Characterization of Lignin Compounds at the Molecular Level: Mass Spectrometry Analysis and Raw Data Processing
Abstract
:1. Introduction
2. Role of Ionization Technique on Compounds Coverage
3. Tandem Mass Spectrometry Procedures
4. Graphical and Statistical Methods for the HRMS Data
5. Applications in Geochemistry
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saito, T.; Brown, R.H.; Hunt, M.A.; Pickel, D.L.; Pickel, J.M.; Messman, J.M.; Baker, F.S.; Keller, M.; Naskar, A.K. Turning renewable resources into value-added polymer: Development of lignin-based thermoplastic. Green Chem. 2012, 14, 3295–3303. [Google Scholar] [CrossRef]
- Regalbuto, J.R. Cellulosic biofuels—got gasoline? Science 2009, 325, 822–824. [Google Scholar] [CrossRef]
- Paananen, H.; Eronen, E.; Mäkinen, M.; Jänis, J.; Suvanto, M.; Pakkanen, T.T. Base-Catalyzed Oxidative Depolymerization of Softwood Kraft Lignin. Ind. Crop. Prod. 2020, 152, 112473. [Google Scholar] [CrossRef]
- Bauer, S.; Sorek, H.; Mitchell, V.D.; Ibáñez, A.B.; Wemmer, D.E. Characterization of miscanthus giganteus lignin isolated by ethanol organosolv process under reflux condition. J. Agric. Food Chem. 2012, 60, 8203–8212. [Google Scholar] [CrossRef]
- Zakzeski, J.; Bruijnincx, P.C.A.; Jongerius, A.L.; Weckhuysen, B.M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 2010, 110, 3552–3599. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Z.; Li, Z.; Chen, D. Characteristics of tar formation during cellulose, hemicellulose and lignin gasification. Fuel 2014, 118, 250–256. [Google Scholar] [CrossRef]
- Kanaujia, P.K.; Sharma, Y.K.; Agrawal, U.C.; Garg, M.O. Analytical approaches to characterizing pyrolysis oil from biomass. Trac Trends Anal. Chem. 2013, 42, 125–136. [Google Scholar] [CrossRef]
- Parsell, T.H.; Owen, B.C.; Klein, I.; Jarrell, T.M.; Marcum, C.L.; Haupert, L.J.; Amundson, L.M.; Kenttämaa, H.I.; Ribeiro, F.; Miller, J.T.; et al. Cleavage and hydrodeoxygenation (hdo) of c–o bonds relevant to lignin conversion using Pd/Zn Synergistic Catalysis. Chem. Sci. 2013, 4, 806–813. [Google Scholar] [CrossRef]
- Chatterjee, S.; Jones, E.B.; Clingenpeel, A.C.; McKenna, A.M.; Rios, O.; McNutt, N.W.; Keffer, D.J.; Johs, A. Conversion of lignin precursors to carbon fibers with nanoscale graphitic domains. Acs Sustain. Chem. Eng. 2014, 2, 2002–2010. [Google Scholar] [CrossRef]
- Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S.-F.; Beckham, G.T.; Sels, B.F. Chemicals from Lignin: An Interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 2018, 47, 852–908. [Google Scholar] [CrossRef] [PubMed]
- Echavarri-Bravo, V.; Tinzl, M.; Kew, W.; Cruickshank, F.; Logan Mackay, C.; Clarke, D.J.; Horsfall, L.E. High resolution fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the characterisation of enzymatic processing of commercial lignin. New Biotechnol. 2019, 52, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almendros, G.; Dorado, J.; González-Vila, F.J.; Blanco, M.J.; Lankes, U. 13C NMR Assessment of decomposition patterns during composting of forest and shrub biomass. Soil Biol. Biochem. 2000, 32, 793–804. [Google Scholar] [CrossRef]
- Zhao, Y.-P.; Zhu, W.-W.; Wei, X.-Y.; Fan, X.; Cao, J.-P.; Dou, Y.-Q.; Zong, Z.-M.; Zhao, W. Synergic effect of methanol and water on pine liquefaction. Bioresour. Technol. 2013, 142, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wei, X.-Y.; Cao, J.-P.; Li, P.; Liu, F.-J.; Zhao, Y.-P.; Fan, X.; Zhao, W.; Rong, L.-C.; Wei, Y.-B.; et al. Characterization of a bio-oil from pyrolysis of rice husk by detailed compositional analysis and structural investigation of lignin. Bioresour. Technol. 2012, 116, 114–119. [Google Scholar] [CrossRef]
