Modulation of γ-Secretase Activity by a Carborane-Based Flurbiprofen Analogue
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Determination of COX Inhibition
2.3. Determination of logD7.4
2.4. Determination of Cytotoxicity
2.5. Determination of GSM Activity
3. Discussion
4. Material and Methods
4.1. Determination of COX Inhibition
4.2. Determination of logD7.4
4.3. Determination of Cytotoxicity
4.4. Determination of GSM Activity
4.5. Synthetic Methods
4.5.1. General Synthetic Information
4.5.2. Syntheses
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Cummings, J.L. Alzheimer’s Disease. N. Engl. J. Med. 2004, 351, 56–67. [Google Scholar] [CrossRef]
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar] [CrossRef] [PubMed]
- Steiner, H.; Fukumori, A.; Tagami, S.; Okochi, M. Making the Final Cut: Pathogenic Amyloid-β Peptide Generation by γ-Secretase. Cell Stress 2018, 2, 292–310. [Google Scholar] [CrossRef] [Green Version]
- Selkoe, D.J.; Hardy, J. The Amyloid Hypothesis of Alzheimer’s Disease at 25 Years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
- Jurisch-Yaksi, N.; Sannerud, R.; Annaert, W. A Fast Growing Spectrum of Biological Functions of γ-Secretase in Development and Disease. Biochim. Biophys. Acta Biomembr. 2013, 1828, 2815–2827. [Google Scholar] [CrossRef] [Green Version]
- Doody, R.S.; Raman, R.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; He, F.; Sun, X.; Thomas, R.G.; et al. A Phase 3 Trial of Semagacestat for Treatment of Alzheimer’s Disease. N. Engl. J. Med. 2013, 369, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Henley, D.B.; Sundell, K.L.; Sethuraman, G.; Dowsett, S.A.; May, P.C. Safety Profile of Semagacestat, a Gamma-secretase Inhibitor: IDENTITY trial findings. Curr. Med. Res. Opin. 2014, 30, 2021–2032. [Google Scholar] [CrossRef] [PubMed]
- De Strooper, B. Lessons from a Failed γ-Secretase Alzheimer Trial. Cell 2014, 159, 721–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weggen, S.; Eriksen, J.L.; Das, P.; Sagi, S.A.; Wang, R.; Pietrzik, C.U.; Findlay, K.A.; Smith, T.E.; Murphy, M.P.; Bulter, T.; et al. A Subset of NSAIDs Lower Amyloidogenic Aβ42 Independently of Cyclooxygenase Activity. Nature 2001, 414, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Xia, W. γ-Secretase and its Modulators: Twenty Years and Beyond. Neurosci. Lett. 2019, 701, 162–169. [Google Scholar] [CrossRef]
- Bursavich, M.G.; Harrison, B.A.; Blain, J.-F. Gamma Secretase Modulators: New Alzheimer’s Drugs on the Horizon? J. Med. Chem. 2016, 59, 7389–7409. [Google Scholar] [CrossRef]
- Eriksen, J.L.; Sagi, S.A.; Smith, T.E.; Weggen, S.; Das, P.; McLendon, D.C.; Ozols, V.V.; Jessing, K.W.; Zavitz, K.H.; Koo, E.H.; et al. NSAIDs and Enantiomers of Flurbiprofen Target γ-Secretase and Lower Aβ42 in vivo. J. Clin. Investig. 2003, 112, 440–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilcock, G.K.; Black, S.E.; Hendrix, S.B.; Zavitz, K.H.; Swabb, E.A.; Laughlin, M.A. Efficacy and Safety of Tarenflurbil in Mild to Moderate Alzheimer’s Disease: A Randomised Phase II Trial. Lancet Neurol. 2008, 7, 483–493. [Google Scholar] [CrossRef]
