Determination of Cytotoxic Activity of Sanguinaria canadensis Extracts against Human Melanoma Cells and Comparison of Their Cytotoxicity with Cytotoxicity of Some Anticancer Drugs
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC-DAD and LC-MS/MS Analysis of Alkaloid Standards and Plant Extracts
2.2. Investigation of In Vitro Cytotoxic Activity of Isoquinoline Alkaloid Standards
2.3. Investigation of In Vitro Cytotoxic Activity of Sanguinaria canadensis Extracts
2.4. Comparison of In Vitro Cytotoxic Activity of Alkaloid Standards, Sanguinaria canadensis Extracts with Cytotoxic Activity of Anticancer Drugs
2.5. Comparison of In Vitro Cytotoxic Activity of Sanguinaria canadensis Extracts with Cytotoxic Activity of Various Plant Extracts
3. Experiment
3.1. Chemicals and Plant Materials
3.2. Apparatus and HPLC-DAD Conditions
3.3. HPLC-MS/MS
3.4. Extraction Procedure
3.5. Investigation of Cytotoxic Activity
3.5.1. Investigation of Cell Viability
3.5.2. Antiproliferative Effect of Sanguinaria canadensis Extracts against SK-MEL-3 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Ijaz, S.; Akhtar, N.; Khan, M.S.; Hameed, A.; Irfan, M.; Arshad, M.A.; Ali, S.; Asrar, M. Plant derived anticancer agents: A green approach towards skin cancers. Biomed. Pharmacother. 2018, 103, 1643–1651. [Google Scholar] [CrossRef]
- Yao, J.; Duan, D.; Song, Z.-L.; Zhang, J.; Fang, J. Sanguinarine as a new chemical entity of thioredoxin reductase inhibitor to elicit oxidative stress and promote tumor cell apoptosis. Free Radic. Biol. Med. 2020, 152, 659–667. [Google Scholar] [CrossRef]
- De Stefano, I.; Raspaglio, G.; Zannoni, G.F.; Travaglia, D.; Prisco, M.G.; Mosca, M.; Ferlini, C.; Scambia, G.; Gallo, D. Antiproliferative and antiangiogenic effects of the benzophenanthridine alkaloid sanguinarine in melanoma. Biochem. Pharmacol. 2009, 78, 1374–1381. [Google Scholar] [CrossRef] [Green Version]
- Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Yun, D.; Yoon, S.Y.; Park, S.J.; Park, Y.J. The Anticancer Effect of Natural Plant Alkaloid Isoquinolines. Int. J. Mol. Sci. 2021, 22, 1653. [Google Scholar] [CrossRef]
- Galadari, S.; Rahman, A.; Pallichankandy, S.; Thayyullathil, F. Molecular targets and anticancer potential of sanguinarine—A benzophenanthridine alkaloid. Phytomedicine 2017, 34, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.K.; Park, C.; Jeong, S.-J.; Jeong, M.-J.; Kim, G.-Y.; Kim, W.-J.; Choi, Y.H. Sanguinarine Induces Apoptosis of Human Oral Squamous Cell Carcinoma KB Cells via Inactivation on the PI3K/Akt Signaling Pathway. Drug Dev. Res. 2016, 77, 227–240. [Google Scholar] [CrossRef]
- Rahman, A.; Thayyullathil, F.; Pallichankandy, S.; Galadari, S. Hydrogen peroxide/ceramide/Akt signalling axis play a critical role in the antileukemic potential of sanguinarine. Free Radic. Biol. Med. 2016, 96, 273–289. [Google Scholar] [CrossRef]
- Rahman, A.; Pallichankandy, S.; Thayyullathil, F.; Galadari, S. Critical role of H2O2 in mediating sanguinarine-induced apoptosis in prostate cancer cells via facilitating ceramide generation, ERK1/2 phosphorylation, and Par-4 cleavage. Free Radic. Biol. Med. 2019, 134, 527–544. [Google Scholar] [CrossRef]