- Yan, H.-L.; Zong, Z.-M.; Li, Z.-K.; Wei, X.-Y. Characterization of bio-oils from the alkanolyses of sweet sorghum stalk by electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Fuel 2015, 160, 596–604. [Google Scholar] [CrossRef]
- Xiong, Z.; Guo, J.; Chaiwat, W.; Deng, W.; Hu, X.; Han, H.; Chen, Y.; Xu, K.; Su, S.; Hu, S.; et al. Assessing the chemical composition of heavy components in bio-oils from the pyrolysis of cellulose, hemicellulose and lignin at slow and fast heating rates. Fuel Process. Technol. 2020, 199, 106299. [Google Scholar] [CrossRef]
- Jarvis, J.M.; McKenna, A.M.; Hilten, R.N.; Das, K.C.; Rodgers, R.P.; Marshall, A.G. Characterization of pine pellet and peanut hull pyrolysis bio-oils by negative-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2012, 26, 3810–3815. [Google Scholar] [CrossRef]
- Sudasinghe, N.; Dungan, B.; Lammers, P.; Albrecht, K.; Elliott, D.; Hallen, R.; Schaub, T. High resolution ft-icr mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga nannochloropsis salina. Fuel 2014, 119, 47–56. [Google Scholar] [CrossRef]
- Qi, Y.; Fu, P.; Volmer, D.A. Analysis of Natural Organic Matter via Fourier Transform ion cyclotron resonance mass spectrometry: An overview of recent non-petroleum applications. Mass Spectrom. Rev. 2020. [Google Scholar] [CrossRef]
- Cho, Y.; Qi, Y.; O’Connor, P.B.; Barrow, M.P.; Kim, S. Application of phase correction to improve the interpretation of crude oil spectra obtained using 7 t fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom. 2014, 25, 154–157. [Google Scholar] [CrossRef]
- Srzić, D.; Martinović, S.; Paša Tolić, L.; Kezele, N.; Kazazić, S.; Senković, L.; Shevchenko, S.M.; Klasinc, L. Laser Desorption fourier transform mass spectrometry of natural polymers. Rapid Commun. Mass Spectrom. 1996, 10, 580–582. [Google Scholar] [CrossRef]
- Hertzog, J.; Carré, V.; Le Brech, Y.; Dufour, A.; Aubriet, F. Toward controlled ionization conditions for esi-ft-icr-ms analysis of bio-oils from lignocellulosic material. Energy Fuels 2016, 30, 5729–5739. [Google Scholar] [CrossRef]
- Miettinen, I.; Mäkinen, M.; Vilppo, T.; Jänis, J. Compositional characterization of phase-separated pine wood slow pyrolysis oil by negative-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2015, 29, 1758–1765. [Google Scholar] [CrossRef]
- Smith, E.A.; Park, S.; Klein, A.T.; Lee, Y.J. Bio-Oil Analysis Using Negative Electrospray Ionization: Comparative Study of High-Resolution Mass Spectrometers and Phenolic versus Sugaric Components. Energy Fuels 2012, 26, 3796–3802. [Google Scholar] [CrossRef] [Green Version]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Anikeenko, E.A.; Gorbova, N.S. negative ion mode atmospheric pressure ionization methods in lignin mass spectrometry: A comparative study. Rapid Commun. Mass Spectrom. 2016, 30, 2099–2108. [Google Scholar] [CrossRef]
- Feng, X.; Benitez-Nelson, B.C.; Montluçon, D.B.; Prahl, F.G.; McNichol, A.P.; Xu, L.; Repeta, D.J.; Eglinton, T.I. 14C and 13C characteristics of higher plant biomarkers in washington margin surface sediments. Geochim. Cosmochim. Acta 2013, 105, 14–30. [Google Scholar] [CrossRef] [Green Version]
- Hatcher, P.G. Dipolar-dephasing 13C NMR studies of decomposed wood and coalified xylem tissue: Evidence for chemical structural changes associated with defunctionalization of lignin structural units during coalification. Energy Fuels 1988, 2, 48–58. [Google Scholar] [CrossRef]