- Green, R.C. Effect of Tarenflurbil on Cognitive Decline and Activities of Daily Living in Patients with Mild Alzheimer Disease: A Randomized Controlled Trial. J. Am. Med. Assoc. 2009, 302, 2557. [Google Scholar] [CrossRef] [Green Version]
- Imbimbo, B.P. Why Did Tarenflurbil Fail in Alzheimer’s Disease? J. Alzheimer’s Dis. 2009, 17, 757–760. [Google Scholar] [CrossRef]
- Clark, D.E. In Silico Prediction of Blood–Brain Barrier Permeation. Drug Discov. Today 2003, 8, 927–933. [Google Scholar] [CrossRef]
- Dichiara, M.; Amata, B.; Turnaturi, R.; Marrazzo, A.; Amata, E. Tuning Properties for Blood–Brain Barrier Permeation: A Statistics-Based Analysis. ACS Chem. Neurosci. 2020, 11, 34–44. [Google Scholar] [CrossRef]
- Kaiser, D.G.; Brooks, C.D.; Lomen, P.L. Pharmacokinetics of Flurbiprofen. Am. J. Med. 1986, 80, 10–15. [Google Scholar] [CrossRef]
- Tracy, T.S.; Marra, C.; Wrighton, S.A.; Gonzalez, F.J.; Korzekwa, K.R. Studies of Flurbiprofen 4′-Hydroxylation. Additional Evidence Suggesting the Sole Involvement of Cytochrome P450-2C9. Biochem. Pharmacol. 1996, 52, 1305–1309. [Google Scholar] [CrossRef]
- Peretto, I.; Radaelli, S.; Parini, C.; Zandi, M.; Raveglia, L.F.; Dondio, G.; Fontanella, L.; Misiano, P.; Bigogno, C.; Rizzi, A.; et al. Synthesis and Biological Activity of Flurbiprofen Analogues as Selective Inhibitors of β-Amyloid1—42 Secretion. J. Med. Chem. 2005, 48, 5705–5720. [Google Scholar] [CrossRef]
- Abdul-Hay, S.O.; Edirisinghe, P.; Thatcher, G.R.J. Selective Modulation of Amyloid-β Peptide Degradation by Flurbiprofen, Fenofibrate, and Related Compounds Regulates Aβ Levels. J. Neurochem. 2009, 111, 683–695. [Google Scholar] [CrossRef] [PubMed]
- Kukar, T.L.; Ladd, T.B.; Bann, M.A.; Fraering, P.C.; Narlawar, R.; Maharvi, G.M.; Healy, B.; Chapman, R.; Welzel, A.T.; Price, R.W.; et al. Substrate-Targeting γ-Secretase Modulators. Nature 2008, 453, 925–929. [Google Scholar] [CrossRef]
- Scholz, M.; Hey-Hawkins, E. Carbaboranes as Pharmacophores: Properties, Synthesis, and Application Strategies. Chem. Rev. 2011, 111, 7035–7062. [Google Scholar] [CrossRef] [PubMed]
- Schleyer, P.v.R.; Najafian, K. Stability and Three-Dimensional Aromaticity of closo-Monocarbaborane Anions, CBn−1Hn−, and closo-Dicarboranes, C2Bn−2Hn. Inorg. Chem. 1998, 37, 3454–3470. [Google Scholar] [CrossRef]
- Grimes, R.N. Carboranes, 3rd ed.; Academic Press Inc.: Amsterdam, The Netherlands, 2016; ISBN 9780128018941. [Google Scholar]
- Stockmann, P.; Gozzi, M.; Kuhnert, R.; Sárosi, M.B.; Hey-Hawkins, E. New Keys for Old Locks: Carborane-Containing Drugs as Platforms for Mechanism-Based Therapies. Chem. Soc. Rev. 2019, 48, 3497–3512. [Google Scholar] [CrossRef] [Green Version]
- Tse, E.G.; Houston, S.D.; Williams, C.M.; Savage, G.P.; Rendina, L.M.; Hallyburton, I.; Anderson, M.; Sharma, R.; Walker, G.S.; Obach, R.S.; et al. Nonclassical Phenyl Bioisosteres as Effective Replacements in a Series of Novel Open-Source Antimalarials. J. Med. Chem. 2020, 63, 11585–11601. [Google Scholar] [CrossRef]
- Gabel, D. Boron Clusters in Medicinal Chemistry: Perspectives and Problems. Pure Appl. Chem. 2015, 87, 173–179. [Google Scholar] [CrossRef]
