Application of HPLC-DAD for In Vitro Investigation of Acetylcholinesterase Inhibition Activity of Selected Isoquinoline Alkaloids from Sanguinaria canadensis Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Alkaloid Contents in Plant Extracts
2.2. Determination of Acetylcholinesterase Inhibition Activity of Alkaloid Standards
2.3. Determination of Acetylcholinesterase Inhibition Activity Synergy of Pairs of Alkaloid Standards
2.4. Determination of Acetylcholinesterase Inhibition Activity of Plant Extracts
3. Experimental
3.1. Apparatus and HPLC Conditions
3.2. Chemicals and Plant Materials
3.3. Extraction Procedure
3.4. Determination of Acetylcholinesterase Inhibitory Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, J.; Zhang, C.; Xu, F.-C.; Zhang, Q.-Y.; Tu, P.-F.; Liang, H. Cholinesterase inhibitory isoquinoline alkaloids from Corydalis mucronifera. Phytochemistry 2019, 159, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Pagliosa, L.B.; Monteiro, S.C.; Silva, K.B.; de Andrade, J.P.; Dutilh, J.; Bastida, J.; Cammarota, M.; Zuanazzi, J.A.S. Effect of isoquinoline alkaloids from two Hippeastrum species on in vitro acetylcholinesterase activity. Phytomedicine 2010, 17, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Marucci, G.; Buccioni, M.; Dal Ben, D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2020, in press. [Google Scholar] [CrossRef]
- Abeysinghe, A.A.D.T.; Deshapriya, R.D.U.S.; Udawatte, C. Alzheimer’s disease; a review of the pathophysiological basis and therapeutic interventions. Life Sci. 2020, 256, 117996. [Google Scholar] [CrossRef] [PubMed]
- Cassiano, D.S.A.; Reis, I.M.A.; de Oliveira Estrela, I.; de Freitas, H.F.; da Rocha Pita, S.S.; David, J.M.; Branco, A. Acetylcholinesterase inhibitory activities and bioguided fractionation of the Ocotea percoriacea extracts: HPLC-DAD-MS/MS characterization and molecular modeling of their alkaloids in the active fraction. Comput. Biol. Chem. 2019, 83, 107129. [Google Scholar] [CrossRef]
- Ka, S.; Masi, M.; Merindol, N.; Di Lecce, R.; Plourde, M.B.; Seck, M.; Górecki, M.; Pescitelli, G.; Desgagne-Penix, I.; Evidente, A. Gigantelline, gigantellinine and gigancrinine, cherylline- and crinine-type alkaloids isolated from Crinum jagus with anti-acetylcholinesterase activity. Phytochemistry 2020, 175, 112390. [Google Scholar] [CrossRef]
- Hulcová, D.; Maříková, J.; Korábečný, J.; Hošťálková, A.; Jund, D.; Kuneš, J.; Chlebek, J.; Opletal, L.; De Simone, A.; Nováková, L.; et al. Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer’s disease. Phytochemistry 2019, 165, 112055. [Google Scholar] [CrossRef]
- Wan Othman, W.N.N.; Liew, S.Y.; Khaw, K.Y.; Murugaiyah, V.; Litaudon, M.; Awang, K. Cholinesterase inhibitory activity of isoquinoline alkaloids from three Cryptocarya species (Lauraceae). Bioorg. Med. Chem. 2016, 24, 4464–4469. [Google Scholar] [CrossRef]
- Pereira, D.M.; Ferreres, F.; Oliveira, J.M.A.; Gaspar, L.; Faria, J.; Valentao, P.; Sottomayor, M.; Andrade, P.B. Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine 2010, 17, 646–652. [Google Scholar] [CrossRef]
