatory, and Anti-adipogenic Properties of Hydroponic Ginseng Fermented by Leuconostoc mesenteroides KCCM 12010P. Molecules 2019, 24, 3359. [Google Scholar] [CrossRef] [Green Version]
- Hwang, E.; Lin, P.; Ngo, H.T.T.; Yi, T.H. Clove attenuates UVB-induced photodamage and repairs skin barrier function in hairless mice. Food Funct. 2018, 9, 4936–4947. [Google Scholar] [CrossRef]
- Agren, M.S.; Schnabel, R.; Christensen, L.H.; Mirastschijski, U. Tumor necrosis factor-alpha-accelerated degradation of type I collagen in human skin is associated with elevated matrix metalloproteinase (MMP)-1 and MMP-3 ex vivo. Eur. J. Cell Biol. 2015, 94, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Cavinato, M.; Waltenberger, B.; Baraldo, G.; Grade, C.V.C.; Stuppner, H.; Jansen-Durr, P. Plant extracts and natural compounds used against UVB-induced photoaging. Biogerontology 2017, 18, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Magcwebeba, T.; Swart, P.; Swanevelder, S.; Joubert, E.; Gelderblom, W. Anti-Inflammatory Effects of Aspalathus linearis and Cyclopia spp. Extracts in a UVB/Keratinocyte (HaCaT) Model Utilising Interleukin-1alpha Accumulation as Biomarker. Molecules 2016, 21, 1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, O.H.; Choi, J.G.; Lee, J.H.; Kwon, D.Y. Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells. Molecules 2010, 15, 385–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pejin, B.; Iodice, C.; Tommonaro, G.; De Rosa, S. Synthesis and biological activities of thio-avarol derivatives. J. Nat. Prod. 2008, 71, 1850–1853. [Google Scholar] [CrossRef]
- Amigo, M.; Terencio, M.C.; Paya, M.; Iodice, C.; De Rosa, S. Synthesis and evaluation of diverse thio avarol derivatives as potential UVB photoprotective candidates. Bioorganic Med. Chem. Lett. 2007, 17, 2561–2565. [Google Scholar] [CrossRef]
- Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; et al. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 2006, 103, 15611–15616. [Google Scholar] [CrossRef] [Green Version]
- Naghmouchi, K.; Belguesmia, Y.; Bendali, F.; Spano, G.; Seal, B.S.; Drider, D. Lactobacillus fermentum: A bacterial species with potential for food preservation and biomedical applications. Crit. Rev. Food Sci. Nutr. 2020, 60, 3387–3399. [Google Scholar] [CrossRef]
- Ghosh, K.; Ray, M.; Adak, A.; Halder, S.K.; Das, A.; Jana, A.; Parua Mondal, S.; Vagvolgyi, C.; Das Mohapatra, P.K.; Pati, B.R.; et al. Role of probiotic Lactobacillus fermentum KKL1 in the preparation of a rice based fermented beverage. Bioresour. Technol. 2015, 188, 161–168. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, J.; Liu, H.; Zhou, L.; Liu, Z.; Wang, J.; Han, J.; Yu, Z.; Yang, F. Chemical analysis and biological activity of the essential oils of two valerianaceous species from China: Nardostachys chinensis and Valeriana officinalis. Molecules 2010, 15, 6411–6422. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, V.; Thorat, R.; Kadam, V.; Sathe, N. Hibiscus rosa sinensis Linn–‘‘Rudrapuspa’’: A Review. J. Pharm. Res. 2009, 2, 1168–1173. [Google Scholar]
