Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications
Abstract
:1. Introduction
2. Grafting from Approach
3. Atom Transfer Radical Polymerization (ATRP)
3.1. SI-ATRP Polymerization to Prepare Polymer-Grafted SiO2 Nanoparticles
3.2. SI-ATRP Polymerization to Prepare Polymer-Grafted TiO2 Nanoparticles
3.3. SI-ATRP Polymerization to Prepare Polymer-Grafted BaTiO3 Nanoparticles
3.4. SI-ATRP Polymerization to Prepare Polymer-Grafted Al2O3 Nanoparticles
4. Reversible Addition−Fragmentation Chain-Transfer Polymerization (RAFT)
4.1. SI-RAFT Polymerization to Prepare Polymer-Grafted SiO2 Nanoparticles
4.2. SI-RAFT Polymerization to Prepare Polymer Grafted TiO2 Nanoparticles
4.3. SI-RAFT Polymerization to Prepare Polymer Grafted BaTiO3 Nanoparticles
5. SI-Nitroxide-Mediated Polymerization (SI-NMP) to Prepare Polymer Grafted Nanoparticles
5.1. SI-NMP Polymerization to Prepare Polymer Grafted SiO2 Nanoparticles
5.2. SI-NMP Polymerization to Prepare Polymer Grafted TiO2 and BaTiO3 Nanoparticles
6. Grafting to Method to Prepare Polymer Grafted Nanoparticles
6.1. Grafting to Method to Prepare Polymer-Grafted SiO2 Nanoparticles
6.2. Grafting to Method to Prepare Polymer Grafted TiO2 Nanoparticles
6.3. Grafting to Method to Prepare Polymer Grafted BaTiO3 Nanoparticles
6.4. Grafting to Method to Prepare Polymer Grafted Al2O3 Nanoparticles
7. In situ Polymerization to Prepare Polymer Grafted Nanoparticles
8. Templated Approach to Prepare Polymer Grafted Nanoparticles
9. Discussion
10. Summary and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Zhang, Q.M.; Li, H.; Poh, M.; Xia, F.; Cheng, Z.Y.; Xu, H.; Huang, C. An all-organic composite actuator material with a high dielectric constant. Nature 2002, 419, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, R.P.; Facchetti, A.; Marks, T.J. High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 2010, 110, 205–239. [Google Scholar] [CrossRef]
- Chauhan, A.; Patel, S.; Vaish, R.; Bowen, C. Anti-Ferroelectric Ceramics for High Energy Density Capacitors. Materials 2015, 8, 8009–8031. [Google Scholar] [CrossRef] [Green Version]
- Dang, Z.-M.; Yuan, J.-K.; Yao, S.-H.; Liao, R.-J. Flexible Nanodielectric Materials with High Permittivity for Power Energy Storage. Adv. Mater. 2013, 25, 6334–6365. [Google Scholar] [CrossRef] [PubMed]
- Hao, X. A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 2013, 03, 1330001. [Google Scholar] [CrossRef]
- Palneedi, H.; Peddigari, M.; Hwang, G.-T.; Jeong, D.-Y.; Ryu, J. High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook. Adv. Funct. Mater. 2018, 28, 1803665. [Google Scholar] [CrossRef]
- Ho, J.; Jow, T.R.; Boggs, S. Historical introduction to capacitor technology. IEEE Electr. Insul. Mag. 2010, 26, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Kishi, H.; Mizuno, Y.; Chazono, H. Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present and Future Perspectives. Jpn. J. Appl. Phys. 2003, 42, 1–15. [Google Scholar] [CrossRef]
- Du, H.; Lin, X.; Zheng, H.; Qu, B.; Huang, Y.; Chu, D. Colossal permittivity in percolative ceramic/metal dielectric composites. J. Alloys Compd. 2016, 663, 848–861. [Google Scholar] [CrossRef]
- Hong, K.; Lee, T.H.; Suh, J.M.; Yoon, S.-H.; Jang, H.W. Perspectives and challenges in multilayer ceramic capacitors for next generation electronics. J. Mater. Chem. C 2019, 7, 9782–9802. [Google Scholar] [CrossRef]
- Tan, D.Q. Review of Polymer-Based Nanodielectric Exploration and Film Scale-Up for Advanced Capacitors. Adv. Funct. Mater. 2019, 1808567. [Google Scholar] [CrossRef]
- Dang, Z.M.; Yuan, J.K.; Zha, J.W.; Zhou, T.; Li, S.T.; Hu, G.H. Fundamentals, processes and applications of high-permittivity polymer-matrix composites. Prog. Mater. Sci. 2012, 57, 660–723. [Google Scholar] [CrossRef]
- Singh, M.; Apata, I.E.; Samant, S.; Wu, W.; Tawade, B.V.; Pradhan, N.; Raghavan, D.; Karim, A. Nanoscale Strategies to Enhance the Energy Storage Capacity of Polymeric Dielectric Capacitors: Review of Recent Advances. Polym. Rev. 2021, 1–50. [Google Scholar] [CrossRef]
- Tawade, B.V.; Apata, I.E.; Singh, M.; Das, P.; Pradhan, N.; Al-Enizi, A.M.; Karim, A.; Raghavan, D. Recent developments in the synthesis of chemically modified nanomaterials for use in dielectric and electronics applications. Nanotechnology 2021, 32, 142004. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Zhou, X.; Ellingford, C.; Zhang, Y.; Chen, S.; Zhou, K.; Zhang, D.; Bowen, C.R.; Wan, C. Interface design for high energy density polymer nanocomposites. Chem. Soc. Rev. 2019, 48, 4424–4465. [Google Scholar] [CrossRef] [Green Version]
- Baer, E.; Zhu, L. 50th Anniversary Perspective: Dielectric Phenomena in Polymers and Multilayered Dielectric Films. Macromolecules 2017, 50, 2239–2256. [Google Scholar] [CrossRef]
- Maier, G. Low dielectric constant polymers for microelectronics. Prog. Polym. Sci. 2001, 26, 3–65. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, L. Polymer nanocomposites for electrical energy storage. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1421–1429. [Google Scholar] [CrossRef]
- Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105, 1025–1102. [Google Scholar] [CrossRef] [PubMed]
- Nikam, A.V.; Prasad, B.L.V.; Kulkarni, A.A. Wet chemical synthesis of metal oxide nanoparticles: A review. CrystEngComm 2018, 20, 5091–5107. [Google Scholar] [CrossRef]
- Walton, R.I. Subcritical solvothermal synthesis of condensed inorganic materials. Chem. Soc. Rev. 2002, 31, 230–238. [Google Scholar] [CrossRef]
- Park, J.; Joo, J.; Kwon, S.G.; Jang, Y.; Hyeon, T. Synthesis of Monodisperse Spherical Nanocrystals. Angew. Chemie Int. Ed. 2007, 46, 4630–4660. [Google Scholar] [CrossRef] [PubMed]
- Hyeon, T. Chemical synthesis of magnetic nanoparticles. Chem. Commun. 2003, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Hulkoti, N.I.; Taranath, T.C. Biosynthesis of nanoparticles using microbes—A review. Colloids Surfaces B Biointerfaces 2014, 121, 474–483. [Google Scholar] [CrossRef]
- Wei, J.; Zhu, L. Intrinsic polymer dielectrics for high energy density and low loss electric energy storage. Prog. Polym. Sci. 2020, 106, 101254. [Google Scholar] [CrossRef]
- Huan, T.D.; Boggs, S.; Teyssedre, G.; Laurent, C.; Cakmak, M.; Kumar, S.; Ramprasad, R. Advanced polymeric dielectrics for high energy density applications. Prog. Mater. Sci. 2016, 83, 236–269. [Google Scholar] [CrossRef]
