Determination of Cytotoxic Activity of Selected Isoquinoline Alkaloids and Plant Extracts Obtained from Various Parts of Mahonia aquifolium Collected in Various Vegetation Seasons
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC-DAD and LC-MS/MS Analysis of Plant Extracts
2.2. Investigation of In Vitro Anticancer Activity of Isoquinoline Alkaloid Standards
2.3. Investigation of In Vitro Anticancer Activity of Plant Extracts
2.4. Correlation of Alkaloid Contents with Cytotoxic Activity of M. aquifolium Extracts
3. Experimental
3.1. Chemicals and Plant Materials
3.2. Apparatus and HPLC Conditions
3.2.1. HPLC-DAD
3.2.2. HPLC-MS/MS
3.3. Extraction Procedure
3.4. Investigation of Cytotoxic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Godevac, D.; Damjanovic, A.; Stanojkovic, T.P.; Andelkovic, B.; Zdunic, G. Identification of cytotoxic metabolites from Mahonia aquifolium using 1H NMR-based metabolomics approach. J. Pharm. Biomed. Anal. 2018, 150, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Hu, J.; Wang, X.; Tian, J.; Komatsu, S. Organ-Specific Analysis of Mahonia Using Gel-Free/Label-Free Proteomic Technique. J. Proteome Res. 2015, 14, 2669–2685. [Google Scholar] [CrossRef]
- Latha, R.; Rajanathan, T.M.C.; Khusro, A.; Chidambaranathan, N.; Agastian, P.; Nagarajan, S. Anticancer activity of Mahonia leschenaultii methanolic root extract and berberine on Dalton’s ascitic lymphoma in mice. Asian Pac. J. Trop. Med. 2019, 12, 264–271. [Google Scholar] [CrossRef]
- Mortazavi, H.; Nikfar, B.; Esmaeili, S.-A.; Rafieenia, F.; Saburi, E.; Chaichian, S.; Gorji, M.A.H.; Momtazi-Borojeni, A.A. Potential cytotoxic and anti-metastatic effects of berberine on gynaecological cancers with drug-associated resistance. Eur. J. Med. Chem. 2020, 187, 111951. [Google Scholar] [CrossRef]
- Oliveira, P.M.; Lopes, T.Z.; Tedesco, A.C.; Rahal, P.; Calmon, M.F. Effect of berberine associated with photodynamic therapy in cell lines. Photodiagnosis Photodyn. Ther. 2020, 32, 102045. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, X.; Cao, S.; Sun, Y.; He, X.; Jiang, B.; Yu, Y.; Duan, J.; Qiu, F.; Kang, N. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed. Pharmacother. 2020, 128, 110245. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, Y.; Yu, M.; Wang, B.; Xu, S.; Zhang, J.; Li, X.; Ye, X. In-vitro and in-vivo anti-breast cancer activity of synergistic effect of berberine and exercise through promoting the apoptosis and immunomodulatory effects. Int. Immunopharmacol. 2020, 87, 106787. [Google Scholar] [CrossRef] [PubMed]
- Tong, M.; Liu, H.; Hao, J.; Fan, D. Comparative pharmacoproteomics reveals potential targets for berberine, a promising therapy for colorectal cancer. Biochem. Biophys. Res. Commun. 2020, 525, 244–250. [Google Scholar] [CrossRef]
- Ren, K.; Zhang, W.; Wu, G.; Ren, J.; Lu, H.; Li, Z.; Han, X. Synergistic anti-cancer effects of galangin and berberine through apoptosis induction and proliferation inhibition in oesophageal carcinoma cells. Biomed. Pharmacother. 2016, 84, 1748–1759. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.Y.; Cho, H.-J. Berberine and zinc oxide-based nanoparticles for the chemophotothermal therapy of lung adenocarcinoma. Biochem. Biophys. Res. Commun. 2018, 501, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhu, Z.; Liu, Y.; Wei, L.; Li, B.; Mao, F.; Zhang, J.; Wang, Y.; Liu, Y. MDM2 inhibition-mediated autophagy contributes to the pro-apoptotic effect of berberine in p53-null leukemic cells. Life Sci. 2020, 242, 117228. [Google Scholar] [CrossRef] [PubMed]
