Comparative Chemical Profiles of the Essential Oils from Different Varieties of Psidium guajava L.
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Profiles of the EOs from Different Varieties of P. guajava
2.2. Multivariate Data Analysis of the EOs GC-MS Dataset
3. Materials and Methods
3.1. Plant Materials Collection and Preparation
3.2. EOs, Extraction, GC-MS Analysis, and Components Characterization
3.3. GC-MS Multivariate Data Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Murphy, D.J. People, Plants and Genes. The Story of Crops and Humanity; Oxford University Press: Oxford, UK, 2008; Volume 44, p. 571. [Google Scholar]
- Mandal, S.C.; Mandal, V.; Konishi, T. Natural Products and Drug Discovery: An Integrated Approach; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Khoshbakht, K.; Hammer, K. How many plant species are cultivated? Genet. Resour. Crop Evol. 2008, 55, 925–928. [Google Scholar] [CrossRef]
- Bvenura, C.; Sivakumar, D. The role of wild fruits and vegetables in delivering a balanced and healthy diet. Food Res. Int. 2017, 99, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Vijaya Anand, A.; Velayuthaprabhu, S.; Rengarajan, R.L.; Sampathkumar, P.; Radhakrishnan, R. Bioactive Compounds of Guava (Psidium guajava L.). In Bioactive Compounds in Underutilized Fruits and Nuts; Murthy, H.N., Bapat, V.A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 503–527. [Google Scholar]
- De Souza, T.D.S.; da Silva Ferreira, M.F.; Menini, L.; de Lima Souza, J.R.C.; Parreira, L.A.; Cecon, P.R.; Ferreira, A. Essential oil of Psidium guajava: Influence of genotypes and environment. Sci. Hortic. 2017, 216, 38–44. [Google Scholar] [CrossRef]
- Qin, X.-J.; Yu, Q.; Yan, H.; Khan, A.; Feng, M.-Y.; Li, P.-P.; Hao, X.-J.; An, L.-K.; Liu, H.-Y. Meroterpenoids with antitumor activities from guava (Psidium guajava). J. Agric. Food Chem. 2017, 65, 4993–4999. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-Y.; Yin, M.-C. Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice. Plant Foods Hum. Nutr. 2012, 67, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-F.; Kuo, Y.-T.; Chen, T.-Y.; Chien, C.-T. Quercetin-rich guava (Psidium guajava) juice in combination with trehalose reduces autophagy, apoptosis and pyroptosis formation in the kidney and pancreas of type II diabetic rats. Molecules 2016, 21, 334. [Google Scholar] [CrossRef] [Green Version]
- Rasheed, H.M.; Khan, T.; Wahid, F.; Khan, R.; Shah, A.J. Chemical composition and vascular and intestinal smooth muscle relaxant effects of the essential oil from Psidium guajava fruit. Pharm. Biol. 2016, 54, 2679–2684. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, S.D.; Araújo, C.M.; Borges, G.D.S.C.; dos Santos Lima, M.; Viera, V.B.; Garcia, E.F.; de Souza, E.L.; de Oliveira, M.E.G. Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata DC) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli. LWT 2020, 134, 110200. [Google Scholar] [CrossRef]