- Paniagua, S.A.; Kim, Y.; Henry, K.; Kumar, R.; Perry, J.W.; Marder, S.R. Surface-Initiated Polymerization from Barium Titanate Nanoparticles for Hybrid Dielectric Capacitors. ACS Appl. Mater. Interfaces 2014, 6, 3477–3482. [Google Scholar] [CrossRef]
- Jouault, N.; Vallat, P.; Dalmas, F.; Said, S.; Jestin, J.; Boué, F. Well-Dispersed Fractal Aggregates as Filler in Polymer−Silica Nanocomposites: Long-Range Effects in Rheology. Macromolecules 2009, 42, 2031–2040. [Google Scholar] [CrossRef] [Green Version]
- Oberdisse, J.; El Harrak, A.; Carrot, G.; Jestin, J.; Boué, F. Structure and rheological properties of soft–hard nanocomposites: Influence of aggregation and interfacial modification. Polymer 2005, 46, 6695–6705. [Google Scholar] [CrossRef] [Green Version]
- Jestin, J.; Cousin, F.; Dubois, I.; Ménager, C.; Schweins, R.; Oberdisse, J.; Boué, F. Anisotropic Reinforcement of Nanocomposites Tuned by Magnetic Orientation of the Filler Network. Adv. Mater. 2008, 20, 2533–2540. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, B.; Ranjan, R.; Brittain, W.J. Surface initiated polymerizations from silica nanoparticles. Soft Matter 2006, 2, 386–396. [Google Scholar] [CrossRef]
- Chevigny, C.; Gigmes, D.; Bertin, D.; Jestin, J.; Boué, F. Polystyrene grafting from silica nanoparticles via nitroxide-mediated polymerization (NMP): Synthesis and SANS analysis with the contrast variation method. Soft Matter 2009, 5, 3741–3753. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Bockstaller, M.R.; Matyjaszewski, K. Brush-modified materials: Control of molecular architecture, assembly behavior, properties and applications. Prog. Polym. Sci. 2020, 100, 101180. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, X.; Yu, B.; Zhou, F. Brushing up functional materials. NPG Asia Mater. 2019, 11, 24. [Google Scholar] [CrossRef]
- Bouharras, F.E.; Raihane, M.; Ameduri, B. Recent progress on core-shell structured BaTiO3@polymer/fluorinated polymers nanocomposites for high energy storage: Synthesis, dielectric properties and applications. Prog. Mater. Sci. 2020, 113, 100670. [Google Scholar] [CrossRef]
- Chancellor, A.J.; Seymour, B.T.; Zhao, B. Characterizing Polymer-Grafted Nanoparticles: From Basic Defining Parameters to Behavior in Solvents and Self-Assembled Structures. Anal. Chem. 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenart, W.R.; Hore, M.J.A. Structure–property relationships of polymer-grafted nanospheres for designing advanced nanocomposites. Nano-Struct. Nano-Objects 2018, 16, 428–440. [Google Scholar] [CrossRef]
- Yan, J.; Pietrasik, J.; Wypych-Puszkarz, A.; Ciekanska, M.; Matyjaszewski, K. Synthesis of High k Nanoparticles by Controlled Radical Polymerization. In Solution-Processable Components for Organic Electronic Devices; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; pp. 181–226. [Google Scholar]
- Francis, R.; Joy, N.; Aparna, E.P.; Vijayan, R. Polymer Grafted Inorganic Nanoparticles, Preparation, Properties, and Applications: A Review. Polym. Rev. 2014, 54, 268–347. [Google Scholar] [CrossRef]
- Wang, Z.; Bockstaller, M.R.; Matyjaszewski, K. Synthesis and Applications of ZnO/Polymer Nanohybrids. ACS Mater. Lett. 2021, 599–621. [Google Scholar] [CrossRef]
- Fernandes, N.J.; Koerner, H.; Giannelis, E.P.; Vaia, R.A. Hairy nanoparticle assemblies as one-component functional polymer nanocomposites: Opportunities and challenges. MRS Commun. 2013, 3, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.A.; Ishige, R.; Cromwell, O.R.; Chung, J.; Takahara, A.; Guan, Z. Mechanically Robust and Self-Healable Superlattice Nanocomposites by Self-Assembly of Single-Component “Sticky” Polymer-Grafted Nanoparticles. Adv. Mater. 2015, 27, 3934–3941. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Morinaga, T.; Marukane, S.; Narutomi, T.; Igarashi, T.; Kawano, Y.; Ohno, K.; Fukuda, T.; Tsujii, Y. Novel Solid-State Polymer Electrolyte of Colloidal Crystal Decorated with Ionic-Liquid Polymer Brush. Adv. Mater. 2011, 23, 4868–4872. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gao, G.; Li, C.-Q.; Liu, F.-Q. Titania-Coated Polystyrene Hybrid Microballs Prepared with Miniemulsion Polymerization. Langmuir 2004, 20, 1420–1424. [Google Scholar] [CrossRef] [PubMed]
- Sondi, I.; Fedynyshyn, T.H.; Sinta, R.; Matijević, E. Encapsulation of Nanosized Silica by in Situ Polymerization of tert -Butyl Acrylate Monomer. Langmuir 2000, 16, 9031–9034. [Google Scholar] [CrossRef]
- Guo, Y.; Moffitt, M.G. Semiconductor quantum dots with environmentally responsive mixed polystyrene/poly(methyl methacrylate) brush layers. Macromolecules 2007, 40, 5868–5878. [Google Scholar] [CrossRef]
- Chen, Y.; Yoon, Y.J.; Pang, X.; He, Y.; Jung, J.; Feng, C.; Zhang, G.; Lin, Z. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers. Small 2016, 12, 6714–6723. [Google Scholar] [CrossRef] [PubMed]
- Zoppe, J.O.; Ataman, N.C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H.-A. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem. Rev. 2017, 117, 1105–1318. [Google Scholar] [CrossRef] [Green Version]
- Hui, C.M.; Pietrasik, J.; Schmitt, M.; Mahoney, C.; Choi, J.; Bockstaller, M.R.; Matyjaszewski, K. Surface-initiated polymerization as an enabling tool for multifunctional (Nano-)engineered hybrid materials. Chem. Mater. 2014, 26, 745–762. [Google Scholar] [CrossRef]
- Sakellariou, G.; Priftis, D.; Baskaran, D. Surface-initiated polymerization from carbon nanotubes: Strategies and perspectives. Chem. Soc. Rev. 2013, 42, 677–704. [Google Scholar] [CrossRef]
- Advincula, R.C. Surface Initiated Polymerization from Nanoparticle Surfaces. J. Dispers. Sci. Technol. 2003, 24, 343–361. [Google Scholar] [CrossRef]
- Edmondson, S.; Osborne, V.L.; Huck, W.T.S. Polymer brushes via surface-initiated polymerizations. Chem. Soc. Rev. 2004, 33, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszewski, K.; Miller, P.J.; Shukla, N.; Immaraporn, B.; Gelman, A.; Luokala, B.B.; Siclovan, T.M.; Kickelbick, G.; Vallant, T.; Hoffmann, H.; et al. Polymers at Interfaces: Using Atom Transfer Radical Polymerization in the Controlled Growth of Homopolymers and Block Copolymers from Silicon Surfaces in the Absence of Untethered Sacrificial Initiator. Macromolecules 1999, 32, 8716–8724. [Google Scholar] [CrossRef]