- Kalogris, C.; Garulli, C.; Pietrella, L.; Gambini, V.; Pucciarelli, S.; Lucci, C.; Tilio, M.; Zabaleta, M.E.; Bartolacci, C.; Andreani, C.; et al. Sanguinarine suppresses basal-like breast cancer growth through dihydrofolate reductase inhibition. Biochem. Pharmacol. 2014, 90, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Kuttikrishnan, S.; Siveen, K.S.; Prabhu, K.S.; Khan, A.Q.; Akhtar, S.; Mateo, J.M.; Merhi, M.; Taha, R.; El Omri, H.; Mraiche, F.; et al. Sanguinarine suppresses growth and induces apoptosis in childhood acute lymphoblastic leukemia. Leuk. Lymphoma 2019, 60, 782–794. [Google Scholar] [CrossRef]
- Aburai, N.; Yoshida, M.; Ohnishi, M.; Kimura, K. Sanguinarine as a Potent and Specific Inhibitor of Protein Phosphatase 2C in Vitro and Induces Apoptosis via Phosphorylation of p38 in HL60 Cells. Biosci. Biotechnol. Biochem. 2010, 74, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.-Z.; Song, Y.; Lu, Y.-P.; Hu, Y.; Liu, P.; Zhang, L. Sanguinarine inhibits the proliferation of BGC-823 gastric cancer cells via regulating miR-96-5p/miR-29c-3p and the MAPK/JNK signalling pathway. J. Nat. Med. 2019, 73, 777–788. [Google Scholar] [CrossRef]
- Feldman, N.B.; Orekhov, S.N.; Chakaleva, I.I.; Muchkinova, E.A.; Sedyakina, N.E.; Lutsenko, S.V. Preparation of Liposomal Sanguinarine and Study of Its Cytotoxic Effects against Prostate Cancer Cells. Nanotechnol. Russ. 2020, 15, 230–235. [Google Scholar] [CrossRef]
- Zhu, M.; Gong, Z.; Wu, Q.; Shi, X.; Su, Q.; Zhang, Y. Sanguinarine suppresses migration and metastasis in colorectal carcinoma associated with the inversion of EMT through the Wnt/β-catenin signalling. Clin. Transl. Med. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Xu, Y.; Peng, T.; Yan, J.; Wang, Z.; Sun, Z. Sanguinarine exhibits antitumor activity via up-regulation of Fas-associated factor 1 in non-small cell lung cancer. J. Biochem. Mol. Toxicol. 2017, 31, e21914. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, W.; Shrivastava, A.; Alemi, F.; Lankachandra, K.; Srivastava, R.K.; Shankar, S. Sanguinarine inhibits pancreatic cancer stem cell characteristics by inducing oxidative stress and suppressing sonic hedgehog-Gli-Nanog pathway. Carcinogenesis 2017, 38, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Matkar, S.S.; Wrischnik, L.A.; Hellmann-Blumberg, U. Production of hydrogen peroxide and redox cycling can explain how sanguinarine and chelerythrine induce rapid apoptosis. Arch. Biochem. Biophys. 2008, 477, 43–52. [Google Scholar] [CrossRef]
- Serafim, T.L.; Matos, J.A.C.; Sardao, V.A.; Pereira, G.C.; Branco, A.F.; Pereira, S.L.; Parke, D.; Perkins, E.L.; Moreno, A.J.M.; Holy, J.; et al. Sanguinarine cytotoxicity on mouse melanoma K1735-M2 cells—Nuclear vs. mitochondrial effects. Biochem. Pharmacol. 2008, 76, 1459–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Zhang, D.; Qian, J.; Cheng, Y. Chelerythrine suppresses proliferation and metastasis of human prostate cancer cells via modulating MMP/TIMP/NF-κB system. Mol. Cell. Biochem. 2020, 474, 199–208. [Google Scholar] [CrossRef]