- Satapathy, R.; Dash, B.P.; Maguire, J.A.; Hosmane, N.S. New Developments in the Medicinal Chemistry of Carboranes. Collect. Czechoslov. Chem. Commun. 2010, 75, 995–1022. [Google Scholar] [CrossRef]
- Ali, F.; S Hosmane, N.; Zhu, Y. Boron Chemistry for Medical Applications. Molecules 2020, 25, 828. [Google Scholar] [CrossRef] [Green Version]
- Issa, F.; Kassiou, M.; Rendina, L.M. Boron in Drug Discovery: Carboranes as Unique Pharmacophores in Biologically Active Compounds. Chem. Rev. 2011, 111, 5701–5722. [Google Scholar] [CrossRef]
- Gozzi, M.; Schwarze, B.; Hey-Hawkins, E. Half- and Mixed-Sandwich Metallacarboranes for Potential Applications in Medicine. Pure Appl. Chem. 2019, 91, 563–573. [Google Scholar] [CrossRef]
- Frank, R.; Ahrens, V.; Boehnke, S.; Hofmann, S.; Kellert, M.; Saretz, S.; Pandey, S.; Sárosi, M.; Bartók, Á.; Beck-Sickinger, A.G.; et al. Carbaboranes—More Than Just Phenyl Mimetics. Pure Appl. Chem. 2015, 87, 163–171. [Google Scholar] [CrossRef]
- Wilkinson, S.M.; Gunosewoyo, H.; Barron, M.L.; Boucher, A.; McDonnell, M.; Turner, P.; Morrison, D.E.; Bennett, M.R.; McGregor, I.S.; Rendina, L.M.; et al. The First CNS-Active Carborane: A Novel P2X7 Receptor Antagonist with Antidepressant Activity. ACS Chem. Neurosci. 2014, 5, 335–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, R.L. Critical Review, with an Optimistic Outlook, on Boron Neutron Capture Therapy (BNCT). Appl. Radiat. Isot. 2014, 88, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, P.M.; Jelliss, P.A.; Nonaka, N.; Shi, X.; Banks, W.A. Permeability of the Blood-Brain Barrier to a Rhenacarborane. J. Pharmacol. Exp. Ther. 2009, 329, 608–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crossley, E.L.; Issa, F.; Scarf, A.M.; Kassiou, M.; Rendina, L.M. Synthesis and Cellular Uptake of Boron-rich Pyrazolopyrimidines: Exploitation of the Translocator Protein for the Efficient Delivery of Boron into Human Glioma Cells. Chem. Commun. 2011, 47, 12179. [Google Scholar] [CrossRef]
- Reetz, M.T.; Chatziiosifidis, I.; Künzer, H.; Müller-Starke, H. Trimethylsilyl Cyanide Promoted Cyanation of Tertiary Alkyl Chlorides and other SN1 Active Compounds. Tetrahedron 1983, 39, 961–965. [Google Scholar] [CrossRef]
- Neumann, W.; Xu, S.; Sárosi, M.B.; Scholz, M.S.; Crews, B.C.; Ghebreselasie, K.; Banerjee, S.; Marnett, L.J.; Hey-Hawkins, E. nido-Dicarbaborate Induces Potent and Selective Inhibition of Cyclooxygenase-2. ChemMedChem 2016, 11, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Yung-Chi, C.; Prusoff, W.H. Relationship between the Inhibition Constant (KI) and the Concentration of Inhibitor which Causes 50 per cent Inhibition (I50) of an Enzymatic Reaction. Biochem. Pharmacol. 1973, 22, 3099–3108. [Google Scholar] [CrossRef]
- Kalgutkar, A.S.; Marnett, A.B.; Crews, B.C.; Remmel, R.P.; Marnett, L.J. Ester and Amide Derivatives of the Nonsteroidal Antiinflammatory Drug, Indomethacin, as Selective Cyclooxygenase-2 Inhibitors. J. Med. Chem. 2000, 43, 2860–2870. [Google Scholar] [CrossRef]