- Cheng, G.; Böker, A.; Zhang, M.; Krausch, G.; Müller, A.H.E. Amphiphilic Cylindrical Core−Shell Brushes via a “Grafting From” Process Using ATRP. Macromolecules 2001, 34, 6883–6888. [Google Scholar] [CrossRef]
- Li, C.; Benicewicz, B.C. Synthesis of Well-Defined Polymer Brushes Grafted onto Silica Nanoparticles via Surface Reversible Addition−Fragmentation Chain Transfer Polymerization. Macromolecules 2005, 38, 5929–5936. [Google Scholar] [CrossRef]
- Matsuno, R.; Yamamoto, K.; Otsuka, H.; Takahara, A. Polystyrene-Grafted Magnetite Nanoparticles Prepared through Surface-Initiated Nitroxyl-Mediated Radical Polymerization. Chem. Mater. 2003, 15, 3–5. [Google Scholar] [CrossRef]
- Husseman, M.; Malmström, E.E.; McNamara, M.; Mate, M.; Mecerreyes, D.; Benoit, D.G.; Hedrick, J.L.; Mansky, P.; Huang, E.; Russell, T.P.; et al. Controlled Synthesis of Polymer Brushes by “Living” Free Radical Polymerization Techniques. Macromolecules 1999, 32, 1424–1431. [Google Scholar] [CrossRef]
- Jiang, B.; Pang, X.; Li, B.; Lin, Z. Organic-Inorganic Nanocomposites via Placing Monodisperse Ferroelectric Nanocrystals in Direct and Permanent Contact with Ferroelectric Polymers. J. Am. Chem. Soc. 2015, 137, 11760–11767. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Sonawane, S.H. Ultrasound assited In-situ Emulsion polymerization for polymer nanocomposite: A review. Chem. Eng. Process. Process Intensif. 2014. [Google Scholar] [CrossRef]
- Sato, M.; Kato, T.; Ohishi, T.; Ishige, R.; Ohta, N.; White, K.L.; Hirai, T.; Takahara, A. Precise Synthesis of Poly(methyl methacrylate) Brush with Well-Controlled Stereoregularity Using a Surface-Initiated Living Anionic Polymerization Method. Macromolecules 2016, 49, 2071–2076. [Google Scholar] [CrossRef]
- Advincula, R.; Zhou, Q.; Park, M.; Wang, S.; Mays, J.; Sakellariou, G.; Pispas, S.; Hadjichristidis, N. Polymer Brushes by Living Anionic Surface Initiated Polymerization on Flat Silicon (SiOx) and Gold Surfaces: Homopolymers and Block Copolymers. Langmuir 2002, 18, 8672–8684. [Google Scholar] [CrossRef]
- Zhao, B.; Brittain, W.J. Synthesis of Polystyrene Brushes on Silicate Substrates via Carbocationic Polymerization from Self-Assembled Monolayers. Macromolecules 2000, 33, 342–348. [Google Scholar] [CrossRef]
- Zhao, B.; Brittain, W.J. Synthesis, Characterization, and Properties of Tethered Polystyrene- b -polyacrylate Brushes on Flat Silicate Substrates. Macromolecules 2000, 33, 8813–8820. [Google Scholar] [CrossRef]
- Hadjichristidis, N.; Iatrou, H.; Pispas, S.; Pitsikalis, M. Anionic polymerization: High vacuum techniques. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 3211–3234. [Google Scholar] [CrossRef]
- Jordan, R.; Ulman, A.; Kang, J.F.; Rafailovich, M.H.; Sokolov, J. Surface-Initiated Anionic Polymerization of Styrene by Means of Self-Assembled Monolayers. J. Am. Chem. Soc. 1999, 121, 1016–1022. [Google Scholar] [CrossRef]
- Li, Z.; Baskaran, D. Surface-Initiated Anionic Polymerization from Nanomaterials. In Anionic Polymerization; Springer: Tokyo, Japan, 2015; pp. 495–537. [Google Scholar]
- Advincula, R. Polymer Brushes by Anionic and Cationic Surface-Initiated Polymerization (SIP). In Surface-Initiated Polymerization I; Jordan, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 107–136. ISBN 978-3-540-30247-6. [Google Scholar]
- Prucker, O.; Rühe, J. Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators. Macromolecules 1998, 31, 592–601. [Google Scholar] [CrossRef]
- Prucker, O.; Rühe, J. Mechanism of Radical Chain Polymerizations Initiated by Azo Compounds Covalently Bound to the Surface of Spherical Particles. Macromolecules 1998, 31, 602–613. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Li, H.; Tang, Q.; Jiang, L.; Chi, L.; Fuchs, H.; Hu, W. Battery drivable organic single-crystalline transistors based on surface grafting ultrathin polymer dielectric. Adv. Funct. Mater. 2009, 19, 2987–2991. [Google Scholar] [CrossRef]
- Patten, T.E.; Matyjaszewski, K. Atom Transfer Radical Polymerization and the Synthesis of Polymeric Materials. Adv. Mater. 1998, 10, 901–915. [Google Scholar] [CrossRef]
- Bartholome, C.; Beyou, E.; Bourgeat-Lami, E.; Chaumont, P.; Lefebvre, F.; Zydowicz, N. Nitroxide-Mediated Polymerization of Styrene Initiated from the Surface of Silica Nanoparticles. In Situ Generation and Grafting of Alkoxyamine Initiators. Macromolecules 2005, 38, 1099–1106. [Google Scholar] [CrossRef]
- Grubbs, R.B. Nitroxide-Mediated Radical Polymerization: Limitations and Versatility. Polym. Rev. 2011, 51, 104–137. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Xia, J. Atom transfer radical polymerization. Chem. Rev. 2001, 101, 2921–2990. [Google Scholar] [CrossRef]
- Kamigaito, M.; Ando, T.; Sawamoto, M. Metal-Catalyzed Living Radical Polymerization. Chem. Rev. 2001, 101, 3689–3746. [Google Scholar] [CrossRef] [PubMed]
- Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45, 4015–4039. [Google Scholar] [CrossRef]
- Konkolewicz, D.; Wang, Y.; Zhong, M.; Krys, P.; Isse, A.A.; Gennaro, A.; Matyjaszewski, K. Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. A Critical Assessment of the SARA ATRP and SET-LRP Mechanisms. Macromolecules 2013, 46, 8749–8772. [Google Scholar] [CrossRef]
- Konkolewicz, D.; Wang, Y.; Krys, P.; Zhong, M.; Isse, A.A.; Gennaro, A.; Matyjaszewski, K. SARA ATRP or SET-LRP. End of controversy? Polym. Chem. 2014, 5, 4396–4417. [Google Scholar] [CrossRef]
- Jakubowski, W.; Min, K.; Matyjaszewski, K. Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene. Macromolecules 2006, 39, 39–45. [Google Scholar] [CrossRef]
- Wang, J.-S.; Matyjaszewski, K. “Living”/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator. Macromolecules 1995, 28, 7572–7573. [Google Scholar] [CrossRef]
- Corrigan, N.; Jung, K.; Moad, G.; Hawker, C.J.; Matyjaszewski, K.; Boyer, C. Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog. Polym. Sci. 2020, 111, 101311. [Google Scholar] [CrossRef]
- Wu, L.; Glebe, U.; Böker, A. Surface-initiated controlled radical polymerizations from silica nanoparticles, gold nanocrystals, and bionanoparticles. Polym. Chem. 2015, 6, 5143–5184. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yan, J.; Liu, T.; Wei, Q.; Li, S.; Olszewski, M.; Wu, J.; Sobieski, J.; Fantin, M.; Bockstaller, M.R.; et al. Control of Dispersity and Grafting Density of Particle Brushes by Variation of ATRP Catalyst Concentration. ACS Macro Lett. 2019, 8, 859–864. [Google Scholar] [CrossRef]