- Wang, X.; Decker, C.C.; Zechner, L.; Krstin, S.; Wink, M. In vitro wound healing of tumor cells: Inhibition of cell migration by selected cytotoxic alkaloids. BMC Pharmacol. Toxicol. 2019, 20, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammerova, J.; Uldrijan, S.; Taborska, E.; Slaninova, I. Benzo [c] phenanthridine alkaloids exhibit strong anti-proliferative activity in malignant melanoma cells regardless of their p53 status. J. Dermatol. Sci. 2011, 62, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Perera, M.A.D.N.; Robinson, J.R.; Shearn, C.T.; Noble, T.M.; Hallam, J.E.; Kohut, M.L.; Senchina, D.S. Effects of bloodroot (Sanguinaria canadensis L.) rhizome ethanol extracts on cytokine production by blood mononuclear cells during flowering and fruiting. J. Herb. Med. 2014, 4, 18–23. [Google Scholar] [CrossRef]
- Tuzimski, T.; Petruczynik, A. Application of HPLC-DAD for In Vitro Investigation of Acetylcholinesterase Inhibition Activity of Selected Isoquinoline Alkaloids from Sanguinaria canadensis Extracts. Molecules 2021, 26, 230. [Google Scholar] [CrossRef] [PubMed]
- Shim, H.J.; Byungjoo, K.; Jongki, H. General fragmentations of alkaloids in electrospray ionization tandem mass spectrometry. Mass Spectrom. Lett. 2013, 4, 79–92. [Google Scholar] [CrossRef] [Green Version]
- Persia, F.A.; Troncoso, M.E.; Rinaldini, E.; Simirgiotis, M.; Tapia, A.; Borquez, J.; Mackern-Oberti, J.P.; Hapon, M.B.; Gamarra-Luques, C. UHPLC–Q/Orbitrap/MS/MS fingerprinting and antitumoral effects of Prosopis strombulifera (LAM.) BENTH. queous extract on allograft colorectal and melanoma cancer models. Heliyon 2020, 6, e03353. [Google Scholar] [CrossRef]
- Darmanin, S.; Wismayer, P.S.; Podesta, M.T.C.; Micallef, M.J.; Buhagiar, J.A. An extract from Ricinus communis L. leaves possesses cytotoxic properties and induces napoptosis in SK-MEL-28 human melanoma cells. Nat. Prod. Res. 2009, 23, 561–571. [Google Scholar] [CrossRef]
- Sevastre, B.; Sarpataki, O.; Stan, R.L.; Taulescu, M.; Sevastre-Berghian, A.C.; Olah, N.K.; Furtuna, F.; Hanganu, D.; Hangan, A.C.; Cenariu, M.; et al. Anticancer activity of Euonymus europeus fruits extract on human melanoma cells. Farmacia 2017, 65, 56–62. [Google Scholar]
- Sak, K.; Nguyen, T.H.; Ho, V.D.; Do, T.T.; Raal, A. Cytotoxic effect of chamomile (Matricaria recutita) and marigold (Calendula officinalis) extracts on human melanoma SK-MEL-2 and epidermoid carcinoma KB cells. Cogent Med. 2017, 4, 1333218. [Google Scholar] [CrossRef]
- Do, B.H.; Nguyen, T.P.T.; Ho, N.Q.C.; Le, T.L.; Hoang, N.S.; Doan, C.C. Mitochondria-mediated Caspase-dependent and Caspase-independent apoptosis induced by aqueous extract from Moringa oleifera leaves in human melanoma cells. Mol. Biol. Rep. 2020, 47, 3675–3689. [Google Scholar] [CrossRef]
- Looi, C.Y.; Moharram, B.; Paydar, M.; Wong, Y.L.; Leong, K.H.; Mohamad, K.; Arya, A.; Wong, W.F.; Mustafa, M.R. Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2-controlled mitochondrial signaling pathways. Complementary Altern. Med. 2013, 13, 166. Available online: http://www.biomedcentral.com/1472-6882/13/166 (accessed on 10 July 2013). [CrossRef] [Green Version]