- Smith, T.; Leipprandt, J.; DeWitt, D. Purification and Characterization of the Human Recombinant Histidine-Tagged Prostaglandin Endoperoxide H Synthases-1 and -2. Arch. Biochem. Biophys. 2000, 375, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Hood, W.F.; Gierse, J.K.; Isakson, P.C.; Kiefer, J.R.; Kurumbail, R.G.; Seibert, K.; Monahan, J.B. Characterization of Celecoxib and Valdecoxib Binding to Cyclooxygenase. Mol. Pharmacol. 2003, 63, 870–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laube, M.; Gassner, C.; Neuber, C.; Wodtke, R.; Ullrich, M.; Haase-Kohn, C.; Löser, R.; Köckerling, M.; Kopka, K.; Kniess, T.; et al. Deuteration Versus Ethylation—Strategies to Improve the Metabolic Fate of an 18 F-Labeled Celecoxib Derivative. RSC Adv. 2020, 10, 38601–38611. [Google Scholar] [CrossRef]
- Donovan, S.F.; Pescatore, M.C. Method for Measuring the Logarithm of the Octanol–Water Partition Coefficient by Using Short Octadecyl–poly(vinyl alcohol) High-Performance Liquid Chromatography Columns. J. Chromatogr. A 2002, 952, 47–61. [Google Scholar] [CrossRef]
- Wagner, B.; Fischer, H.; Kansy, M.; Seelig, A.; Assmus, F. Carrier Mediated Distribution System (CAMDIS): A New Approach for the Measurement of Octanol/Water Distribution Coefficients. Eur. J. Pharm. Sci. 2015, 68, 68–77. [Google Scholar] [CrossRef]
- Denkert, C.; Köbel, M.; Berger, S.; Siegert, A.; Leclere, A.; Trefzer, U.; Hauptmann, S. Expression of Cyclooxygenase 2 in Human Malignant Melanoma. Cancer Res. 2001, 61, 303–308. [Google Scholar] [PubMed]
- Xu, X.-T.; Hu, W.-T.; Zhou, J.-Y.; Tu, Y. Celecoxib Enhances the Radiosensitivity of HCT116 Cells in a COX-2 Independent Manner by Up-Regulating BCCIP. Am. J. Transl. Res. 2017, 9, 1088–1100. [Google Scholar]
- Roller, A.; Bähr, O.R.; Streffer, J.; Winter, S.; Heneka, M.; Deininger, M.; Meyermann, R.; Naumann, U.; Gulbins, E.; Weller, M. Selective Potentiation of Drug Cytotoxicity by NSAID in Human Glioma Cells: The Role of COX-1 and MRP. Biochem. Biophys. Res. Commun. 1999, 259, 600–605. [Google Scholar] [CrossRef]
- Kuipers, G.K.; Slotman, B.J.; Wedekind, L.E.; Stoter, T.R.; van den Berg, J.; Sminia, P.; Lafleur, M.V.M. Radiosensitization of Human Glioma Cells by Cyclooxygenase-2 (COX-2) Inhibition: Independent on COX-2 Expression and Dependent on the COX-2 Inhibitor and Sequence of Administration. Int. J. Radiat. Biol. 2007, 83, 677–685. [Google Scholar] [CrossRef]
- Green, J.A.; Stockton, R.A.; Johnson, C.; Jacobson, B.S. 5-Lipoxygenase and Cyclooxygenase Regulate Wound Closure in NIH/3T3 Fibroblast Monolayers. Am. J. Physiol. Physiol. 2004, 287, C373–C383. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Qin, J.; Li, Y.; Li, G.; Wang, Y.; Zhang, N.; Chen, P.; Li, C. Combination Therapy of PKCζ and COX-2 Inhibitors Synergistically Suppress Melanoma Metastasis. J. Exp. Clin. Cancer Res. 2017, 36, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oksuz, E.; Atalar, F.; Tanırverdi, G.; Bilir, A.; Shahzadi, A.; Yazici, Z. Therapeutic Potential of Cyclooxygenase-3 Inhibitors in the Management of Glioblastoma. J. Neurooncol. 2016, 126, 271–278. [Google Scholar] [CrossRef]