- Wang, Z.; Lee, J.; Wang, Z.; Zhao, Y.; Yan, J.; Lin, Y.; Li, S.; Liu, T.; Olszewski, M.; Pietrasik, J.; et al. Tunable Assembly of Block Copolymer Tethered Particle Brushes by Surface-Initiated Atom Transfer Radical Polymerization. ACS Macro Lett. 2020, 9, 806–812. [Google Scholar] [CrossRef]
- Farmer, S.C.; Patten, T.E. Photoluminescent Polymer/Quantum Dot Composite Nanoparticles. Chem. Mater. 2001, 13, 3920–3926. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, G.; Sun, B.; Chen, F.; Zhao, M.; Li, T. Tunable Shell Thickness in Silica Nanospheres Functionalized by a Hydrophobic PMMA-PSt Diblock Copolymer Brush via Activators Generated by Electron Transfer for Atom Transfer Radical Polymerization. Macromol. Chem. Phys. 2013, 214, 1602–1611. [Google Scholar] [CrossRef]
- Wang, Z.; Fantin, M.; Sobieski, J.; Wang, Z.; Yan, J.; Lee, J.; Liu, T.; Li, S.; Olszewski, M.; Bockstaller, M.R.; et al. Pushing the Limit: Synthesis of SiO 2–g -PMMA/PS Particle Brushes via ATRP with Very Low Concentration of Functionalized SiO 2 –Br Nanoparticles. Macromolecules 2019, 52, 8713–8723. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Ozalp, V.C.; Oztekin, M.; Arica, M.Y. Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. Talanta 2019, 200, 263–271. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Arica, M.Y. Star type polymer grafted and polyamidoxime modified silica coated-magnetic particles for adsorption of U(VI) ions from solution. Chem. Eng. Res. Des. 2019, 147, 146–159. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Phu Nguyen, T.N.; Nguyen, D.C.; Thanh Ho, V.T.; Islam, M.R.; Lim, K.T.; Bach, L.G. A Robust Modification of SiO2 Nanoparticles by Poly(2-hydroxyethylmethacrylate) via Surface-Initiated Atom Transfer Radical Polymerization. Asian J. Chem. 2019, 31, 337–342. [Google Scholar] [CrossRef]
- Ma, A.; Zhang, J.; Wang, N.; Bai, L.; Chen, H.; Wang, W.; Yang, H.; Yang, L.; Niu, Y.; Wei, D. Surface-Initiated Metal-Free Photoinduced ATRP of 4-Vinylpyridine from SiO 2 via Visible Light Photocatalysis for Self-Healing Hydrogels. Ind. Eng. Chem. Res. 2018, 57, 17417–17429. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, Y.; Wang, X.; Liu, S. Fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive poly(N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization. Chem. Mater. 2008, 20, 101–109. [Google Scholar] [CrossRef]
- Xing, L.; Guo, N.; Zhang, Y.; Zhang, H.; Liu, J. A negatively charged loose nanofiltration membrane by blending with poly (sodium 4-styrene sulfonate) grafted SiO2 via SI-ATRP for dye purification. Sep. Purif. Technol. 2015, 146, 50–59. [Google Scholar] [CrossRef]
- Du, Z.; Sun, X.; Tai, X.; Wang, G.; Liu, X. Synthesis of hybrid silica nanoparticles grafted with thermoresponsive poly(ethylene glycol) methyl ether methacrylate via AGET-ATRP. RSC Adv. 2015, 5, 17194–17201. [Google Scholar] [CrossRef] [Green Version]
- Saigal, T.; Dong, H.; Matyjaszewski, K.; Tilton, R.D. Pickering Emulsions Stabilized by Nanoparticles with Thermally Responsive Grafted Polymer Brushes. Langmuir 2010, 26, 15200–15209. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yuan, W.; Yuan, J.; Hong, X. Preparation of double-responsive SiO2-g-PDMAEMA nanoparticles via ATRP. Mater. Lett. 2008, 62, 1372–1375. [Google Scholar] [CrossRef]
- Pinto, J.C.; Whiting, G.L.; Khodabakhsh, S.; Torre, L.; Rodríguez, A.; Dalgliesh, R.M.; Higgins, A.M.; Andreasen, J.W.; Nielsen, M.M.; Geoghegan, M.; et al. Organic Thin Film Transistors with Polymer Brush Gate Dielectrics Synthesized by Atom Transfer Radical Polymerization. Adv. Funct. Mater. 2008, 18, 36–43. [Google Scholar] [CrossRef]
- Hwang, D.H.; Nomura, A.; Kim, J.; Kim, J.H.; Cho, H.; Lee, C.; Ohno, K.; Tsujii, Y. Synthesis and characterization of polystyrene brushes for organic thin film transistors. J. Nanosci. Nanotechnol. 2012, 12, 4137–4141. [Google Scholar] [CrossRef]
- Facchetti, A.; Yoon, M.-H.; Marks, T.J. Gate Dielectrics for Organic Field-Effect Transistors: New Opportunities for Organic Electronics. Adv. Mater. 2005, 17, 1705–1725. [Google Scholar] [CrossRef]
- Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. Gate Insulators in Organic Field-Effect Transistors. Chem. Mater. 2004, 16, 4543–4555. [Google Scholar] [CrossRef]
- Li, L.; Hu, W.; Chi, L.; Fuchs, H. Polymer brush and inorganic oxide hybrid nanodielectrics for high performance organic transistors. J. Phys. Chem. B 2010, 114, 5315–5319. [Google Scholar] [CrossRef] [PubMed]
- Kopeć, M.; Spanjers, J.; Scavo, E.; Ernens, D.; Duvigneau, J.; Julius Vancso, G. Surface-initiated ATRP from polydopamine-modified TiO2 nanoparticles. Eur. Polym. J. 2018, 106, 291–296. [Google Scholar] [CrossRef]
- Maeda, S.; Fujita, M.; Idota, N.; Matsukawa, K.; Sugahara, Y. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization. ACS Appl. Mater. Interfaces 2016, 8, 34762–34769. [Google Scholar] [CrossRef]
- Liu, L.; Chen, H.; Yang, F. Enhancing membrane performance by blending ATRP grafted PMMA-TiO 2 or PMMA-PSBMA-TiO2 in PVDF. Sep. Purif. Technol. 2014, 133, 22–31. [Google Scholar] [CrossRef]
- Fan, X.; Lin, L.; Messersmith, P.B. Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: A new route toward polymer-matrix nanocomposites. Compos. Sci. Technol. 2006, 66, 1198–1204. [Google Scholar] [CrossRef]
- Cui, W.W.; Tang, D.Y.; Gong, Z.L. Electrospun poly(vinylidene fluoride)/poly(methyl methacrylate) grafted TiO 2 composite nanofibrous membrane as polymer electrolyte for lithium-ion batteries. J. Power Sources 2013, 223, 206–213. [Google Scholar] [CrossRef]
- Xia, R.; Ruan, Z.; Zhang, Y.; Zhu, H.; Cao, M.; Chen, P.; Miao, J.; Qian, J. Click polymerization and characterization of TiO2 nanoparticles to one-dimensional nanochains. Chem. Phys. Lett. 2017, 687, 312–316. [Google Scholar] [CrossRef]
- Kumar, A.; Bansal, A.; Behera, B.; Jain, S.L.; Ray, S.S. Ternary hybrid polymeric nanocomposites through grafting of polystyrene on graphene oxide-TiO2 by surface initiated atom transfer radical polymerization (SI-ATRP). Mater. Chem. Phys. 2016, 172, 189–196. [Google Scholar] [CrossRef]
- Vergnat, V.; Roland, T.; Pourroy, G.; Masson, P. Effect of covalent grafting on mechanical properties of TiO 2/polystyrene composites. Mater. Chem. Phys. 2014, 147, 261–267. [Google Scholar] [CrossRef]