- Nakamura, S.; Nakashima, S.; Tanabe, G.; Oda, Y.; Yokota, N.; Fujimoto, K.; Matsumoto, T.; Sakuma, R.; Ohta, T.; Ogawa, K.; et al. Alkaloid constituents from flower buds and leaves of sacred lotus (Nelumbo nucifera, Nymphaeaceae) with melanogenesis inhibitory activity in B16 melanoma cells. Bioorg. Med. Chem. 2013, 21, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Rosales, P.F.; Gower, A.; Benitez, M.L.R.; Pacheco, B.S.; Segatto, N.V.; Roesch-Elyd, M.; Collares, T.; Seixas, F.K.; Moura, S. Extraction, isolation and in vitro evaluation of affinisine from Tabernaemontana catharinensis in human melanoma cells. Bioorg. Chem. 2019, 90, 103079. [Google Scholar] [CrossRef]
- Munari, C.C.; de Oliveira, P.F.; Campos, J.C.L.; Martins, S.P.L.; Da Costa, J.C.; Bastos, J.K.; Tavares, D.C. Antiproliferative activity of Solanum lycocarpum alkaloidic extract and their constituents, solamargine and solasonine, in tumor cell lines. J. Nat. Med. 2014, 68, 236–241. [Google Scholar] [CrossRef]
- Satyavarapu, E.M.; Sinha, P.K.; Mandal, C. Influence of Geographical and Seasonal Variations on Carbazole Alkaloids Distribution in Murraya koenigii: Deciding Factor of Its In Vitro and In Vivo Efficacies against Cancer Cells. Biomed. Res. Int. 2020. [Google Scholar] [CrossRef] [Green Version]
- Tuzimski, T.; Petruczynik, A.; Kapron, B.; Makuch-Kocka, A.; Szultka-Młynska, M.; Misiurek, J.; Szymczak, G.; Buszewski, B. Determination of Cytotoxic Activity of Selected Isoquinoline Alkaloids and Plant Extracts Obtained from Various Parts of Mahonia aquifolium Collected in Various Vegetation Seasons. Molecules 2021, 26, 816. [Google Scholar] [CrossRef] [PubMed]
- Senchina, D.S.; Flinn, G.N.; Mccann, D.A.; Kohut, M.L.; Shearn, C.T. Bloodroot (Sanguinaria canadensis L., Papaveraceae) Enhances Proliferation and Cytokine Production by Human Peripheral Blood Mononuclear Cells in an In Vitro Model. J. Herbs Spices Med. Plants 2009, 15, 45–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkov, S.; Bastida, J.; Sidjimova, B.; Viladomata, F.; Codina, C. Phytochemical differentiation of Galanthus nivalis and Galanthus elwesii (Amaryllidaceae): A case study. Biochem. Syste. Ecol. 2008, 36, 638–645. [Google Scholar] [CrossRef]
- Petruczynik, A.; Misiurek, J.; Tuzimski, T.; Uszyński, R.; Szymczak, G.; Chernetskyy, M.; Waksmundzka- Hajnos, M. Comparison of different HPLC systems for analysis of galantamine and lycorine in various species of Amaryllidaceae family. J. Liq. Chromatogr. 2016, 39, 574–579. [Google Scholar] [CrossRef]
Alkaloid | Chemical Structure | Molar Mass (g mol−1) | pKa | Log P |
---|---|---|---|---|
Berberine | 336.36 | −4.4 | −1.3 | |
Chelerythrine | 348.37 | −4.4 | −0.88 | |
Chelidonine | 353.36 | 5.73 | 2.05 | |
Protopine | 353.36 | 4.95 | 2.59 | |
Sanguinarine | 332.09 | −4.5 | −0.94 |
Alkaloid | Contents of Alkaloids in Plant Extracts Obtained from Sanguinaria canadensis mg/g of Dry Plant Material | ||