- Wan Othman, W.N.N.; Sivasothy, Y.; Liewa, S.Y.; Mohamad, J.; Nafiah, M.A.; Ahmad, K.; Litaudon, M.; Awang, K. Alkaloids from Cryptocarya densiflora Blume (Lauraceae) and their cholinesterase inhibitory activity. Phytochem. Lett. 2017, 21, 230–236. [Google Scholar] [CrossRef]
- Zhan, G.; Miao, R.; Zhang, F.; Hao, X.; Zheng, X.; Zhang, H.; Zhang, X.; Guo, Z. Monoterpene indole alkaloids with diverse skeletons from the stems of Rauvolfia vomitoria and their acetylcholinesterase inhibitory activities. Phytochemistry 2020, 177, 112450. [Google Scholar] [CrossRef]
- Zhu, Y.-Y.; Li, X.; Yu, H.-Y.; Xiong, Y.-F.; Zhang, P.; Pi, H.-F.; Ruan, H.-L. Alkaloids from the bulbs of Lycoris longituba and their neuroprotective and acetylcholinesterase inhibitory activities. Arch. Pharm. Res. 2015, 38, 604–613. [Google Scholar] [CrossRef]
- Formagio, A.S.N.; Volobuff, C.R.F.; Kassuya, C.A.L.; Cardoso, C.A.L.; Vieira, M.; Pereira, Z.V.; Bagatin, M.C.; de Freitas Gauze, G. Psychotria leiocarpa Extract and Vincosamide Reduce Chemically-Induced Inflammation in Mice and Inhibit the Acetylcholinesterase Activity. Inflammation 2019, 42, 1561–1574. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-D.; Li, X.-N.; Peng, L.-Y.; Zhao, Q.-S. Huperserratines A and B, Two Macrocyclic Lycopodium Alkaloids with an Unusual Skeleton from Huperzia serrate. J. Org. Chem. 2020, 85, 6803–6807. [Google Scholar] [CrossRef] [PubMed]
- Klein-Júnior, L.C.; Cretton, S.; Heyden, Y.V.; Gasper, A.L.; Nejad-Ebrahimi, S.; Christen, P.; Henriques, A.T. Bioactive Azepine-Indole Alkaloids from Psychotria nemorosa. J. Nat. Prod. 2020, 83, 852–863. [Google Scholar] [CrossRef]
- Guo, Q.; Si, X.; Shi, Y.; Yang, H.; Liu, X.; Liang, H.; Tu, P.; Zhang, Q. Glucoconjugated Monoterpene Indole Alkaloids from Uncaria rhynchophylla. J. Nat. Prod. 2019, 82, 3288–3301. [Google Scholar] [CrossRef] [PubMed]
- Hostalkova, A.; Marikova, J.; Opletal, L.; Korabecny, J.; Hulcova, D.; Kunes, J.; Novakova, L.; Perez, D.I.; Jun, D.; Kucera, T.; et al. Isoquinoline Alkaloids from Berberis vulgaris as Potential Lead Compounds for the Treatment of Alzheimer’s Disease. J. Nat. Prod. 2019, 82, 239–248. [Google Scholar] [CrossRef]
- Yeap, J.S.-Y.; Lim, K.-H.; Yong, K.-T.; Lim, S.-H.; Kam, T.-S.; Low, Y.-Y. Lycopodium Alkaloids: Lycoplatyrine A, an Unusual Lycodine–Piperidine Adduct from Lycopodium platyrhizoma and the Absolute Configurations of Lycoplanine D and Lycogladine H. J. Nat. Prod. 2019, 82, 324–329. [Google Scholar] [CrossRef]
- Hirasawa, Y.; Mitsui, C.; Uchiyama, N.; Hakamatsuka, T.; Morita, H. Hupercumines A and B, Lycopodium Alkaloids from Huperzia cunninghamioides, Inhibiting Acetylcholinesterase. Org. Lett. 2018, 20, 1384–1387. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Q.-Y.; Tu, P.-F.; Xu, F.-C.; Liang, H. Mucroniferanines A–G, Isoquinoline Alkaloids from Corydalis mucronifera. J. Nat. Prod. 2018, 81, 364–370. [Google Scholar] [CrossRef]
- Klein-Júnior, L.C.; Cretton, S.; Allard, P.-M.; Genta-Jouve, G.; Passos, C.S.; Salton, J.; Bertelli, P.; Pupier, M.; Jeannerat, D.; Heyden, Y.V.; et al. Targeted Isolation of Monoterpene Indole Alkaloids from Palicourea sessilis. J. Nat. Prod. 2017, 80, 3032–3037. [Google Scholar] [CrossRef] [PubMed]