- Wang, W.; Cao, H.; Zhu, G.; Wang, P. A facile strategy to modify TiO 2 nanoparticles via surface-initiated ATRP of styrene. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 1782–1790. [Google Scholar] [CrossRef]
- Tae Park, J.; Soo Lee, C.; Hun Park, C.; Hak Kim, J. Preparation of TiO2/Ag binary nanocomposite as high-activity visible-light-driven photocatalyst via graft polymerization. Chem. Phys. Lett. 2017, 685, 119–126. [Google Scholar] [CrossRef]
- Park, J.T.; Koh, J.H.; Roh, D.K.; Shul, Y.G.; Kim, J.H. Proton-conducting nanocomposite membranes based on P(VDF-co-CTFE)-g-PSSA graft copolymer and TiO2-PSSA nanoparticles. Int. J. Hydrogen Energy 2011, 36, 1820–1827. [Google Scholar] [CrossRef]
- Park, J.T.; Koh, J.H.; Seo, J.A.; Cho, Y.S.; Kim, J.H. Synthesis and characterization of TiO 2 /Ag/polymer ternary nanoparticles via surface-initiated atom transfer radical polymerization. Appl. Surf. Sci. 2011, 257, 8301–8306. [Google Scholar] [CrossRef]
- Park, J.T.; Koh, J.H.; Koh, J.K.; Kim, J.H. Surface-initiated atom transfer radical polymerization from TiO2 nanoparticles. Appl. Surf. Sci. 2009, 255, 3739–3744. [Google Scholar] [CrossRef]
- Gong, Z.; Tang, D.; Guo, Y. The fabrication and self-flocculation effect of hybrid TiO2 nanoparticles grafted with poly(N-isopropylacrylamide) at ambient temperature via surface-initiated atom transfer radical polymerization. J. Mater. Chem. 2012, 22, 16872. [Google Scholar] [CrossRef]
- Chen, H.; Pan, S.; Xiong, Y.; Peng, C.; Pang, X.; Li, L.; Xiong, Y.; Xu, W. Preparation of thermo-responsive superhydrophobic TiO 2 /poly(N- isopropylacrylamide) microspheres. Appl. Surf. Sci. 2012, 258, 9505–9509. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, S.; Zhang, L.; Meng, Q.; Shen, C.; Zhang, J. Novel polysulfone hybrid ultrafiltration membrane prepared with TiO2-g-HEMA and its antifouling characteristics. J. Memb. Sci. 2013, 436, 163–173. [Google Scholar] [CrossRef]
- Krysiak, E.; Wypych-Puszkarz, A.; Krysiak, K.; Nowaczyk, G.; Makrocka-Rydzyk, M.; Jurga, S.; Ulanski, J. Core-shell system based on titanium dioxide with elevated value of dielectric permittivity: Synthesis and characterization. Synth. Met. 2015, 209, 150–157. [Google Scholar] [CrossRef]
- Xie, L.; Huang, X.; Wu, C.; Jiang, P. Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: A route to high dielectric constant materials with the inherent low loss of the base polymer. J. Mater. Chem. 2011, 21, 5897–5906. [Google Scholar] [CrossRef]
- You, N.; Zhang, C.; Liang, Y.; Zhang, Q.; Fu, P.; Liu, M.; Zhao, Q.; Cui, Z.; Pang, X. Facile Fabrication of Size-Tunable Core/Shell Ferroelectric/Polymeric Nanoparticles with Tailorable Dielectric Properties via Organocatalyzed Atom Transfer Radical Polymerization Driven by Visible Light. Sci. Rep. 2019, 9, 1869. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, S.; Wang, F.; Ma, Y.; Wang, L.; Chen, D.; Zhao, C.; Yang, W. Improving dielectric properties of BaTiO3/poly(vinylidene fluoride) composites by employing core-shell structured BaTiO3@Poly(methylmethacrylate) and BaTiO3@Poly(trifluoroethyl methacrylate) nanoparticles. Appl. Surf. Sci. 2017, 403, 71–79. [Google Scholar] [CrossRef]
- Bobnar, V.; LeV·stik, A.; Huang, C.; Zhang, Q.M. Intrinsic dielectric properties and charge transport in oligomers of organic semiconductor copper phthalocyanine. Phys. Rev. B 2005, 71, 041202. [Google Scholar] [CrossRef]
- Nalwa, H.S.; Dalton, L.R.; Vasudevan, P. Dielectric properties of copper-phthalocyanine polymer. Eur. Polym. J. 1985, 21, 943–947. [Google Scholar] [CrossRef]
- Wang, J.; Guan, F.; Cui, L.; Pan, J.; Wang, Q.; Zhu, L. Achieving high electric energy storage in a polymer nanocomposite at low filling ratios using a highly polarizable phthalocyanine interphase. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 1669–1680. [Google Scholar] [CrossRef]
- Xie, L.; Huang, X.; Huang, Y.; Yang, K.; Jiang, P. Core@Double-Shell Structured BaTiO 3 –Polymer Nanocomposites with High Dielectric Constant and Low Dielectric Loss for Energy Storage Application. J. Phys. Chem. C 2013, 117, 22525–22537. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Ma, Y.; Zhao, C.; Yang, W. Preparation and dielectric properties of core–shell structural composites of poly(1H,1H,2H,2H-perfluorooctyl methacrylate)@BaTiO3 nanoparticles. Appl. Surf. Sci. 2013, 277, 121–127. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, X.; Schadler, L.S.; He, J.; Jiang, P. Core@Double-Shell Structured Nanocomposites: A Route to High Dielectric Constant and Low Loss Material. ACS Appl. Mater. Interfaces 2016, 8, 25496–25507. [Google Scholar] [CrossRef] [PubMed]
- Cobo Sánchez, C.; Wåhlander, M.; Taylor, N.; Fogelström, L.; Malmström, E. Novel Nanocomposites of Poly(lauryl methacrylate)-Grafted Al2O3 Nanoparticles in LDPE. ACS Appl. Mater. Interfaces 2015, 7, 25669–25678. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, C.A.; Fillery, S.P.; Koerner, H.; Tchoul, M.; Drummy, L.; Beier, C.W.; Brutchey, R.L.; Durstock, M.F.; Vaia, R.A. Dielectric performance of high permitivity nanocomposites: Impact of polystyrene grafting on BaTiO3 and TiO2. Nanocomposites 2016, 2, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Lv, X.; Han, X.; Luo, H.; Bowen, C.R.; Zhang, D. Significantly improved energy density of BaTiO 3 nanocomposites by accurate interfacial tailoring using a novel rigid-fluoro-polymer. Polym. Chem. 2018, 9, 548–557. [Google Scholar] [CrossRef]
- Ma, J.; Azhar, U.; Zong, C.; Zhang, Y.; Xu, A.; Zhai, C.; Zhang, L.; Zhang, S. Core-shell structured PVDF@BT nanoparticles for dielectric materials: A novel composite to prove the dependence of dielectric properties on ferroelectric shell. Mater. Des. 2019, 164, 107556. [Google Scholar] [CrossRef]
- Kim, K.; Park, M.S.; Na, Y.; Choi, J.; Jenekhe, S.A.; Kim, F.S. Preparation and application of polystyrene-grafted alumina core-shell nanoparticles for dielectric surface passivation in solution-processed polymer thin film transistors. Org. Electron. 2019, 65, 305–310. [Google Scholar] [CrossRef]
- Xie, L.; Huang, X.; Yang, K.; Li, S.; Jiang, P. “Grafting to” route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications. J. Mater. Chem. A 2014, 2, 5244. [Google Scholar] [CrossRef]