---|---|---|---|
Before Flowering | During Flowering | After Flowering | |
Berberine | 0.0058 (±0.0003) | 0.0125 (±0.0010) | 0.0091 (±0.0007) |
Chelerythrine | 2.7224 (±0.0897) | 5.3470 (±0.2018) | 6.8722 (±0.1867) |
Chelidonine | - | <LOQ | - |
Protopine | <LOQ | 0.0141 (±0.0008) | 0.1075 (±0.009) |
Sanguinarine | 4.8543 (±0.1207) | 9.5899 (±0.2302) | 6.9195 (±0.1624) |
Plant Extracts and Alkaloid Standards | IC50 [µg/mL] ± SD for Cell Viability | Selectivity Index (SI) ** against A375/G-361/SK-MEL-3 Cell Lines | IC50 [µg/mL] ± SD for Cell Proliferation Measured by BrdU Incorporation in SK-MEL-3 Cells | |||
---|---|---|---|---|---|---|
A375 | G-361 | SK-MEL-3 | Fibroblasts | SK-MEL-3 | ||
Sanguinaria canadensis before flowering | 4.09 ± 0.25 | 1.22 ± 0.21 | 0.88 ± 0.06 | 3.78 ± 0.71 | 0.92/3.1/4.3 | 0.56 ± 0.02 |
Sanguinaria canadensis during flowering | 5.08 ± 0.47 | 1.47 ± 0.07 | 1.13 ± 0.10 | 4.62 ± 0.92 | 0.91/3.1/4.1 | 0.68 ± 0.04 |
Sanguinaria canadensis after flowering | 10.96 ± 0.50 | 1.60 ± 0.24 | 1.36 ± 0.18 | 6.27 ± 0.69 | 0.57/3.9/4.6 | 0.93 ± 0.22 |
Berberine | 51.60 ± 4.84 | 21.02 ± 3.25 | 41.05 ± 5.36 | |||
Chelerythrine | 0.19 ± 0.04 | 0.46 ± 0.07 | 0.14 ± 0.004 | |||
Sanguinarine | 0.11 ± 0.003 | 0.17 ± 0.02 | 0.54 ± 0.16 | |||
Chelidonine * | >50 | >50 | >50 | |||
Protopine * | >50 | >50 | >50 | |||
Etoposide | 92.34 ± 4.58 | 52.32 ± 3.86 | >200 | |||
Cisplatin | 10.62 ± 1.04 | 11.53 ± 1.46 | 14.42 ± 1.61 | 24.84 ± 3.60 | ||
Hydroxyurea | >200 | >200 | >200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuzimski, T.; Petruczynik, A.; Plech, T.; Kaproń, B.; Makuch-Kocka, A.; Szultka-Młyńska, M.; Misiurek, J.; Buszewski, B. Determination of Cytotoxic Activity of Sanguinaria canadensis Extracts against Human Melanoma Cells and Comparison of Their Cytotoxicity with Cytotoxicity of Some Anticancer Drugs. Molecules 2021, 26, 1738. https://doi.org/10.3390/molecules26061738
Tuzimski T, Petruczynik A, Plech T, Kaproń B, Makuch-Kocka A, Szultka-Młyńska M, Misiurek J, Buszewski B. Determination of Cytotoxic Activity of Sanguinaria canadensis Extracts against Human Melanoma Cells and Comparison of Their Cytotoxicity with Cytotoxicity of Some Anticancer Drugs. Molecules. 2021; 26(6):1738. https://doi.org/10.3390/molecules26061738
Chicago/Turabian StyleTuzimski, Tomasz, Anna Petruczynik, Tomasz Plech, Barbara Kaproń, Anna Makuch-Kocka, Małgorzata Szultka-Młyńska, Justyna Misiurek, and Bogusław Buszewski. 2021. "Determination of Cytotoxic Activity of Sanguinaria canadensis Extracts against Human Melanoma Cells and Comparison of Their Cytotoxicity with Cytotoxicity of Some Anticancer Drugs" Molecules 26, no. 6: 1738. https://doi.org/10.3390/molecules26061738
APA StyleTuzimski, T., Petruczynik, A., Plech, T., Kaproń, B., Makuch-Kocka, A., Szultka-Młyńska, M., Misiurek, J., & Buszewski, B. (2021). Determination of Cytotoxic Activity of Sanguinaria canadensis Extracts against Human Melanoma Cells and Comparison of Their Cytotoxicity with Cytotoxicity of Some Anticancer Drugs. Molecules, 26(6), 1738. https://doi.org/10.3390/molecules26061738