- Page, R.M.; Baumann, K.; Tomioka, M.; Pérez-Revuelta, B.I.; Fukumori, A.; Jacobsen, H.; Flohr, A.; Luebbers, T.; Ozmen, L.; Steiner, H.; et al. Generation of Aβ38 and Aβ42 Is Independently and Differentially Affected by Familial Alzheimer Disease-Associated Presenilin Mutations and γ-Secretase Modulation. J. Biol. Chem. 2008, 283, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Kretner, B.; Fukumori, A.; Gutsmiedl, A.; Page, R.M.; Luebbers, T.; Galley, G.; Baumann, K.; Haass, C.; Steiner, H. Attenuated Aβ42 Responses to Low Potency γ-Secretase Modulators Can Be Overcome for Many Pathogenic Presenilin Mutants by Second-generation Compounds. J. Biol. Chem. 2011, 286, 15240–15251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crump, C.J.; Johnson, D.S.; Li, Y.-M. Development and Mechanism of γ-Secretase Modulators for Alzheimer’s Disease. Biochemistry 2013, 52, 3197–3216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bregadze, V.I. Dicarba-closo-dodecaboranes C2B10H12 and Their Derivatives. Chem. Rev. 1992, 92, 209–223. [Google Scholar] [CrossRef]
- Scholz, M.; Steinhagen, M.; Heiker, J.T.; Beck-Sickinger, A.G.; Hey-Hawkins, E. Asborin Inhibits Aldo/Keto Reductase 1A1. ChemMedChem 2011, 6, 89–93. [Google Scholar] [CrossRef]
- Schjerning, A.-M.; McGettigan, P.; Gislason, G. Cardiovascular Effects and Safety of (Non-Aspirin) NSAIDs. Nat. Rev. Cardiol. 2020, 17, 574–584. [Google Scholar] [CrossRef]
- Suwanjang, W.; Wu, K.L.H.; Prachayasittikul, S.; Chetsawang, B.; Charngkaew, K. Mitochondrial Dynamics Impairment in Dexamethasone-Treated Neuronal Cells. Neurochem. Res. 2019, 44, 1567–1581. [Google Scholar] [CrossRef]
- Honjo, H.; Uwai, Y.; Aoki, Y.; Iwamoto, K. Stereoselective Inhibitory Effect of Flurbiprofen, Ibuprofen and Naproxen on Human Organic Anion Transporters hOAT1 and hOAT3. Biopharm. Drug Dispos. 2011, 32, 518–524. [Google Scholar] [CrossRef]
- Vellonen, K.-S.; Häkli, M.; Merezhinskaya, N.; Tervo, T.; Honkakoski, P.; Urtti, A. Monocarboxylate Transport in Human Corneal Epithelium and Cell Lines. Eur. J. Pharm. Sci. 2010, 39, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Parepally, J.M.R.; Mandula, H.; Smith, Q.R. Brain Uptake of Nonsteroidal Anti-Inflammatory Drugs: Ibuprofen, Flurbiprofen, and Indomethacin. Pharm. Res. 2006, 23, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Goszczyński, T.M.; Fink, K.; Kowalski, K.; Leśnikowski, Z.J.; Boratyński, J. Interactions of Boron Clusters and their Derivatives with Serum Albumin. Sci. Rep. 2017, 7, 9800. [Google Scholar] [CrossRef] [Green Version]
- Buzharevski, A.; Paskas, S.; Sárosi, M.; Laube, M.; Lönnecke, P.; Neumann, W.; Mijatovic, S.; Maksimovic-Ivanic, D.; Pietzsch, J.; Hey-Hawkins, E. Carboranyl Analogues of Celecoxib with Potent Cytostatic Activity against Human Melanoma and Colon Cancer Cell Lines. ChemMedChem 2019, 14, 315–321. [Google Scholar] [CrossRef]
- Buzharevski, A.; Paskaš, S.; Sárosi, M.-B.; Laube, M.; Lönnecke, P.; Neumann, W.; Murganić, B.; Mijatović, S.; Maksimović-Ivanić, D.; Pietzsch, J.; et al. Carboranyl Derivatives of Rofecoxib with Cytostatic Activity against Human Melanoma and Colon Cancer Cells. Sci. Rep. 2020, 10, 4827. [Google Scholar] [CrossRef] [PubMed]