- Ejaz, M.; Puli, V.S.; Elupula, R.; Adireddy, S.; Riggs, B.C.; Chrisey, D.B.; Grayson, S.M. Core-shell structured poly(glycidyl methacrylate)/BaTiO3 nanocomposites prepared by surface-initiated atom transfer radical polymerization: A novel material for high energy density dielectric storage. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 719–728. [Google Scholar] [CrossRef]
- Qiao, Y.; Islam, M.S.; Wang, L.; Yan, Y.; Zhang, J.; Benicewicz, B.C.; Ploehn, H.J.; Tang, C. Thiophene Polymer-Grafted Barium Titanate Nanoparticles toward Nanodielectric Composites. Chem. Mater. 2014, 26, 5319–5326. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Gong, S.; Ren, K. Significantly enhanced breakdown field for core-shell structured poly(vinylidene fluoride-hexafluoropropylene)/TiO2 nanocomposites for ultra-high energy density capacitor applications. J. Appl. Phys. 2018, 124, 154103. [Google Scholar] [CrossRef]
- Tchoul, M.N.; Fillery, S.P.; Koerner, H.; Drummy, L.F.; Oyerokun, F.T.; Mirau, P.A.; Durstock, M.F.; Vaia, R.A. Assemblies of titanium dioxide-polystyrene hybrid nanoparticles for dielectric applications. Chem. Mater. 2010, 22, 1749–1759. [Google Scholar] [CrossRef]
- Crippa, M.; Bianchi, A.; Cristofori, D.; D’Arienzo, M.; Merletti, F.; Morazzoni, F.; Scotti, R.; Simonutti, R. High dielectric constant rutile-polystyrene composite with enhanced percolative threshold. J. Mater. Chem. C 2013, 1, 484–492. [Google Scholar] [CrossRef]
- Yang, C.; Marian, C.; Liu, J.; Di, Q.; Xu, M.; Zhang, Y.; Han, W.; Liu, K. Polymer grafted aluminum nanoparticles for percolative composite films with enhanced compatibility. Polymers 2019, 11, 638. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Li, Y.; Tang, S.; Thompson, R.D.; Zhu, L. The Role of Field Electron Emission in Polypropylene/Aluminum Nanodielectrics Under High Electric Fields. ACS Appl. Mater. Interfaces 2017, 9, 10106–10119. [Google Scholar] [CrossRef]
- Yu, J.; Huo, R.; Wu, C.; Wu, X.; Wang, G.; Jiang, P. Influence of interface structure on dielectric properties of epoxy/alumina nanocomposites. Macromol. Res. 2012, 20, 816–826. [Google Scholar] [CrossRef]
- Fredin, L.A.; Li, Z.; Lanagan, M.T.; Ratner, M.A.; Marks, T.J. Substantial recoverable energy storage in percolative metallic aluminum-polypropylene nanocomposites. Adv. Funct. Mater. 2013, 23, 3560–3569. [Google Scholar] [CrossRef]
- Chiefari, J.; Chong, Y.K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.T.; Mayadunne, R.T.A.; Meijs, G.F.; Moad, C.L.; Moad, G.; et al. (Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 31, 5559–5562. [Google Scholar] [CrossRef]
- Goto, A.; Fukuda, T. Kinetics of living radical polymerization. Prog. Polym. Sci. 2004, 29, 329–385. [Google Scholar] [CrossRef]
- Fischer, H. The Persistent Radical Effect: A Principle for Selective Radical Reactions and Living Radical Polymerizations. Chem. Rev. 2001, 101, 3581–3610. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, M.; Terashima, T.; Sawamoto, M. Transition Metal-Catalyzed Living Radical Polymerization: Toward Perfection in Catalysis and Precision Polymer Synthesis. Chem. Rev. 2009, 109, 4963–5050. [Google Scholar] [CrossRef]
- Nicolas, J.; Guillaneuf, Y.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-Mediated Polymerization. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherland, 2012; Volume 3, pp. 277–350. ISBN 9780080878621. [Google Scholar]
- Moad, G.; Rizzardo, E.; Thang, S.H. Living Radical Polymerization by the RAFT Process—A Third Update. Aust. J. Chem. 2012, 65, 985–1076. [Google Scholar] [CrossRef]
- Perrier, S. 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules 2017, 50, 7433–7447. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S.H. Radical addition–fragmentation chemistry in polymer synthesis. Polymer (Guildf). 2008, 49, 1079–1131. [Google Scholar] [CrossRef] [Green Version]
- Gody, G.; Maschmeyer, T.; Zetterlund, P.B.; Perrier, S. Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nat. Commun. 2013, 4, 2505. [Google Scholar] [CrossRef]
- Gody, G.; Maschmeyer, T.; Zetterlund, P.B.; Perrier, S. Pushing the Limit of the RAFT Process: Multiblock Copolymers by One-Pot Rapid Multiple Chain Extensions at Full Monomer Conversion. Macromolecules 2014, 47, 3451–3460. [Google Scholar] [CrossRef]
- Chapman, R.; Gormley, A.J.; Herpoldt, K.-L.; Stevens, M.M. Highly Controlled Open Vessel RAFT Polymerizations by Enzyme Degassing. Macromolecules 2014, 47, 8541–8547. [Google Scholar] [CrossRef]
- Gody, G.; Barbey, R.; Danial, M.; Perrier, S. Ultrafast RAFT polymerization: Multiblock copolymers within minutes. Polym. Chem. 2015, 6, 1502–1511. [Google Scholar] [CrossRef]
- Gody, G.; Rossner, C.; Moraes, J.; Vana, P.; Maschmeyer, T.; Perrier, S. One-Pot RAFT/“Click” Chemistry via Isocyanates: Efficient Synthesis of α-End-Functionalized Polymers. J. Am. Chem. Soc. 2012, 134, 12596–12603. [Google Scholar] [CrossRef]
- Moraes, J.; Maschmeyer, T.; Perrier, S. “Pseudo-star” Copolymers Formed by a Combination of RAFT Polymerization and Isocyanate-Coupling. Aust. J. Chem. 2011, 64, 1047. [Google Scholar] [CrossRef]
- Zhao, Y.; Perrier, S. Synthesis of Well-Defined Homopolymer and Diblock Copolymer Grafted onto Silica Particles by Z-Supported RAFT Polymerization. Macromolecules 2006, 39, 8603–8608. [Google Scholar] [CrossRef]
- Stenzel, M.H.; Zhang, L.; Huck, W.T.S. Temperature-Responsive Glycopolymer Brushes Synthesized via RAFT Polymerization Using the Z-group Approach. Macromol. Rapid Commun. 2006, 27, 1121–1126. [Google Scholar] [CrossRef]
- Zhu, L.-J.; Zhu, L.-P.; Zhang, P.-B.; Zhu, B.-K.; Xu, Y.-Y. Surface zwitterionicalization of poly(vinylidene fluoride) membranes from the entrapped reactive core–shell silica nanoparticles. J. Colloid Interface Sci. 2016, 468, 110–119. [Google Scholar] [CrossRef]
- Le-Masurier, S.P.; Gody, G.; Perrier, S.; Granville, A.M. One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and “grafting from” RAFT polymerization. Polym. Chem. 2014, 5, 2816–2823. [Google Scholar] [CrossRef]
- Cai, Y.; Peng, W.; Demeshko, S.; Tian, J.; Vana, P. Silica-Coated Magnetite Nanoparticles Carrying a High-Density Polymer Brush Shell of Hydrophilic Polymer. Macromol. Rapid Commun. 2018, 39, 1800226. [Google Scholar] [CrossRef]