- Kou, Y.; Li, L.; Li, H.; Tan, Y.; Li, B.; Wang, K.; Du, B. Berberine suppressed epithelial mesenchymal transition throughcross-talk regulation of PI3K/AKT and RARa/RARbin melanoma cells. Biochem. Biophys. Res. Commun. 2016, 479, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, A.; Tabasum, S.; Singh, R.P. Berberine in combination with doxorubicin suppresses growth ofmurine melanoma B16F10 cells in culture and xenograft. Phytomedicine 2014, 21, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Ren, M.; Yang, L.; Li, D.; Yang, L.; Su, Y.; Su, X. Cell Cycle Regulation by Berberine in Human Melanoma A375 Cells. Bull. Exp. Biol. Med. 2020, 169, 491–496. [Google Scholar] [CrossRef]
- Liu, J.-F.; Lai, K.C.; Peng, S.-F.; Maraming, P.; Huang, Y.-P.; Huang, A.-C.; Chueh, F.-S.; Huang, W.-W.; Chung, J.-G. Berberine Inhibits Human Melanoma A375.S2 Cell Migration and Invasion via Affecting the FAK, uPA, and NF-κB Signaling Pathways and Inhibits PLX4032 Resistant A375.S2 Cell Migration In Vitro. Molecules 2018, 23, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Li, J.; Ma, F.; Yao, S.; Li, N.; Wang, J.; Wang, Y.; Wang, X.; Yao, Q. Synthesis and Cytotoxicity Evaluation of 13-n-Alkyl Berberine and Palmatine Analogues as Anticancer Agents. Molecules 2012, 17, 11294–11302. [Google Scholar] [CrossRef]
- Costa, E.V.; da Cruz, P.E.O.; Pinheiro, M.L.B.; Marques, F.A.; Ruiz, A.L.T.G.; Marchetti, G.M.; de Carvalho, J.E.; Barison, A.; Maia, B.H.L.N.S. Aporphine and tetrahydroprotoberberine alkaloids from the leaves of Guatteria friesiana (Annonaceae) and their cytotoxic activities. J. Braz. Chem. Soc. 2013, 24, 788–796. [Google Scholar] [CrossRef]
- Okon, E.; Kukula-Koch, W.; Halasa, M.; Jarzab, A.; Baran, M.; Dmoszynska-Graniczka, M.; Angelis, A.; Kalpoutzakis, E.; Guz, M.; Stepulak, A.; et al. Magnoflorine—Isolation and the Anticancer Potential against NCI-H1299 Lung, MDA-MB-468 Breast, T98G Glioma, and TE671 Rhabdomyosarcoma Cancer Cells. Biomolecules 2020, 10, 1532. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, T.; Yin, G.; Wang, J.; Jiang, K.; Tu, J. High-performance liquid chromatography–based fingerprint analysis with chemical pattern recognition for evaluation of Mahonia bealei (Fort.) Carr. J. Sep. Sci. 2020, 43, 3625–3635. [Google Scholar] [CrossRef]
- Singh, A.; Bajpai, V.; Kumar, S.; Rawat, A.K.S.; Kumar, B. Analysis of isoquinoline alkaloids from Mahonia leschenaultia and Mahonia napaulensis roots using UHPLC-Orbitrap-MSn and UHPLC-QqQLIT-MS/MS. J. Pharm. Anal. 2017, 7, 77–86. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, T.; Wang, J.; Yin, G.; Tu, J. Ligand fishing and identification of acetylcholinesterase inhibitors in Mahonia bealei (Fort.) Carr. using high performance liquid chromatography-mass spectrometry. J. Liq. Chromatogr. 2020, 43, 538–546. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Guo, X.; Zhao, M.; Tu, P.; Jiang, Y. A series of strategies for solving the shortage of reference standardsfor multi-components determination of traditional Chinese medicine, Mahoniae Caulis as a case. J. Chromatogr. A 2015, 1412, 100–111. [Google Scholar] [CrossRef]
- Dabrowski, D.; Lech, K.; Jarosz, M. Capillary-HPLC with tandem mass spectrometry in analysis of alkaloid dyestuffs—A new approach. Electrophoresis 2018, 39, 1276–1283. [Google Scholar] [CrossRef]