- Hatcher, P.G.; Breger, I.A.; Earl, W.L. Nuclear magnetic resonance studies of ancient buried wood—I. observations on the origin of coal to the brown coal stage. Org. Geochem. 1981, 3, 49–55. [Google Scholar] [CrossRef]
- Thevenot, M.; Dignac, M.-F.; Rumpel, C. Fate of lignins in soils: A review. Soil Biol. Biochem. 2010, 42, 1200–1211. [Google Scholar] [CrossRef]
- Feng, X.; Simpson, A.J.; Wilson, K.P.; Dudley Williams, D.; Simpson, M.J. Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci. 2008, 1, 836–839. [Google Scholar] [CrossRef]
- Qi, Y.; Hempelmann, R.; Volmer, D.A. Shedding light on the structures of lignin compounds: Photo-oxidation under artificial uv light and characterization by high resolution mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 8203–8210. [Google Scholar] [CrossRef]
- Opsahl, S.; Benner, R. Early Diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implications. Geochim. Cosmochim. Acta 1995, 59, 4889–4904. [Google Scholar] [CrossRef]
- Otto, A.; Simpson, M.J. Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from western Canada. Biogeochemistry 2005, 74, 377–409. [Google Scholar] [CrossRef]
- Barrow, M.P.; Witt, M.; Headley, J.V.; Peru, K.M. Athabasca Oil Sands Process Water: Characterization by atmospheric pressure photoionization and electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 2010, 82, 3727–3735. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Ando, D.; Watanabe, T. A Comparative study of matrix- and nano-assisted laser desorption/ionisation time-of-flight mass spectrometry of isolated and synthetic lignin. Phytochem. Anal. 2012, 23, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Richel, A.; Vanderghem, C.; Simon, M.; Wathelet, B.; Paquot, M. Evaluation of matrix-assisted laser desorption/ionization mass spectrometry for second-generation lignin analysis. Anal. Chem. Insights 2012, 7, ACI.S10799. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Volmer, D.A. Chemical diversity of lignin degradation products revealed by matrix-optimized maldi mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 6031–6037. [Google Scholar] [CrossRef]
- Kosyakov, D.S.; Ul’yanovskii, N.V.; Sorokina, E.A.; Gorbova, N.S. Optimization of sample preparation conditions in the study of lignin by maldi mass spectrometry. J. Anal. Chem. 2014, 69, 1344–1350. [Google Scholar] [CrossRef]
- Kosyakov, D.S.; Anikeenko, E.A.; Ul’yanovskii, N.V.; Khoroshev, O.Y.; Shavrina, I.S.; Gorbova, N.S. Ionic liquid matrices for maldi mass spectrometry of lignin. Anal. Bioanal. Chem. 2018, 410, 7429–7439. [Google Scholar] [CrossRef]
- Banoub, J.H.; Delmas, M. Structural Elucidation of the wheat straw lignin polymer by atmospheric pressure chemical ionization tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Mass Spectrom. 2003, 38, 900–903. [Google Scholar] [CrossRef] [PubMed]
- Banoub, J.H.; Benjelloun-Mlayah, B.; Ziarelli, F.; Joly, N.; Delmas, M. Elucidation of the complex molecular structure of wheat straw lignin polymer by atmospheric pressure photoionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 2867–2888. [Google Scholar] [CrossRef]
- Qi, Y.; Fu, P.; Li, S.; Ma, C.; Liu, C.; Volmer, D.A. Assessment of molecular diversity of lignin products by various ionization techniques and high-resolution mass spectrometry. Sci. Total Environ. 2020, 713, 136573. [Google Scholar]
- Hanson, S.K.; Baker, R.T.; Gordon, J.C.; Scott, B.L.; Thorn, D.L. Aerobic oxidation of lignin models using a base metal vanadium catalyst. Inorg. Chem. 2010, 49, 5611–5618. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, I.; Inoue, Y.; Muranaka, Y.; Yasukawa, T.; Mae, K. Selective production of organic acids and depolymerization of lignin by hydrothermal oxidation with diluted hydrogen peroxide. Energy Fuels 2011, 25, 791–796. [Google Scholar] [CrossRef]