- Alquezar, B.; Rodrigo, M.J.; Zacarías, L. Regulation of carotenoid biosynthesis during fruit maturation in the red-fleshed orange mutant Cara Cara. Phytochemistry 2008, 69, 1997–2007. [Google Scholar] [CrossRef]
- Metwally, A.; Omar, A.; Harraz, F.; El Sohafy, S. Phytochemical investigation and antimicrobial activity of Psidium guajava L. leaves. Pharmacogn. Mag. 2010, 6, 212. [Google Scholar]
- Tambe, R.; Singhal, R.; Bhise, K.; Kulkarni, M. Phytochemical screening and HPTLC fingerprinting of leaf extracts of Psidium guajava Linn. J. Pharmacogn. Phytochem. 2014, 3, 52–56. [Google Scholar]
- Arain, A.; Hussain Sherazi, S.T.; Mahesar, S.A.; Sirajuddin. Essential oil from Psidium guajava leaves: An excellent source of β-caryophyllene. Nat. Prod. Commun. 2019, 14, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Weli, A.; Al-Kaabi, A.; Al-Sabahi, J.; Said, S.; Hossain, M.A.; Al-Riyami, S. Chemical composition and biological activities of the essential oils of Psidium guajava leaf. J. King Saud Univ. Sci. 2019, 31, 993–998. [Google Scholar] [CrossRef]
- Al-Rowaily, S.L.; Abd-ElGawad, A.M.; Assaeed, A.M.; Elgamal, A.M.; Gendy, A.E.-N.G.E.; Mohamed, T.A.; Dar, B.A.; Mohamed, T.K.; Elshamy, A.I. Essential oil of Calotropis procera: Comparative chemical profiles, antimicrobial activity, and allelopathic potential on weeds. Molecules 2020, 25, 5203. [Google Scholar] [CrossRef] [PubMed]
- Barra, A. Factors affecting chemical variability of essential oils: A review of recent developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Elshamy, A.; Abd-ElGawad, A.M.; El-Amier, Y.A.; El Gendy, A.; Al-Rowaily, S. Interspecific variation, antioxidant and allelopathic activity of the essential oil from three Launaea species growing naturally in heterogeneous habitats in Egypt. Flavour Fragr. J. 2019, 34, 316–328. [Google Scholar] [CrossRef]
- El-Alam, I.; Zgheib, R.; Iriti, M.; El Beyrouthy, M.; Hattouny, P.; Verdin, A.; Fontaine, J.; Chahine, R.; Lounès-Hadj Sahraoui, A.; Makhlouf, H. Origanum syriacum essential oil chemical polymorphism according to soil type. Foods 2019, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Zgheib, R.; Yassine, C.; Azzi-Achkhouty, S.; Beyrouthy, M.E. Investigation of essential oil chemical polymorphism of Salvia fruticosa naturally growing in Lebanon. J. Essent. Oil Bear. Plants 2019, 22, 408–430. [Google Scholar] [CrossRef]
- Cheng, S.-S.; Liu, J.-Y.; Hsui, Y.-R.; Chang, S.-T. Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophloeum). Bioresour. Technol. 2006, 97, 306–312. [Google Scholar] [CrossRef]
- Salgueiro, L.; Vila, R.; Tomas, X.; Tomi, F.; Cañigueral, S.; Casanova, J.; da Cunha, A.P.; Adzet, T. Chemical polymorphism of the essential oil of Thymus carnosus from Portugal. Phytochemistry 1995, 38, 391–396. [Google Scholar] [CrossRef]
- Zgheib, R.; Chaillou, S.; Ouaini, N.; Rutledge, D.N.; Stien, D.; Kassouf, A.; Beyrouthy, M.E. Investigation of Origanum libanoticum essential oils chemical polymorphism by independent components analysis (ICA). Nat. Prod. Commun. 2018, 13, 1731–1740. [Google Scholar] [CrossRef] [Green Version]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Khadhri, A.; El Mokni, R.; Almeida, C.; Nogueira, J.; Araújo, M.E.M. Chemical composition of essential oil of Psidium guajava L. growing in Tunisia. Ind. Crops Prod. 2014, 52, 29–31. [Google Scholar] [CrossRef]