- Rezadoost, M.H.; Kumleh, H.H.; Ghasempour, A. Cytotoxicity and apoptosis induction in breast cancer, skin cancer and glioblastoma cells by plant extracts. Mol. Biol. Rep. 2019, 46, 5131–5142. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Yu, L.; Wang, M.H. Antioxidant and antiproliferative properties of water extract from Mahonia bealei (Fort.) Carr. leaves. Food. Chem. Toxicol. 2011, 49, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.-S.; Hsiao, Y.-C.; Lin, T.-W.; Chen, K.-S.; Chen, P.-N.; Kuo, W.-H.; Chu, S.-C.; Hsieh, Y.-S. The in vitro and in vivo apoptotic effects of Mahonia oiwakensis on human lung cancer cells. Chem.-Biol. Interact. 2009, 180, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Petruczynik, A.; Misiurek, J.; Tuzimski, T.; Waksmundzka-Hajnos, M. Application of mobile phases containing ionic liquid for HPLC analysis of selected isoquinoline alkaloids. J. AOAC Int. 2017, 100, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.J.; Byungjoo, K.; Jongki, H. General fragmentations of alkaloids in electrospray ionization tandem mass spectrometry. Mass Spectrometry Lett. 2013, 4, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Petruczynik, A.; Plech, T.; Tuzimski, T.; Misiurek, J.; Kapron, B.; Misiurek, D.; Szultka-Młynska, M.; Buszewski, B.; Waksmundzka-Hajnos, M. Determination of Selected Isoquinoline Alkaloids from Mahonia aquifolia; Meconopsis cambrica; Corydalis lutea; Dicentra spectabilis; Fumaria officinalis; Macleaya cordata Extracts by HPLC-DAD and Comparison of Their Cytotoxic Activity. Toxins 2019, 11, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakashima, S.; Matsuda, H.; Oda, Y.; Nakamura, S.; Xu, F.; Yoshikawa, M. Melanogenesis inhibitors from the desert plant Anastatica hierochuntica in B16 melanoma cell. Bioorg. Med. Chem. 2010, 18, 2337–2345. [Google Scholar] [CrossRef] [PubMed]
- Han, E.B.; Chang, B.Y.; Kim, D.S.; Cho, H.K.; Kim, S.Y. Melanogenesis inhibitory effect of aerial part of Pueraria thunbergiana in vitro and in vivo. Arch. Dermatol. Res. 2015, 307, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Snene, A.; Sirignano, C.; Rigano, D.; Formisano, C.; El Mokni, R.; Ercolano, G.; Dhaouadi, H.; Ianaro, A.; Hammami, S.; Taglialatela-Scafati, O. Antiproliferative metabolites from the Northern African endemic plant Daucus virgatus (Apiaceae). Phytochemistry 2017, 143, 194–198. [Google Scholar] [CrossRef]
- Rosales, P.F.; Marinho, F.F.; Gower, A.; Chiarello, M.; Canci, B.; Roesch-Ely, M.; Paula, F.R.; Moura, S. Bio-guided search of active indole alkaloids from Tabernaemontana catharinensis: Antitumour activity, toxicity in silico and molecular modelling studies. Bioorg. Chem. 2019, 85, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Munari, C.C.; de Oliveira, P.F.; Campos, J.C.L.; Martins, S.P.L.; Da Costa, J.C.; Bastos, J.K.; Tavares, D.C. Antiproliferative activity of Solanum lycocarpum alkaloidic extract and their constituents, solamargine and solasonine, in tumor cell lines. J. Nat. Med. 2014, 68, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Netala, V.R.; Bukke, S.; Domdi, L.; Soneya, S.; Reddy, S.G.; Bethu, M.S.; Kotakdi, V.S.; Saritha, K.V.; Tartte, V. Biogenesis of silver nanoparticles using leaf extract of Indigofera hirsuta L. and their potential biomedical applications (3-in-1 system). Artif. Cells Nanomed. Biotechnol. 2018, 46, S1138–S1148. [Google Scholar] [CrossRef] [Green Version]
- Berkov, S.; Bastida, J.; Sidjimova, B.; Viladomata, F.; Codina, C. Phytochemical differentiation ofGalanthus nivalis and Galanthus elwesii (Amaryllidaceae): A case study. Biochem. Syste. Ecol. 2008, 36, 638–645. [Google Scholar] [CrossRef]
- Petruczynik, A.; Misiurek, J.; Tuzimski, T.; Uszyński, R.; Szymczak, G.; Chernetskyy, M.; Waksmundzka- Hajnos, M. Comparison of different HPLC systems for analysis of galantamine and lycorine in various species of Amaryllidaceae family. J. Liq. Chromatogr. 2016, 39, 574–579. [Google Scholar] [CrossRef]