- Qi, Y.; Volmer, D.A. Structural analysis of small to medium-sized molecules by mass spectrometry after electron-ion fragmentation (ExD) reactions. Analyst 2016, 141, 794–806. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Bortoli, S.; Volmer, D.A. Detailed study of cyanobacterial microcystins using high performance tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2014, 25, 1253–1262. [Google Scholar] [CrossRef]
- del Río, J.C.; Gutiérrez, A.; Romero, J.; Martínez, M.J.; Martínez, A.T. Identification of residual lignin markers in eucalypt kraft pulps by Py–GC/MS. J. Anal. Appl. Pyrolysis 2001, 58–59, 425–439. [Google Scholar]
- Ohra-aho, T.; Tenkanen, M.; Tamminen, T. Direct analysis of lignin and lignin-like components from softwood kraft pulp by Py-GC/MS techniques. J. Anal. Appl. Pyrolysis 2005, 74, 123–128. [Google Scholar] [CrossRef]
- Morreel, K.; Kim, H.; Lu, F.; Dima, O.; Akiyama, T.; Vanholme, R.; Niculaes, C.; Goeminne, G.; Inzé, D.; Messens, E.; et al. Mass spectrometry-based fragmentation as an identification tool in lignomics. Anal. Chem. 2010, 82, 8095–8105. [Google Scholar] [CrossRef] [Green Version]
- Owen, B.C.; Haupert, L.J.; Jarrell, T.M.; Marcum, C.L.; Parsell, T.H.; Abu-Omar, M.M.; Bozell, J.J.; Black, S.K.; Kenttämaa, H.I. High-performance liquid chromatography/high-resolution multiple stage tandem mass spectrometry using negative-ion-mode hydroxide-doped electrospray ionization for the characterization of lignin degradation products. Anal. Chem. 2012, 84, 6000–6007. [Google Scholar] [CrossRef]
- Banoub, J.; Delmas, G.-H.; Joly, N.; Mackenzie, G.; Cachet, N.; Benjelloun-Mlayah, B.; Delmas, M. A critique on the structural analysis of lignins and application of novel tandem mass spectrometric strategies to determine lignin sequencing. J. Mass Spectrom. 2015, 50, 5–48. [Google Scholar] [CrossRef]
- Haupert, L.J.; Owen, B.C.; Marcum, C.L.; Jarrell, T.M.; Pulliam, C.J.; Amundson, L.M.; Narra, P.; Aqueel, M.S.; Parsell, T.H.; Abu-Omar, M.M.; et al. Characterization of model compounds of processed lignin and the lignome by using atmospheric pressure ionization tandem mass spectrometry. Fuel 2012, 95, 634–641. [Google Scholar] [CrossRef]
- Sleno, L.; Volmer, D.A. Ion activation methods for tandem mass spectrometry. J. Mass Spectrom. 2004, 39, 1091–1112. [Google Scholar] [CrossRef] [PubMed]
- Jarrell, T.M.; Marcum, C.L.; Sheng, H.; Owen, B.C.; O’Lenick, C.J.; Maraun, H.; Bozell, J.J.; Kenttämaa, H.I. characterization of organosolv switchgrass lignin by using high performance liquid chromatography/high resolution tandem mass spectrometry using hydroxide-doped negative-ion mode electrospray ionization. Green Chem. 2014, 16, 2713–2727. [Google Scholar] [CrossRef]
- Zhu, H.; Max, J.P.; Marcum, C.L.; Luo, H.; Abu-Omar, M.M.; Kenttämaa, H.I. Identification of the phenol functionality in deprotonated monomeric and dimeric lignin degradation products via tandem mass spectrometry based on ion–molecule reactions with diethylmethoxyborane. J. Am. Soc. Mass Spectrom. 2016, 27, 1813–1823. [Google Scholar] [CrossRef]
- Marcum, C.L.; Jarrell, T.M.; Zhu, H.; Owen, B.C.; Haupert, L.J.; Easton, M.; Hosseinaei, O.; Bozell, J.; Nash, J.J.; Kenttämaa, H.I. A fundamental tandem mass spectrometry study of the collision-activated dissociation of small deprotonated molecules related to lignin. ChemSusChem 2016, 9, 3513–3526. [Google Scholar] [CrossRef]