- Parki, A.; Chaubey, P.; Prakash, O.; Kumar, R.; Pant, A.K. Seasonal variation in essential oil compositions and antioxidant properties of Acorus calamus L. accessions. Medicines 2017, 4, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melito, S.; Petretto, G.L.; Chahine, S.; Pintore, G.; Chessa, M. Seasonal variation of essential oil in Rosmarinus officinalis leaves in sardinia. Nat. Prod. Commun. 2019, 14, 1934578X19864005. [Google Scholar] [CrossRef] [Green Version]
- Abd-ElGawad, A.M.; Elshamy, A.I.; Al-Rowaily, S.L.; El-Amier, Y.A. Habitat affects the chemical profile, allelopathy, and antioxidant properties of essential oils and phenolic enriched extracts of the invasive plant Heliotropium curassavicum. Plants 2019, 8, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Gawad, A.M. Chemical constituents, antioxidant and potential allelopathic effect of the essential oil from the aerial parts of Cullen plicata. Ind. Crops Prod. 2016, 80, 36–41. [Google Scholar] [CrossRef]
- Abd El-Gawad, A.M.; El-Amier, Y.A.; Bonanomi, G. Essential oil composition, antioxidant and allelopathic activities of Cleome droserifolia (Forssk.) Delile. Chem. Biodivers. 2018, 15, e1800392. [Google Scholar] [CrossRef]
- Vogel, H.; Razmilic, I.; Muñoz, M.; Doll, U.; San Martin, J. Studies of genetic variation of essential oil and alkaloid content in boldo (Peumus boldus). Planta Med. 1999, 65, 90–91. [Google Scholar] [CrossRef]
- Abd El-Gawad, A.M.; Elshamy, A.I.; El Gendy, A.E.-N.; Gaara, A.; Assaeed, A.M. Volatiles profiling, allelopathic activity, and antioxidant potentiality of Xanthium strumarium leaves essential oil from Egypt: Evidence from chemometrics analysis. Molecules 2019, 24, 584. [Google Scholar] [CrossRef] [Green Version]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide—Natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 3007–3017. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, C.C.; de Oliveira, C.V.; Grigoletto, J.; Ribeiro, L.R.; Funck, V.R.; Grauncke, A.C.B.; de Souza, T.L.; Souto, N.S.; Furian, A.F.; Menezes, I.R.A. Anticonvulsant activity of β-caryophyllene against pentylenetetrazol-induced seizures. Epilepsy Behav. 2016, 56, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Brito, L.F.; Oliveira, H.B.M.; das Neves Selis, N.; e Souza, C.L.S.; Júnior, M.N.S.; de Souza, E.P.; Silva, L.S.C.d.; de Souza Nascimento, F.; Amorim, A.T.; Campos, G.B. Anti-inflammatory activity of β-caryophyllene combined with docosahexaenoic acid in a model of sepsis induced by Staphylococcus aureus in mice. J. Sci. Food Agric. 2019, 99, 5870–5880. [Google Scholar] [CrossRef] [PubMed]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Al Kaabi, M.J.; Nurulain, S.M.; Goyal, S.N.; Amjad Kamal, M.; Ojha, S. Polypharmacological properties and therapeutic potential of β-caryophyllene: A dietary phytocannabinoid of pharmaceutical promise. Curr. Pharm. Des. 2016, 22, 3237–3264. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Zhou, L.; Huang, Y.; Wang, Y.; Hao, X.; Wang, J. Antimicrobial activity of globulol isolated from the fruits of Eucalyptus globulus Labill. Nat. Prod. Res. 2008, 22, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Luna, M.; de Paula, R.; Costa, R.B.; dos Anjos, J.; da Silva, M.; Correia, M. Bioprospection of Libidibia ferrea var. ferrea: Phytochemical properties and antibacterial activity. S. Afr. J. Bot. 2020, 130, 103–108. [Google Scholar] [CrossRef]
- Silva, M.P.; Oliveira, G.L.; De Carvalho, R.B.; De Sousa, D.P.; Freitas, R.M.; Pinto, P.L.; Moraes, J.D. Antischistosomal activity of the terpene nerolidol. Molecules 2014, 19, 3793–3803. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.P.; de Oliveira, R.N.; Mengarda, A.C.; Roquini, D.B.; Allegretti, S.M.; Salvadori, M.C.; Teixeira, F.S.; de Sousa, D.P.; Pinto, P.L.; da Silva Filho, A.A. Antiparasitic activity of nerolidol in a mouse model of schistosomiasis. Int. J. Antimicrob. Agents 2017, 50, 467–472. [Google Scholar] [CrossRef]
- Saito, A.Y.; Rodriguez, A.A.M.; Vega, D.S.M.; Sussmann, R.A.; Kimura, E.A.; Katzin, A.M. Antimalarial activity of the terpene nerolidol. Int. J. Antimicrob. Agents 2016, 48, 641–646. [Google Scholar] [CrossRef]
- Krist, S.; Banovac, D.; Tabanca, N.; Wedge, D.E.; Gochev, V.K.; Wanner, J.; Schmidt, E.; Jirovetz, L. Antimicrobial activity of nerolidol and its derivatives against airborne microbes and further biological activities. Nat. Prod. Commun. 2015, 10, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Upadhyay, S.; Erdogan Orhan, I.; Kumar Jugran, A.; LD Jayaweera, S.; A Dias, D.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N. Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Gawad, A.; El Gendy, A.; Elshamy, A.; Omer, E. Chemical composition of the essential oil of Trianthema portulacastrum L. Aerial parts and potential antimicrobial and phytotoxic activities of its extract. J. Essent. Oil Bear. Plants 2016, 19, 1684–1692. [Google Scholar] [CrossRef]
- Vespermann, K.A.; Paulino, B.N.; Barcelos, M.C.; Pessôa, M.G.; Pastore, G.M.; Molina, G. Biotransformation of α-and β-pinene into flavor compounds. Appl. Microbiol. Biotechnol. 2017, 101, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
- Sun, J. D-Limonene: Safety and clinical applications. Altern. Med. Rev. 2007, 12, 259. [Google Scholar] [PubMed]
- Portillo-Estrada, M.; Copolovici, L.; Niinemets, Ü. Bias in leaf dry mass estimation after oven-drying isoprenoid-storing leaves. Trees 2015, 29, 1805–1816. [Google Scholar] [CrossRef]
- Ramadan, N.S.; Wessjohann, L.A.; Mocan, A.; Vodnar, D.C.; El-Sayed, N.H.; El-Toumy, S.A.; Mohamed, D.A.; Aziz, Z.A.; Ehrlich, A.; Farag, M.A. Nutrient and sensory metabolites profiling of Averrhoa carambola L. (Starfruit) in the context of its origin and ripening stage by GC/MS and chemometric analysis. Molecules 2020, 25, 2423. [Google Scholar] [CrossRef]