- Nonato, F.R.; Santana, D.G.; de Melo, F.M.; dos Santos, G.G.; Brustolim, D.; Camargo, E.A.; de Sousa, D.P.; Soares, M.B.; Villarreal, C.F. Anti-inflammatory properties of rose oxide. Int. Immunopharmacol. 2012, 14, 779–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matts, P.J. Solar ultraviolet radiation: Definitions and terminology. Dermatol. Clin. 2006, 24, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Algaba, I.; Riva, A. In vitro measurement of the ultraviolet protection factor of apparel textiles. Color. Technol. 2002, 118, 52–58. [Google Scholar] [CrossRef]
- Muthusamy, V.; Piva, T.J. The UV response of the skin: A review of the MAPK, NFκB and TNFα signal transduction pathways. Arch. Dermatol. Res. 2010, 302, 5–17. [Google Scholar] [CrossRef]
- Hwang, B.M.; Noh, E.M.; Kim, J.S.; Kim, J.M.; You, Y.O.; Hwang, J.K.; Kwon, K.B.; Lee, Y.R. Curcumin inhibits UVB-induced matrix metalloproteinase-1/3 expression by suppressing the MAPK-p38/JNK pathways in human dermal fibroblasts. Exp. Dermatol. 2013, 22, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, V.T.; Ganju, P.; Ramkumar, A.; Grover, R.; Gokhale, R.S. Multifaceted pathways protect human skin from UV radiation. Nat. Chem. Biol. 2014, 10, 542–551. [Google Scholar] [CrossRef]
- Chung, J.H.; Seo, J.Y.; Choi, H.R.; Lee, M.K.; Youn, C.S.; Rhie, G.; Cho, K.H.; Kim, K.H.; Park, K.C.; Eun, H.C. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J. Investig. Dermatol. 2001, 117, 1218–1224. [Google Scholar] [CrossRef] [Green Version]
- Divya, S.P.; Wang, X.; Pratheeshkumar, P.; Son, Y.O.; Roy, R.V.; Kim, D.; Dai, J.; Hitron, J.A.; Wang, L.; Asha, P.; et al. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin. Toxicol. Appl. Pharmacol. 2015, 284, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Patwardhan, J.; Bhatt, P. Ultraviolet-B Protective Effect of Flavonoids from Eugenia caryophylata on Human Dermal Fibroblast Cells. Pharmacogn. Mag. 2015, 11, S397–S406. [Google Scholar] [CrossRef]
- Bae, J.Y.; Choi, J.S.; Kang, S.W.; Lee, Y.J.; Park, J.; Kang, Y.H. Dietary compound ellagic acid alleviates skin wrinkle and inflammation induced by UV-B irradiation. Exp. Dermatol. 2010, 19, e182–e190. [Google Scholar] [CrossRef]
- Park, E.J.; Kim, J.Y.; Jeong, M.S.; Park, K.Y.; Park, K.H.; Lee, M.W.; Joo, S.S.; Seo, S.J. Effect of topical application of quercetin-3-O-(2″-gallate)-alpha-l-rhamnopyranoside on atopic dermatitis in NC/Nga mice. J. Dermatol. Sci. 2015, 77, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Park, J.H.; Cho, J.H.; Kim, I.H.; Ahn, J.H.; Lee, J.C.; Chen, B.H.; Shin, B.N.; Tae, H.J.; Bae, E.J.; et al. Effect of Oenanthe Javanica Extract on Antioxidant Enzyme in the Rat Liver. Chin. Med. J. 2015, 128, 1649–1654. [Google Scholar] [CrossRef] [PubMed]
- Her, Y.; Shin, B.N.; Lee, Y.L.; Park, J.H.; Kim, D.W.; Kim, K.S.; Kim, H.; Song, M.; Kim, J.D.; Won, M.H.; et al. Oenanthe Javanica Extract Protects Mouse Skin from UVB Radiation via Attenuating Collagen Disruption and Inflammation. Int. J. Mol. Sci. 2019, 20, 1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Retention Time | Compound | Molecular Formula | Molecular Weight | Peak Area (%) |
---|---|---|---|---|
5.86 | 2,4-Dimethylhexane | C8H18 | 109.4 | 0.33 |
6.06 | Siloxane | - | - | 3.88 |
6.58 | 2,4-Dimethylheptane | C9H20 | 128.25 | 0.35 |
7.17 | Unknown | - | - | 0.67 |
9.86 | Unknown | - | - | 0.52 |
9.99 | Unknown | - | - | 0.35 |
10.35 | Unknown | - | - | 0.59 |
10.63 | 3,6-Dimethylundecane | C13H28 | 184.36 | 0.68 |
10.74 | Octyl chloroacetate | C10H19ClO2 | 206.71 | 0.33 |