- Sheng, H.; Tang, W.; Gao, J.; Riedeman, J.S.; Li, G.; Jarrell, T.M.; Hurt, M.R.; Yang, L.; Murria, P.; Ma, X.; et al. (−)ESI/CAD MSn Procedure for sequencing lignin oligomers based on a study of synthetic model compounds with β-O-4 and 5-5 linkages. Anal. Chem. 2017, 89, 13089–13096. [Google Scholar] [CrossRef] [PubMed]
- Kiyota, E.; Mazzafera, P.; Sawaya, A.C.H.F. Analysis of soluble lignin in sugarcane by ultrahigh performance liquid chromatography-tandem mass spectrometry with a do-it-yourself oligomer database. Anal. Chem. 2012, 84, 7015–7020. [Google Scholar] [CrossRef]
- Morreel, K.; Dima, O.; Kim, H.; Lu, F.; Niculaes, C.; Vanholme, R.; Dauwe, R.; Goeminne, G.; Inzé, D.; Messens, E.; et al. Mass spectrometry-based sequencing of lignin oligomers. Plant. Physiol. 2010, 153, 1464–1478. [Google Scholar] [CrossRef] [Green Version]
- Prothmann, J.; Spégel, P.; Sandahl, M.; Turner, C. Identification of lignin oligomers in kraft lignin using ultra-high-performance liquid chromatography/high-resolution multiple-stage tandem mass spectrometry (UHPLC/HRMSn). Anal. Bioanal. Chem. 2018, 410, 7803–7814. [Google Scholar] [CrossRef] [Green Version]
- Hughey, C.A.; Hendrickson, C.L.; Rodgers, R.P.; Marshall, A.G.; Qian, K. Kendrick mass defect spectrum: A compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal. Chem. 2001, 73, 4676–4681. [Google Scholar] [CrossRef]
- Kim, S.; Kramer, R.W.; Hatcher, P.G. Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van krevelen diagram. Anal. Chem. 2003, 75, 5336–5344. [Google Scholar] [CrossRef] [PubMed]
- Gougeon, R.D.; Lucio, M.; Frommberger, M.; Peyron, D.; Chassagne, D.; Alexandre, H.; Feuillat, F.; Voilley, A.; Cayot, P.; Gebefügi, I.; et al. The chemodiversity of wines can reveal a metabologeography expression of cooperage oak wood. Proc. Natl. Acad. Sci. USA 2009, 106, 9174–9179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, H.; Nakamura, S.; Teramoto, K.; Sato, T. Structural characterization of polymers by maldi spiral-tof mass spectrometry combined with kendrick mass defect analysis. J. Am. Soc. Mass Spectrom. 2014, 25, 1346–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, Y.; Volmer, D.A. Rapid mass spectral fingerprinting of complex mixtures of decomposed lignin: Data-processing methods for high-resolution full-scan mass spectra. Rapid Commun. Mass Spectrom. 2019, 33 (Suppl. S1), 2–10. [Google Scholar] [CrossRef]
- Qi, Y.; O’Connor, P.B. Data processing in fourier transform ion cyclotron resonance mass spectrometry. Mass Spectrom. Rev. 2014, 33, 333–352. [Google Scholar] [CrossRef] [PubMed]
- Dier, T.K.F.; Egele, K.; Fossog, V.; Hempelmann, R.; Volmer, D.A. Enhanced mass defect filtering to simplify and classify complex mixtures of lignin degradation products. Anal. Chem. 2016, 88, 1328–1335. [Google Scholar] [CrossRef]
- Qi, Y.; Hempelmann, R.; Volmer, D.A. Two-dimensional mass defect matrix plots for mapping genealogical links in mixtures of lignin depolymerisation products. Anal. Bioanal. Chem. 2016, 408, 4835–4843. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Luo, R.; Schrader, W.; Volmer, D.A. Application of phase correction to improve the characterization of photooxidation products of lignin using 7 tesla fourier-transform ion cyclotron resonance mass spectrometry. FACETS 2017, 2, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Terrell, E.; Carré, V.; Dufour, A.; Aubriet, F.; Le Brech, Y.; Garcia-Pérez, M. Contributions to lignomics: Stochastic generation of oligomeric lignin structures for interpretation of maldi–ft-icr-ms results. ChemSusChem 2020. [Google Scholar] [CrossRef]