No | Compound Name | RT | KIExp | KILit | P. guajava Varieties | Identification | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
RM | EQ | WI | E | ESEG | RI | ||||||
Monoterpene hydrocarbons | |||||||||||
1 | α-Pinene | 9.76 | 940 | 939 | 20.58 ± 0.60 | --- | 0.48 ± 0.03 * | --- | 2.76 ± 0.04 | 0.48 ± 0.01 | MS, KI |
2 | β-Pinene | 11.57 | 982 | 980 | 0.49 ± 0.03 | --- | --- | --- | 0.09 ± 0.02 | --- | MS, KI |
3 | β-Myrcene | 11.82 | 990 | 991 | 0.54 ± 0.03 | --- | --- | --- | --- | --- | MS, KI |
4 | δ-3-Carene | 12.98 | 1009 | 1010 | 0.15 ± 0.01 | --- | --- | --- | --- | --- | MS, KI |
5 | D-Limonene | 13.68 | 1033 | 1031 | 33.96 ± 0.70 | 3.55 ± 0.07 | 27.04 ± 0.52 | --- | 9.10 ± 0.08 | --- | MS, KI |
Oxygenated monoterpenes | |||||||||||
6 | Eucalyptol | 13.91 | 1034 | 1033 | 0.97 ± 0.0 | --- | 0.63 ± 0.03 | 0.68 ± 0.02 | 0.16 ± 0.01 | 10.89 ± 0.21 | MS, KI |
7 | Linalool | 16.75 | 1104 | 1104 | --- | --- | 0.26 ± 0.02 | --- | --- | 0.75 ± 0.02 | MS, KI |
8 | α-Terpineol | 21.86 | 1195 | 1197 | 0.18 ± 0.01 | --- | 0.09 ± 0.01 | --- | 0.11 ± 0.01 | 1.29 ± 0.04 | MS, KI |
9 | Geraniol formate | 22.65 | 1313 | 1312 | --- | 0.38 ± 0.02 | --- | --- | --- | MS, KI | |
Sesquiterpene hydrocarbons | |||||||||||
10 | α-Copaene | 29.82 | 1376 | 1376 | 0.93 ± 0.03 | 6.71 ± 0.08 | 3.41 ± 0.06 | 0.50 ± 0.03 | 7.00 ± 0.08 | 0.49 ± 0.03 | MS, KI |
11 | α-Gurjunene | 30.90 | 1411 | 1409 | --- | --- | --- | --- | 0.13 ± 0.01 | --- | MS, KI |
12 | β-Caryophyllene | 31.91 | 1419 | 1418 | 11.21 ± 0.33 | 43.20 ± 0.24 | 30.33 ± 0.31 | 43.12 ± 0.26 | 38.42 ± 0.34 | 13.40 ± 0.11 | MS, KI |
13 | Aromadendrene | 32.74 | 1437 | 1439 | 1.55 ± 0.06 | 1.48 ± 0.04 | 1.55 ± 0.04 | 4.78 ± 0.06 | 0.02 ± 0.01 | 1.21 ± 0.02 | MS, KI |
14 | cis-Muurola-3,5-diene | 32.97 | 1452 | 1450 | --- | --- | 0.41 ± 0.01 | --- | --- | --- | MS, KI |
15 | α-Humulene | 33.55 | 1454 | 1455 | 1.27 ± 0.04 | 4.99 ± 0.07 | 3.56 ± 0.04 | 4.84 ± 0.07 | 4.03 ± 0.05 | 1.96 ± 0.06 | MS, KI |
16 | β-Copaene | 34.27 | 1460 | 1460 | 0.19 ± 0.01 | 0.49 ± 0.02 | 0.62 ± 0.02 | 0.58 ± 0.03 | 0.50 ± 0.03 | --- | MS, KI |
17 | β-Selinene | 34.85 | 1486 | 1485 | --- | --- | 0.21 ± 0.01 | 0.41 ± 0.01 | --- | 1.31 ± 0.02 | MS, KI |
18 | α-Bisabolene | 35.05 | 1503 | 1504 | 0.20 ± 0.02 | --- | --- | 3.27 ± 0.05 | 2.08 ± 0.04 | 2.02 ± 0.05 | MS, KI |
19 | β-Bisabolene | 35.34 | 1510 | 1509 | 0.20 ± 0.02 | 0.85 ± 0.02 | 0.72 ± 0.02 | 1.99 ± 0.04 | 1.55 ± 0.06 | 0.59 ± 0.03 | MS, KI |
20 | δ-Cadinene | 36.12 | 1513 | 1514 | 0.39 ± 0.03 | 2.19 ± 0.05 | 1.77 ± 0.04 | 0.73 ± 0.01 | 1.40 ± 0.07 | --- | MS, KI |
21 | trans-Calamenene | 36.47 | 1520 | 1519 | 0.34 ± 0.02 | 1.53 ± 0.04 | 0.70 ± 0.03 | --- | 1.01 ± 0.03 | --- | MS, KI |
22 | Junipene | 41.58 | 1553 | 1555 | 2.48 ± 0.05 | 3.50 ± 0.08 | 2.92 ± 0.07 | 1.93 ± 0.03 | 4.58 ± 0.09 | 4.61 ± 0.08 | MS, KI |
23 | α-Calacorene | 42.05 | 1565 | 1566 | --- | --- | --- | --- | 0.23 ± 0.03 | --- | MS, KI |
Oxygenated sesquiterpenes | |||||||||||
24 | cis-Lanceol | 37.23 | 1527 | 1525 | --- | --- | 0.23 ± 0.01 | 0.82 ± 0.03 | 0.66 ± 0.01 | 0.89 ± 0.03 | MS, KI |