10.80 | 3,8-Dimethyldecane | C12H26 | 170.33 | 0.77 |
11.47 | Siloxane | - | - | 4.44 |
11.57 | n-Octane | C8H18 | 114.23 | 0.66 |
12.25 | 4-Methyl-2-Undecene | C12H24 | 168.32 | 1.13 |
12.34 | 4-Methylcyclohexanone | C7H12O | 112.17 | 0.37 |
13.24 | n-Decane | C10H22 | 142.28 | 0.34 |
13.41 | 2-Methyl-1,5-hexadiene | C7H12O | 96.17 | 0.32 |
13.55 | n-Undecane | C11H24 | 156.31 | 0.52 |
13.68 | 3,7-Dimethyldecane | C12H24 | 170.33 | 0.42 |
13.80 | 5-Butylnonane | C13H28 | 184.36 | 0.98 |
13.88 | 3-Methyl-2-butene-1-ol (Prenol) | C5H10O | 86.132 | 0.64 |
14.01 | Unknown | - | - | 0.50 |
14.45 | Terpinen-4-ol | C10H18O | 154.25 | 0.68 |
14.53 | 4,6-Dimethylundecane | C13H28 | 184.36 | 0.46 |
14.60 | Unknown | - | - | 0.71 |
14.66 | Unknown | - | - | 0.78 |
14.73 | Unknown | - | - | 1.33 |
14.89 | 3,5-Dimethyloctane | C10H22 | 142.28 | 0.42 |
14.97 | Siloxane | 4.56 | ||
15.07 | 3,9-Dimethylundecane | C13H28 | 184.36 | 0.61 |
15.15 | 5,7-Dimethylundecane | C13H28 | 184.36 | 0.66 |
15.23 | 1,4-Dimethylcyclooctane | C7H12O | 140.27 | 0.53 |
15.26 | 2,3-Dimethyl-3-heptene | C9H18 | 126.24 | 0.87 |
15.33 | Unknown | - | - | 1.50 |
15.43 | Hexyl octyl ether | C14H30O | 214.39 | 0.83 |
15.58 | n-Tridecane | C13H28 | 184.36 | 1.45 |
16.52 | n-Tetradecane | C14H30 | 198.39 | 0.64 |
16.68 | n-Pentadecane | C15H32 | 212.42 | 0.66 |
16.82 | 4-Methyldodecane | C13H28 | 184.36 | 0.87 |
17.18 | Unknown | - | - | 0.66 |
17.30 | Unknown | - | - | 1.39 |
17.38 | Unknown | - | - | 0.44 |
17.45 | n-Hexadecane | C16H34 | 226.41 | 0.43 |
17.65 | 2,6,10-Trimethyldodecane | C15H32 | 212.41 | 3.69 |
17.74 | Siloxane | - | - | 5.98 |
17.84 | 4,6-Dimethyldodecane | C14H30 | 198.39 | 0.89 |
17.96 | 2,3,5,8-Tetramethyldecane | C14H30 | 198.39 | 1.05 |
18.17 | Unknown | - | - | 0.58 |
18.25 | n-Heptadecane | C17H36 | 240.48 | 2.02 |
18.36 | 1-Butyl-2-propylcyclopentane | C13H26 | 182.35 | 0.67 |
18.48 | Rose oxide | C10H18O | 154.25 | 0.51 |
18.56 | 4-Methyl-1-decene | C11H22 | 154.29 | 0.74 |
18.89 | (2-Methylbutyl)cyclopentane | C10H20 | 140.27 | 0.66 |
18.96 | 2,6,10-Trimethyldodecane | C15H32 | 212.41 | 0.74 |
19.07 | n-Nonadecane | C19H40 | 268.52 | 0.55 |
19.31 | n-Docosane | C22H46 | 310.6 | 1.64 |
19.44 | 2-Ethyl-3-(isobutyryloxy)hexyl-2-methylpropanoate | C16H30O4 | 286.41 | 0.75 |
19.48 | Unknown | - | - | 0.41 |
19.61 | Unknown | - | - | 1.27 |
19.74 | Unknown | - | - | 0.76 |
19.79 | n-Pentacosane | C25H52 | 252.69 | 0.64 |
19.86 | Unknown | - | - | 1.00 |
19.92 | Unknown | - | - | 0.53 |
19.99 | 1-Isobutyl-4-isopropyl-3-isopropyl-2,2-dimethylsuccinate | C16H30O4 | 286.41 | 1.37 |
20.02 | 2-Octadecyloxyethanol | C20H42O2 | 314.5 | 0.82 |
20.14 | Siloxane | - | - | 6.26 |
20.21 | n-Hexacosane | C26H54 | 366.71 | 0.78 |
20.27 | 2-Methylhexadecane | C17H36 | 240.47 | 0.59 |
20.36 | n-Pentatriacontane | C35H72 | 492.96 | 0.59 |
20.44 | 2,6,10,14-Tetramethylhexadecane(Phytan) | C20H42 | 282.5 | 0.54 |
20.48 | n-Tricosane | C23H48 | 324.63 | 0.36 |
20.58 | 2,6,11,15-Tetramethylhexadecane | C20H42 | 282.5 | 2.45 |
20.67 | 6-Butyl-1,4-cycloheptadiene | C11H18 | 150.26 | 0.33 |
20.72 | 5-Undecen-3-yne, | C11H18 | 150.26 | 0.71 |
20.81 | 3,7,11,15-Tetramethylhexadecan-1-ol (Dihydrophytol) | C20H42O2 | 298.5 | 0.55 |
20.95 | 2-Undecene | C11H22 | 154.29 | 0.43 |