- Zhan, G.; Zhou, J.; Liu, R.; Liu, T.; Guo, G.; Wang, J.; Xiang, M.; Xue, Y.; Luo, Z.; Zhang, Y.; et al. Galanthamine, Plicamine, and Secoplicamine Alkaloids from Zephyranthes candida and Their Anti-acetylcholinesterase and Antiinflammatory Activities. J. Nat. Prod. 2016, 79, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Konrath, E.L.; dos Santos Passos, C.; Klein-Júnior, L.C.; Henriques, A.T. Alkaloids as a source of potential anticholinesterase inhibitors for the treatment of Alzheimer’s disease. J. Pharm. Pharmacol. 2013, 65, 1701–1725. [Google Scholar] [CrossRef] [PubMed]
- Coelho dos Santos, T.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Antonio de Andrade Paes, M. Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer’s Disease. Therapy. Front. Pharmacol. 2018, 9, 1192. [Google Scholar] [CrossRef] [Green Version]
- Perera, M.A.D.N.; Robinson, J.R.; Shearn, C.T.; Noble, T.M.; Hallam, J.E.; Kohut, M.L.; Senchina, D.S. Effects of bloodroot (Sanguinaria canadensis L.) rhizome ethanol extracts on cytokine production by blood mononuclear cells during flowering and fruiting. J. Herb. Med. 2014, 4, 18–23. [Google Scholar] [CrossRef]
- Pytel, E.; Bukowska, B.; Koter-Michalak, M.; Olszewska-Banaszczyk, M.; Gorzelak-Pabiś, P.; Broncel, M. Effect of intensive lipid-lowering therapies on cholinesterase activity in patients with coronary artery disease. Pharmacol. Rep. 2017, 69, 150–155. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Q.; Chen, M.; Huang, X.; Chen, X. Large-scale separation of acetylcholinesterase inhibitors from Zanthoxylum nitidum by pH-zone-refining counter-current chromatography target-guided by ultrafiltration high-performance liquid chromatography with ultraviolet and mass spectrometry screening. J. Sep. Sci. 2019, 42, 1194–1201. [Google Scholar] [CrossRef]
- Adedayo, B.C.; Oyeleye, S.I.; Okeke, B.M.; Oboh, G. Anti-cholinesterase and antioxidant properties of alkaloid and phenolic-rich extracts from pawpaw (Carica papaya) leaf: A comparative study. Flavour Fragr. J. 2020, in press. [Google Scholar] [CrossRef]
- Zhu, X.; Xia, D.; Zhou, Z.; Xie, S.; Shi, Z.; Chen, G.; Wang, L.; Pan, K. Lycosquarrines A–R, Lycopodium Alkaloids from Phlegmariurus squarrosus. J. Nat. Prod. 2020, 83, 2831–2843. [Google Scholar] [CrossRef]
- Hong, W.; Zhang, Y.; Yang, J.; Xia, M.-Y.; Luo, J.-F.; Li, X.-N.; Wang, Y.-H.; Wang, J.-S. Alkaloids from the Branches and Leaves of Elaeocarpus angustifolius. J. Nat. Prod. 2019, 82, 3221–3226. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Ramallo, I.A.; Salazar, M.O.; Furlan, R.L.E. Thin layer chromatography-autography-high resolution mass spectrometry analysis: Accelerating the identification of acetylcholinesterase inhibitors. Phytochem. Anal. 2015, 26, 404–412. [Google Scholar] [CrossRef]
- Galarce-Bustos, O.; Pavón, J.; Henríquez-Aedo, K.; Aranda, M. Detection and identification of acetylcholinesterase inhibitors in Annona cherimola Mill. by effect-directed analysis using thin layer chromatography-bioassay-mass spectrometry. Phytochem. Anal. 2019, 30, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-Y.; Liang, Q.; Chen, H.-G.; Zhou, X. Establishment of an HPLC method for testing acetylcholinesterase inhibitory activity and compared with traditional spectrophotometry. Chem. Pap. 2018, 72, 2255–2264. [Google Scholar] [CrossRef]