25 | Ledol | 37.50 | 1564 | 1565 | 1.23 ± 0.03 | 2.40 ± 0.04 | 2.02 ± 0.04 | 0.34 ± 0.01 | 1.30 ± 0.03 | 0.64 ± 0.02 | MS, KI |
26 | trans-Nerolidol | 37.88 | 1566 | 1564 | 0.53 ± 0.02 | 9.03 ± 0.07 | 8.27 ± 0.10 | 5.81 ± 0.11 | 5.39 ± 0.21 | 10.14 ± 0.13 | MS, KI |
27 | Epiglobulol | 38.30 | 1579 | 1580 | 2.31 ± 0.06 | 1.58 ± 0.05 | 1.60 ± 0.05 | 2.47 ± 0.07 | --- | 3.73 ± 0.07 | MS, KI |
28 | Spathulenol | 38.66 | 1580 | 1579 | --- | --- | 0.33 ± 0.02 | --- | --- | 0.26 ± 0.01 | MS, KI |
29 | Caryophyllene oxide | 38.79 | 1582 | 1583 | 0.32 ± 0.03 | --- | 0.38 ± 0.02 | 0.96 ± 0.01 | --- | 0.66 ± 0.03 | MS, KI |
30 | Globulol | 39.32 | 1586 | 1585 | 14.13 ± 0.09 | 10.57 ± 0.07 | 6.17 ± 0.09 | 18.47 ± 0.12 | 10.75 ± 0.08 | 26.42 ± 0.36 | MS, KI |
31 | Viridiflorol | 39.74 | 1590 | 1591 | 1.00 ± 0.03 | 0.48 ± 0.02 | 0.77 ± 0.01 | 1.68 ± 0.09 | --- | 1.46 ± 0.03 | MS, KI |
32 | Alloaromadendrene oxide-(1) | 39.96 | 1625 | 1625 | 0.73 ± 0.03 | 0.55 ± 0.01 | --- | --- | --- | --- | MS, KI |
33 | γ-Eudesmol | 40.21 | 1628 | 1626 | --- | --- | --- | 0.49 ± 0.01 | 1.07 ± 0.01 | 0.42 ± 0.02 | MS, KI |
34 | tau-Muurolol | 40.45 | 1644 | 1642 | 1.09 ± 0.05 | 1.72 ± 0.03 | 0.96 ± 0.03 | 0.69 ± 0.03 | 1.69 ± 0.03 | --- | MS, KI |
35 | Cubenol | 40.98 | 1645 | 1644 | 2.56 ± 0.06 | 3.96 ± 0.06 | 1.99 ± 0.05 | 2.31 ± 0.05 | 2.98 ± 0.06 | 2.26 ± 0.04 | MS, KI |
36 | δ-Cadinol | 41.87 | 1646 | 1647 | 0.34 ± 0.03 | 0.73 ± 0.02 | 1.99 ± 0.03 | 1.98 ± 0.06 | 0.80 ± 0.03 | 1.65 ± 0.06 | MS, KI |
37 | α-Acorenol | 42.01 | 1655 | 1656 | 0.12 ± 0.01 | 0.47 ± 0.01 | 0.17 ± 0.01 | 1.13 ± 0.08 | 1.47 ± 0.02 | 1.67 ± 0.03 | MS, KI |
38 | Eudesm-7(11)-en-4-ol | 42.22 | 1689 | 1688 | --- | --- | --- | --- | --- | 10.59 ± 0.21 | MS, KI |
Total | 99.99 | 99.99 | 99.96 | 99.98 | 99.28 | 99.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, E.M.; El Gendy, A.E.-N.G.; Abd-ElGawad, A.M.; Elshamy, A.I.; Farag, M.A.; Alamery, S.F.; Omer, E.A. Comparative Chemical Profiles of the Essential Oils from Different Varieties of Psidium guajava L. Molecules 2021, 26, 119. https://doi.org/10.3390/molecules26010119
Hassan EM, El Gendy AE-NG, Abd-ElGawad AM, Elshamy AI, Farag MA, Alamery SF, Omer EA. Comparative Chemical Profiles of the Essential Oils from Different Varieties of Psidium guajava L. Molecules. 2021; 26(1):119. https://doi.org/10.3390/molecules26010119
Chicago/Turabian StyleHassan, Emad M., Abd El-Nasser G. El Gendy, Ahmed M. Abd-ElGawad, Abdelsamed I. Elshamy, Mohamed A. Farag, Salman F. Alamery, and Elsayed A. Omer. 2021. "Comparative Chemical Profiles of the Essential Oils from Different Varieties of Psidium guajava L." Molecules 26, no. 1: 119. https://doi.org/10.3390/molecules26010119
APA StyleHassan, E. M., El Gendy, A. E. -N. G., Abd-ElGawad, A. M., Elshamy, A. I., Farag, M. A., Alamery, S. F., & Omer, E. A. (2021). Comparative Chemical Profiles of the Essential Oils from Different Varieties of Psidium guajava L. Molecules, 26(1), 119. https://doi.org/10.3390/molecules26010119