- Hedges, J.I.; Ertel, J.R.; Leopold, E.B. lignin geochemistry of a late quaternary sediment core from lake washington. Geochim. Cosmochim. Acta 1982, 46, 1869–1877. [Google Scholar] [CrossRef]
- Hedges, J.I.; Mann, D.C. The lignin geochemistry of marine sediments from the southern washington Coast. Geochim. Cosmochim. Acta 1979, 43, 1809–1818. [Google Scholar] [CrossRef]
- Hedges, J.I.; Ertel, J.R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal. Chem. 1982, 54, 174–178. [Google Scholar] [CrossRef]
- Goñi, M.A.; Hedges, J.I. Lignin dimers: Structures, distribution, and potential geochemical applications. Geochim. Cosmochim. Acta 1992, 56, 4025–4043. [Google Scholar] [CrossRef]
- Ma, T.; Zhu, S.; Wang, Z.; Chen, D.; Dai, G.; Feng, B.; Su, X.; Hu, H.; Li, K.; Han, W.; et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat. Commun. 2018, 9, 3480. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Feakins, S.J.; Liu, Z.; Ponton, C.; Wang, R.Z.; Karkabi, E.; Galy, V.; Berelson, W.M.; Nottingham, A.T.; Meir, P.; et al. Source to sink: Evolution of lignin composition in the madre de dios river system with connection to the amazon basin and offshore. J. Geophys. Res. Biogeosci. 2016, 121, 1316–1338. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Li, Q.; Chiang, V.L.; Lucia, L.A.; Griffis, D.P. Chemical and spatial differentiation of syringyl and guaiacyl lignins in poplar wood via time-of-flight secondary ion mass spectrometry. Anal. Chem. 2011, 83, 7020–7026. [Google Scholar] [CrossRef]
- Jung, S.; Foston, M.; Kalluri, U.C.; Tuskan, G.A.; Ragauskas, A.J. 3D chemical image using tof-sims revealing the biopolymer component spatial and lateral distributions in biomass. Angew. Chem. Int. Ed. 2012, 51, 12005–12008. [Google Scholar] [CrossRef]
- Saito, K.; Watanabe, Y.; Shirakawa, M.; Matsushita, Y.; Imai, T.; Koike, T.; Sano, Y.; Funada, R.; Fukazawa, K.; Fukushima, K. Direct mapping of morphological distribution of syringyl and guaiacyl lignin in the xylem of maple by time-of-flight secondary ion mass spectrometry. Plant J. 2012, 69, 542–552. [Google Scholar] [CrossRef]
- Araújo, P.; Ferreira, M.S.; de Oliveira, D.N.; Pereira, L.; Sawaya, A.C.H.F.; Catharino, R.R.; Mazzafera, P. Mass spectrometry imaging: An expeditious and powerful technique for fast in situ lignin assessment in eucalyptus. Anal. Chem. 2014, 86, 3415–3419. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Qi, Y.; Ma, C.; Ge, J.; Hu, Q.; Yue, F.-J.; Li, S.-L.; Volmer, D.A. Characterization of Lignin Compounds at the Molecular Level: Mass Spectrometry Analysis and Raw Data Processing. Molecules 2021, 26, 178. https://doi.org/10.3390/molecules26010178
Zhang R, Qi Y, Ma C, Ge J, Hu Q, Yue F-J, Li S-L, Volmer DA. Characterization of Lignin Compounds at the Molecular Level: Mass Spectrometry Analysis and Raw Data Processing. Molecules. 2021; 26(1):178. https://doi.org/10.3390/molecules26010178
Chicago/Turabian StyleZhang, Ruochun, Yulin Qi, Chao Ma, Jinfeng Ge, Qiaozhuan Hu, Fu-Jun Yue, Si-Liang Li, and Dietrich A. Volmer. 2021. "Characterization of Lignin Compounds at the Molecular Level: Mass Spectrometry Analysis and Raw Data Processing" Molecules 26, no. 1: 178. https://doi.org/10.3390/molecules26010178
APA StyleZhang, R., Qi, Y., Ma, C., Ge, J., Hu, Q., Yue, F. -J., Li, S. -L., & Volmer, D. A. (2021). Characterization of Lignin Compounds at the Molecular Level: Mass Spectrometry Analysis and Raw Data Processing. Molecules, 26(1), 178. https://doi.org/10.3390/molecules26010178