- Qu, Z.; Hu, F.; Chen, K.; Duan, Z.; Gu, H.; Xu, H. A facile route to the synthesis of spherical poly(acrylic acid) brushes via RAFT polymerization for high-capacity protein immobilization. J. Colloid Interface Sci. 2013, 398, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, L.; Shi, S.; Chen, S.; Zhou, N.; Zhang, Z.; Cheng, Z.; Zhu, X. A Novel and Universal Route to SiO 2 -Supported Organic/Inorganic Hybrid Noble Metal Nanomaterials via Surface RAFT Polymerization. Langmuir 2010, 26, 14806–14813. [Google Scholar] [CrossRef]
- Zhu, L.-J.; Zhu, L.-P.; Jiang, J.-H.; Yi, Z.; Zhao, Y.-F.; Zhu, B.-K.; Xu, Y.-Y. Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly(2-hydroxyethyl methacrylate) grafted silica nanoparticles as additive. J. Memb. Sci. 2014, 451, 157–168. [Google Scholar] [CrossRef]
- Tumnantong, D.; Rempel, G.; Prasassarakich, P. Polyisoprene-Silica Nanoparticles Synthesized via RAFT Emulsifier-Free Emulsion Polymerization Using Water-Soluble Initiators. Polymers 2017, 9, 637. [Google Scholar] [CrossRef] [Green Version]
- Bach, L.G.; Quynh, B.T.P.; Thuong, N.T.; Ho, V.T.T. Synthesis and characterization of photoluminescent Eu(III) coordinated with poly(2-hydroxyethyl methacrylate) grafted SiO 2 nanoparticles via surface RAFT polymerization. Mol. Cryst. Liq. Cryst. 2017, 644, 175–182. [Google Scholar] [CrossRef]
- Bach, L.G.; Bui, Q.T.P.; Cao, X.T.; Ho, V.T.T.; Lim, K.T. A new approach for synthesis of SiO2/poly(2-hydroxyethyl methacrylate):Tb3+ nanohybrids by combination of surface-initiated raft polymerization and coordination chemistry. Polym. Bull. 2016, 73, 2627–2638. [Google Scholar] [CrossRef]
- Huang, G.; Xiong, Z.; Qin, H.; Zhu, J.; Sun, Z.; Zhang, Y.; Peng, X.; Ou, J.; Zou, H. Synthesis of zwitterionic polymer brushes hybrid silica nanoparticles via controlled polymerization for highly efficient enrichment of glycopeptides. Anal. Chim. Acta 2014, 809, 61–68. [Google Scholar] [CrossRef]
- Bouharras, F.E.; Raihane, M.; Silly, G.; Totee, C.; Ameduri, B. Core–shell structured poly(vinylidene fluoride)- grafted -BaTiO 3 nanocomposites prepared via reversible addition–fragmentation chain transfer (RAFT) polymerization of VDF for high energy storage capacitors. Polym. Chem. 2019, 10, 891–904. [Google Scholar] [CrossRef]
- Qian, K.; Lv, X.; Chen, S.; Luo, H.; Zhang, D. Interfacial engineering tailoring the dielectric behavior and energy density of BaTiO 3 /P(VDF-TrFE-CTFE) nanocomposites by regulating a liquid-crystalline polymer modifier structure. Dalt. Trans. 2018, 47, 12759–12768. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, C.; Zhou, X.; Chen, S.; Luo, H.; Bowen, C.R.; Zhou, K. High Performance Capacitors Using BaTiO 3 Nanowires Engineered by Rigid Liquid-crystalline Polymers. J. Phys. Chem. C 2017, 121, 20075–20083. [Google Scholar] [CrossRef]
- Cao, X.T.; Showkat, A.M.; Lee, W.-K.; Lim, K.T. Luminescence of Terbium (III) Complexes Incorporated in Carboxylic Acid Functionalized Polystyrene/BaTiO 3 Nanocomposites. Mol. Cryst. Liq. Cryst. 2015, 622, 36–43. [Google Scholar] [CrossRef]
- Qiao, Y.; Yin, X.; Wang, L.; Islam, M.S.; Benicewicz, B.C.; Ploehn, H.J.; Tang, C. Bimodal Polymer Brush Core–Shell Barium Titanate Nanoparticles: A Strategy for High-Permittivity Polymer Nanocomposites. Macromolecules 2015, 48, 8998–9006. [Google Scholar] [CrossRef]
- Qiao, Y.; Islam, M.S.; Han, K.; Leonhardt, E.; Zhang, J.; Wang, Q.; Ploehn, H.J.; Tang, C. Polymers Containing Highly Polarizable Conjugated Side Chains as High-Performance All-Organic Nanodielectric Materials. Adv. Funct. Mater. 2013, 23, 5638–5646. [Google Scholar] [CrossRef]
- Yang, K.; Huang, X.; Huang, Y.; Xie, L.; Jiang, P. Fluoro-Polymer@BaTiO 3 Hybrid Nanoparticles Prepared via RAFT Polymerization: Toward Ferroelectric Polymer Nanocomposites with High Dielectric Constant and Low Dielectric Loss for Energy Storage Application. Chem. Mater. 2013, 25, 2327–2338. [Google Scholar] [CrossRef]
- Yang, K.; Huang, X.; Xie, L.; Wu, C.; Jiang, P.; Tanaka, T. Core-Shell Structured Polystyrene/BaTiO 3 Hybrid Nanodielectrics Prepared by In Situ RAFT Polymerization: A Route to High Dielectric Constant and Low Loss Materials with Weak Frequency Dependence. Macromol. Rapid Commun. 2012, 33, 1921–1926. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Khani, M.M.; Krentz, T.M.; Huang, Y.; Zhou, Y.; Benicewicz, B.C.; Nelson, J.K.; Schadler, L.S. Suppression of space charge in crosslinked polyethylene filled with poly(stearyl methacrylate)-grafted SiO 2 nanoparticles. Appl. Phys. Lett. 2017, 110, 132903. [Google Scholar] [CrossRef] [Green Version]
- Krentz, T.; Khani, M.M.; Bell, M.; Benicewicz, B.C.; Nelson, J.K.; Zhao, S.; Hillborg, H.; Schadler, L.S. Morphologically dependent alternating-current and direct-current breakdown strength in silica-polypropylene nanocomposites. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Xiong, L.; Liang, H.B.; Wang, R.M.; Pang, Y. The effect of surface modification of TiO2 with diblock copolymers on the properties of epoxy nanocomposites. Polym. Plast. Technol. Eng. 2010, 49, 1483–1488. [Google Scholar] [CrossRef]
- Li, C.; Han, J.; Ryu, C.Y.; Benicewicz, B.C. A versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted-nanoparticles. Macromolecules 2006, 39, 3175–3183. [Google Scholar] [CrossRef]
- Schadler, L.S.; Kumar, S.K.; Benicewicz, B.C.; Lewis, S.L.; Harton, S.E. Designed Interfaces in Polymer Nanocomposites: A Fundamental Viewpoint. MRS Bull. 2007, 32, 335–340. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Krentz, T.M.; Wang, L.; Benicewicz, B.C.; Schadler, L.S. Ligand Engineering of Polymer Nanocomposites: From the Simple to the Complex. ACS Appl. Mater. Interfaces 2014, 6, 6005–6021. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, B.; Neely, T.; Rungta, A.; Benicewicz, B.C.; Schadler, L.S. Thermomechanical Properties of Bimodal Brush Modified Nanoparticle Composites. Macromolecules 2013, 46, 4909–4918. [Google Scholar] [CrossRef]
- Rungta, A.; Natarajan, B.; Neely, T.; Dukes, D.; Schadler, L.S.; Benicewicz, B.C. Grafting Bimodal Polymer Brushes on Nanoparticles Using Controlled Radical Polymerization. Macromolecules 2012, 45, 9303–9311. [Google Scholar] [CrossRef]
- Tanaka, T. Dielectric nanocomposites with insulating properties. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 914–928. [Google Scholar] [CrossRef]