21.02 | 11-Decyldocosane | C32H66 | 450.9 | 0.35 |
21.07 | Unknown | - | - | 0.33 |
21.23 | Unknown | - | - | 1.02 |
21.29 | 2-Hexyl-1-decanol | C16H34O | 242.44 | 0.62 |
21.42 | Unknown | - | - | 0.09 |
21.51 | Tetrahydrolavandulol | C10H22O | 158.28 | 0.43 |
21.57 | Unknown | - | - | 0.87 |
21.72 | Unknown | - | - | 0.38 |
21.94 | Unknown | - | - | 0.31 |
22.01 | Unknown | - | - | 0.57 |
22.05 | Unknown | - | - | 0.58 |
22.14 | Unknown | - | - | 0.56 |
22.19 | Unknown | - | - | 0.57 |
22.26 | Unknown | - | - | 0.33 |
22.33 | Unknown | - | - | 0.61 |
22.38 | Unknown | - | - | 0.78 |
22.49 | Siloxane | - | - | 4.31 |
22.63 | 2-Octadecyloxyethanol | C20H42O2 | 314.5 | 0.36 |
23.04 | 1,2,4-Trimethylcyclohexane | C9H18 | 126.24 | 1.22 |
23.86 | n-Hexatiacontane | C36H74 | 506.97 | 1.46 |
24.53 | trans-5-Undecene | C11H22 | 154.29 | 0.70 |
25.25 | 5-Ethyl-2-methyloctane | C11H24 | 156.31 | 1.07 |
25.43 | 1-Butyl-2-propylcyclopentane | C13H26 | 182.35 | 1.19 |
25.82 | 9-Eicosene | C20H40 | 280.53 | 1.17 |
Total | 100.00 |
Common Name | Botanical Name | Family | Part |
---|---|---|---|
Korean angelica | Angelica gigas | Apiaceae | Root |
Japanese honeysuckle | Lonicera japonica | Caprifoliaceae | Bloom |
Fraxinella | Dictamnus dasycarpus Turcz. | Rutaceae | Root |
Chinese yam | D. opposita Thunb. | Dioscoreaceae | Root |
Japanese elm | Ulmus davidiana var. japonica | Ulmaceae | Bark |
Malt | Hordeum vulgare var. hexastichon Aschers. | Gramineae | Seed |
Rough cocklebur | Xanthium strumarium L. | Asteraceae | Seed |
Chunkung | Cnidium officinale | Apiaceae | Root |
Fish mint | Houttuynia cordata Thunb. | Saururaceae | Leaf |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Her, Y.; Lee, T.-K.; Ahn, J.H.; Lim, S.S.; Kang, B.-G.; Park, J.-S.; Kim, B.; Sim, H.; Lee, J.-C.; Kim, H.S.; et al. Chemical Composition of a Novel Distillate from Fermented Mixture of Nine Anti-Inflammatory Herbs and Its UVB-Protective Efficacy in Mouse Dorsal Skin via Attenuating Collagen Disruption and Inflammation. Molecules 2021, 26, 124. https://doi.org/10.3390/molecules26010124
Her Y, Lee T-K, Ahn JH, Lim SS, Kang B-G, Park J-S, Kim B, Sim H, Lee J-C, Kim HS, et al. Chemical Composition of a Novel Distillate from Fermented Mixture of Nine Anti-Inflammatory Herbs and Its UVB-Protective Efficacy in Mouse Dorsal Skin via Attenuating Collagen Disruption and Inflammation. Molecules. 2021; 26(1):124. https://doi.org/10.3390/molecules26010124
Chicago/Turabian StyleHer, Young, Tae-Kyeong Lee, Ji Hyeon Ahn, Soon Sung Lim, Beom-Goo Kang, Jung-Seok Park, Bora Kim, Hyejin Sim, Jae-Chul Lee, Hyun Sook Kim, and et al. 2021. "Chemical Composition of a Novel Distillate from Fermented Mixture of Nine Anti-Inflammatory Herbs and Its UVB-Protective Efficacy in Mouse Dorsal Skin via Attenuating Collagen Disruption and Inflammation" Molecules 26, no. 1: 124. https://doi.org/10.3390/molecules26010124
APA StyleHer, Y., Lee, T. -K., Ahn, J. H., Lim, S. S., Kang, B. -G., Park, J. -S., Kim, B., Sim, H., Lee, J. -C., Kim, H. S., Sim, T. H., Lee, H. S., & Won, M. -H. (2021). Chemical Composition of a Novel Distillate from Fermented Mixture of Nine Anti-Inflammatory Herbs and Its UVB-Protective Efficacy in Mouse Dorsal Skin via Attenuating Collagen Disruption and Inflammation. Molecules, 26(1), 124. https://doi.org/10.3390/molecules26010124