- Petruczynik, A.; Misiurek, J.; Tuzimski, T.; Waksmundzka-Hajnos, M. Application of mobile phases containing ionic liquid for HPLC analysis of selected isoquinoline alkaloids. J. AOAC Int. 2017, 100, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Petruczynik, A.; Plech, T.; Tuzimski, T.; Misiurek, J.; Kaproń, B.; Misiurek, D.; Szultka-Młyńska, M.; Buszewski, B.; Waksmundzka-Hajnos, M. Determination of Selected Isoquinoline Alkaloids from Mahonia aquifolia; Meconopsis cambrica; Corydalis lutea; Dicentra spectabilis; Fumaria offcinalis; Macleaya cordata Extracts by HPLC-DAD and Comparison of Their Cytotoxic Activity. Toxins 2019, 11, 575. [Google Scholar] [CrossRef] [Green Version]
Alkaloid | Contents of Alkaloids in Plant Extracts Obtained from Sanguinaria canadensis mg/g of Dry Plant Material | Contents of Alkaloids in Plant Extracts Obtained from Sanguinaria canadensis µg/mg of Dry Plant Extract | |||||
---|---|---|---|---|---|---|---|
tR | Before Flowering | During flowering | After Flowering | Before Flowering | During Flowering | After Flowering | |
Berberine (Be) | 35.48 | 0.0058 (±0.0003) | 0.0125 (±0.0010) | 0.0091 (±0.0007) | 0.46 | 0.80 | 0.61 |
Chelerythrine (Cr) | 42.57 | 2.7224 (±0.0897) | 5.3470 (±0.2018) | 6.8722 (±0.1867) | 216.41 | 341.88 | 459.68 |
Chelidonine (Chld) | 19.33 | - | <LOQ | - | - | <LOQ | - |
Protopine (Pr) | 14.18 | <LOQ | 0.0141 (±0.0008) | 0.1075 (±0.009) | <LOQ | 0.90 | 7.19 |
Sanguinarine (S) | 36.82 | 4.8543 (±0.1207) | 9.5899 (±0.2302) | 6.9195 (±0.1624) | 385.87 | 613.16 | 462.84 |
Alkaloid | Concentration of Acetylcholinesterase 0.2 U/mL | |
---|---|---|
IC50 (µg/mL) | IC50 (µM) | |
Berberine | 0.36 (±0.03) | 1.06 |
Chelerythrie | 0.25 (±0.02) | 0.72 |
Chelidonine | 9.53 (±0.43) | 26.97 |
Protopine | 23.13 (±0.91) | 69.81 |
Sanguinarie | 1.85 (±0.12) | 5.57 |
Sanguinaria canadensis Extracts | ||
Before flowering | 89.14 (±4.03) | - |
During flowering | 61.24 (±3.12) | - |
After flowering | 64.12 (±3.34) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuzimski, T.; Petruczynik, A. Application of HPLC-DAD for In Vitro Investigation of Acetylcholinesterase Inhibition Activity of Selected Isoquinoline Alkaloids from Sanguinaria canadensis Extracts. Molecules 2021, 26, 230. https://doi.org/10.3390/molecules26010230
Tuzimski T, Petruczynik A. Application of HPLC-DAD for In Vitro Investigation of Acetylcholinesterase Inhibition Activity of Selected Isoquinoline Alkaloids from Sanguinaria canadensis Extracts. Molecules. 2021; 26(1):230. https://doi.org/10.3390/molecules26010230
Chicago/Turabian StyleTuzimski, Tomasz, and Anna Petruczynik. 2021. "Application of HPLC-DAD for In Vitro Investigation of Acetylcholinesterase Inhibition Activity of Selected Isoquinoline Alkaloids from Sanguinaria canadensis Extracts" Molecules 26, no. 1: 230. https://doi.org/10.3390/molecules26010230
APA StyleTuzimski, T., & Petruczynik, A. (2021). Application of HPLC-DAD for In Vitro Investigation of Acetylcholinesterase Inhibition Activity of Selected Isoquinoline Alkaloids from Sanguinaria canadensis Extracts. Molecules, 26(1), 230. https://doi.org/10.3390/molecules26010230