- Mijatovic, S.; Maksimovic-Ivanic, D.; Radovic, J.; Popadic, D.; Momcilovic, M.; Harhaji, L.; Miljkovic, D.; Trajkovic, V. Aloe-Emodin Prevents Cytokine-Induced Tumor Cell Death: The Inhibition of Auto-Toxic Nitric Oxide Release as a Potential Mechanism. Cell. Mol. Life Sci. 2004, 61, 1805–1815. [Google Scholar] [CrossRef]
- Zakharkin, L.I.; Ol’shevaskaya, V.A. Experimental Estimation of the Distribution of Electron Density on the o-, m-, and p-Carborane Skeleton by Use of Carboranecarboxylic Acids. Zhurnal Obs. Khimii 1987, 57, 368–372. [Google Scholar]
- Spokoyny, A.M.; Lewis, C.D.; Teverovskiy, G.; Buchwald, S.L. Extremely Electron-Rich, Boron-Functionalized, Icosahedral Carborane-Based Phosphinoboranes. Organometallics 2012, 31, 8478–8481. [Google Scholar] [CrossRef]
- Harris, R.K.; Becker, E.D.; Cabral De Menezes, S.M.; Goodfellow, R.; Granger, P. NMR Nomenclature: Nuclear Spin Properties and Conventions for Chemical Shifts (IUPAC Recommendations 2001). Concepts Magn. Reson. 2002, 14, 326–346. [Google Scholar] [CrossRef]
- Isotope Distribution Calculator and Mass Spec Plotter. Available online: http://www.sisweb.com/mstools/isotope.htm (accessed on 30 September 2017).
Enzyme | Compound 5 | nido-Indoborin | Celecoxib | |
---|---|---|---|---|
Measured | Reported [39] | |||
COX-1 | >100 µM | >100 µM | >4 µM | 100 µM |
COX-2 | >100 µM | 0.91 µM | 0.051 µM | 0.04 ± 0.02 µM |
Method | Compound 5 | nido-Indoborin | Flurbiprofen [46] (Shake Flask) |
---|---|---|---|
1 | 2.00 | 1.94 | 0.91 |
2 | 1.86 | 2.05 |
Human | Rodent | ||||
---|---|---|---|---|---|
Cell Line | MTT | CV | Cell Line | MTT | CV |
A375 | 96 ± 5.9 | >100 | B16 | 79 ± 2.4 | 93.7 ± 3.8 |
HCT116 | >100 | >100 | B16–F10 | 74.7 ± 0.9 | 95 ± 4.6 |
HT29 | >100 | >100 | NIH/3T3 | 90 ± 10 | >100 |
LN229 | 95 ± 7.1 | 93.3 ± 9.5 | C6 | 92.8 ± 4.8 | 99.4 ± 0.8 |
U251 | 77.5 ± 7.2 | 90.1 ± 7.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saretz, S.; Basset, G.; Useini, L.; Laube, M.; Pietzsch, J.; Drača, D.; Maksimović-Ivanić, D.; Trambauer, J.; Steiner, H.; Hey-Hawkins, E. Modulation of γ-Secretase Activity by a Carborane-Based Flurbiprofen Analogue. Molecules 2021, 26, 2843. https://doi.org/10.3390/molecules26102843
Saretz S, Basset G, Useini L, Laube M, Pietzsch J, Drača D, Maksimović-Ivanić D, Trambauer J, Steiner H, Hey-Hawkins E. Modulation of γ-Secretase Activity by a Carborane-Based Flurbiprofen Analogue. Molecules. 2021; 26(10):2843. https://doi.org/10.3390/molecules26102843
Chicago/Turabian StyleSaretz, Stefan, Gabriele Basset, Liridona Useini, Markus Laube, Jens Pietzsch, Dijana Drača, Danijela Maksimović-Ivanić, Johannes Trambauer, Harald Steiner, and Evamarie Hey-Hawkins. 2021. "Modulation of γ-Secretase Activity by a Carborane-Based Flurbiprofen Analogue" Molecules 26, no. 10: 2843. https://doi.org/10.3390/molecules26102843
APA StyleSaretz, S., Basset, G., Useini, L., Laube, M., Pietzsch, J., Drača, D., Maksimović-Ivanić, D., Trambauer, J., Steiner, H., & Hey-Hawkins, E. (2021). Modulation of γ-Secretase Activity by a Carborane-Based Flurbiprofen Analogue. Molecules, 26(10), 2843. https://doi.org/10.3390/molecules26102843