Alkaloid | tR | Equation of Calibration Curve | r | LOD [mg/mL] | LOQ [mg/mL] |
---|---|---|---|---|---|
Berberine | 32.95 | y = 70,984,852x − 3,300,769 | 0.9990 | 0.0128 | 0.0422 |
Magnoflorine | 4.42 | y = 25,635,805x − 251,782 | 0.9998 | 0.0039 | 0.0120 |
Palmatine | 28.55 | y = 52,900,150x + 732,112 | 0.9982 | 0.0009 | 0.0028 |
Alkaloid | Contents of Alkaloids in Plant Extracts Obtained from Different Parts of Mahonia aquifolium Collected in Various Vegetation Seasons (mg/g of Dry Plant Material) | ||
---|---|---|---|
Before Flowering | During Flowering | After Flowering | |
Cortex | |||
Berberine | 0.133 * | 3.313 | 0.066 |
Magnoflorine | 0.086 * | - | 0.099 |
Palmatine | 0.036 * | 0.790 | 0.789 |
Leaves | |||
Berberine | - | 0.0217 | <LOQ |
Magnoflorine | 0.322 * | 0.2342 | 0.317 |
Palmatine | - | <LOQ | - |
Barked stalk | |||
Berberine | ● | 0.436 | 0.043 |
Magnoflorine | ● | - | 0.188 |
Palmatine | ● | 0.065 | 0.339 |
Roots | |||
Berberine | ● | 7.036 | 0.0074 |
Magnoflorine | ● | - | - |
Palmatine | ● | 0.620 | 0.299 |
Fruit | |||
Berberine | ● | ● | <LOQ |
Magnoflorine | ● | ● | - |
Palmatine | ● | ● | - |
IC50 (µg/mL) | |||
---|---|---|---|
A375 | G361 | SK-MEL-3 | |
Mahonia aquifolium root | 34.13 ± 0.41 | 5.56 ± 1.07 | 10.53 ± 0.12 |
Mahonia aquifolium cortex | 51.66 ± 1.61 | 4.78 ± 0.78 | 16.80 ± 0.26 |
Mahonia aquifolium leaves | >200 | 15.55 ± 2.04 | 11.50 ± 0.75 |
Mahonia aquifolium barked stalk | 69.67 ± 1.66 | 14.49 ± 1.76 | 41.66 ± 0.89 |
Berberine | 52.73 ± 5.63 | 21.25 ± 3.25 | 40.94 ± 5.42 |
Magnoflorine | >200 | >200 | >200 |
Palmatine | >200 | 119.98 ± 10.44 | 88.04 ± 7.16 |
Cell Line | Berberine | Palmatine | Berberine and Palmatine | |||
---|---|---|---|---|---|---|
Equation | r | Equation | r | Equation | r | |
A375 | y = −5.35x + 71.06 | 0.9966 | y = −34.55x + 68.81 | 0.7372 | y = −4.97x + 72.12 | 1.0000 |
G361 | y = −1.52x + 14.286 | 0.8490 | y = −14.06x + 15.19 | 0.9882 | y = −1.42x + 14.45 | 0.8889 |
SK-MEL-3 | y = −2.20x + 26.07 | 0.4877 | y = −39.69x + 42.51 | 0.9140 | y = −2.01x + 26.30 | 0.4899 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuzimski, T.; Petruczynik, A.; Kaproń, B.; Makuch-Kocka, A.; Szultka-Młyńska, M.; Misiurek, J.; Szymczak, G.; Buszewski, B. Determination of Cytotoxic Activity of Selected Isoquinoline Alkaloids and Plant Extracts Obtained from Various Parts of Mahonia aquifolium Collected in Various Vegetation Seasons. Molecules 2021, 26, 816. https://doi.org/10.3390/molecules26040816
Tuzimski T, Petruczynik A, Kaproń B, Makuch-Kocka A, Szultka-Młyńska M, Misiurek J, Szymczak G, Buszewski B. Determination of Cytotoxic Activity of Selected Isoquinoline Alkaloids and Plant Extracts Obtained from Various Parts of Mahonia aquifolium Collected in Various Vegetation Seasons. Molecules. 2021; 26(4):816. https://doi.org/10.3390/molecules26040816
Chicago/Turabian StyleTuzimski, Tomasz, Anna Petruczynik, Barbara Kaproń, Anna Makuch-Kocka, Małgorzata Szultka-Młyńska, Justyna Misiurek, Grażyna Szymczak, and Bogusław Buszewski. 2021. "Determination of Cytotoxic Activity of Selected Isoquinoline Alkaloids and Plant Extracts Obtained from Various Parts of Mahonia aquifolium Collected in Various Vegetation Seasons" Molecules 26, no. 4: 816. https://doi.org/10.3390/molecules26040816
APA StyleTuzimski, T., Petruczynik, A., Kaproń, B., Makuch-Kocka, A., Szultka-Młyńska, M., Misiurek, J., Szymczak, G., & Buszewski, B. (2021). Determination of Cytotoxic Activity of Selected Isoquinoline Alkaloids and Plant Extracts Obtained from Various Parts of Mahonia aquifolium Collected in Various Vegetation Seasons. Molecules, 26(4), 816. https://doi.org/10.3390/molecules26040816