- Siddabattuni, S.; Schuman, T.P.; Dogan, F. Dielectric properties of polymer-particle nanocomposites influenced by electronic nature of filler surfaces. ACS Appl. Mater. Interfaces 2013, 5, 1917–1927. [Google Scholar] [CrossRef]
- Bell, M.; Krentz, T.; Keith Nelson, J.; Schadler, L.; Wu, K.; Breneman, C.; Zhao, S.; Hillborg, H.; Benicewicz, B. Investigation of dielectric breakdown in silica-epoxy nanocomposites using designed interfaces. J. Colloid Interface Sci. 2017, 495, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Di Nicola, M.; Khani, M.M.; Jestin, J.; Benicewicz, B.C.; Kumar, S.K. Self-Assembly of Monodisperse versus Bidisperse Polymer-Grafted Nanoparticles. ACS Macro Lett. 2016, 5, 790–795. [Google Scholar] [CrossRef]
- Hojjati, B.; Charpentier, P.A. Synthesis of TiO2-polymer nanocomposite in supercritical CO2 via RAFT polymerization. Polymer 2010, 51, 5345–5351. [Google Scholar] [CrossRef]
- Hojjati, B.; Charpentier, P.A. Synthesis and kinetics of graft polymerization of methyl methacrylate from the RAFT coordinated surface of nano-TiO2. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 3926–3937. [Google Scholar] [CrossRef]
- Gregurec, D.; Politakos, N.; Yate, L.; Moya, S.E. Strontium confinement in polyacrylic acid brushes: A soft nanoarchitectonics approach for the design of titania coatings with enhanced osseointegration. Mol. Syst. Des. Eng. 2019, 4, 421–430. [Google Scholar] [CrossRef]
- Hojjati, B.; Sui, R.; Charpentier, P.A. Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer 2007, 48, 5850–5858. [Google Scholar] [CrossRef]
- Rafiei, H.; Abbasian, M.; Yegani, R. Synthesis of well-defined poly(n-vinylpyrrolidone)/n-TiO2 nanocomposites by xanthate-mediated radical polymerization. Iran. Polym. J. (Engl. Ed.) 2020. [Google Scholar] [CrossRef]
- Abbasian, M.; Masoumi, B.; Masoudi, A.; Rashidzadeh, B. Synthesis and Characterization of Poly Chloromethylstyrene TiO2-Nanocomposite Through a Simple Method via Reversible Addition-Fragmentation Transfer Polymerization. Polym. Plast. Technol. Eng. 2014, 53, 1150–1159. [Google Scholar] [CrossRef]
- Che, X.C.; Jin, Y.Z.; Lee, Y.S. Preparation of nano-TiO2/polyurethane emulsions via in situ RAFT polymerization. Prog. Org. Coatings 2010, 69, 534–538. [Google Scholar] [CrossRef]
- Xiong, L.; Wang, R.; Liang, H.; Pang, Y.; Guan, J. Synthesis and characterization of poly(methyl methacrylate)-b-polystyrene/ TiO2 nanocomposites via reversible addition-fragmentation chain transfer polymerization. J. Macromol. Sci. Part A Pure Appl. Chem. 2010, 47, 903–908. [Google Scholar] [CrossRef]
- Zhu, M.; Huang, X.; Yang, K.; Zhai, X.; Zhang, J.; He, J.; Jiang, P. Energy Storage in Ferroelectric Polymer Nanocomposites Filled with Core–Shell Structured Polymer@BaTiO3 Nanoparticles: Understanding the Role of Polymer Shells in the Interfacial Regions. ACS Appl. Mater. Interfaces 2014, 6, 19644–19654. [Google Scholar] [CrossRef] [PubMed]
- Georges, M.K.; Veregin, R.P.N.; Kazmaier, P.M.; Hamer, G.K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987–2988. [Google Scholar] [CrossRef]
- Goto, A.; Fukuda, T. Kinetic Study on Nitroxide-Mediated Free Radical Polymerization of tert -Butyl Acrylate. Macromolecules 1999, 32, 618–623. [Google Scholar] [CrossRef]
- Guillaneuf, Y.; Gigmes, D.; Marque, S.R.A.; Astolfi, P.; Greci, L.; Tordo, P.; Bertin, D. First Effective Nitroxide-Mediated Polymerization of Methyl Methacrylate. Macromolecules 2007, 40, 3108–3114. [Google Scholar] [CrossRef]
- Nicolas, J.; Charleux, B.; Guerret, O.; Magnet, S. Nitroxide-Mediated Controlled Free-Radical Emulsion Polymerization of Styrene andn-Butyl Acrylate with a Water-Soluble Alkoxyamine as Initiator. Angew. Chemie 2004, 116, 6312–6315. [Google Scholar] [CrossRef]
- Couvreur, L.; Lefay, C.; Belleney, J.; Charleux, B.; Guerret, O.; Magnet, S. First Nitroxide-Mediated Controlled Free-Radical Polymerization of Acrylic Acid. Macromolecules 2003, 36, 8260–8267. [Google Scholar] [CrossRef]
- Deleuze, C.; Delville, M.H.; Pellerin, V.; Derail, C.; Billon, L. Hybrid Core@Soft Shell Particles as Adhesive Elementary Building Blocks for Colloidal Crystals. Macromolecules 2009, 42, 5303–5309. [Google Scholar] [CrossRef]
- Parvole, J.; Ahrens, L.; Blas, H.; Vinas, J.; Boissière, C.; Sanchez, C.; Save, M.; Charleux, B. Grafting polymer chains bearing an N -succinimidyl activated ester end-group onto primary amine-coated silica particles and application of a simple, one-step approach via nitroxide-mediated controlled/living free-radical polymerization. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 173–185. [Google Scholar] [CrossRef]
- Ostaci, R.; Celle, C.; Seytre, G.; Beyou, E.; Chapel, J.; Drockenmuller, E. Influence of nitroxide structure on polystyrene brushes “grafted-from” silicon wafers. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 3367–3374. [Google Scholar] [CrossRef]
- Benoit, D.; Grimaldi, S.; Robin, S.; Finet, J.-P.; Tordo, P.; Gnanou, Y. Kinetics and Mechanism of Controlled Free-Radical Polymerization of Styrene and n -Butyl Acrylate in the Presence of an Acyclic β-Phosphonylated Nitroxide. J. Am. Chem. Soc. 2000, 122, 5929–5939. [Google Scholar] [CrossRef]
- Pitliya, P.; Butcher, R.J.; Karim, A.; Hudrlik, P.F.; Hudrlik, A.M.; Raghavan, D. 3-[1-(4-Bromophenyl)ethoxy]-2,2,5-trimethyl-4-phenyl-3-azahexane. Acta Crystallogr. Sect. E Struct. Reports Online 2013, 69, o1792–o1793. [Google Scholar] [CrossRef]
- Ni, G.; Yang, W.; Bo, L.; Guo, H.; Zhang, W.; Gao, J. Preparation of polystyrene/SiO2 nanocomposites by surface-initiated nitroxide-mediated radical polymerization. Chinese Sci. Bull. 2006, 51, 1644–1647. [Google Scholar] [CrossRef]
- Matsuno, R.; Otsuka, H.; Takahara, A. Polystyrene-grafted titanium oxide nanoparticles prepared through surface-initiated nitroxide-mediated radical polymerization and their application to polymer hybrid thin films. Soft Matter 2006, 2, 415–421. [Google Scholar] [CrossRef]
- Abbasian, M.; Khakpour Aali, N. Nitroxide-Mediated Radical Polymerization of Styrene Initiated from the Surface of Titanium Oxide Nanoparticles. J. Nanostructures 2016, 6, 38–45. [Google Scholar] [CrossRef]
- Jaymand, M. Synthesis and characterization of novel type poly (4-chloromethyl styrene-grft-4-vinylpyridine)/TiO2 nanocomposite via nitroxide-mediated radical polymerization. Polymer 2011, 52, 4760–4769. [Google Scholar] [CrossRef]
- Lee, Y.J. Preparation of Poly(4-hydroxystyrene) Based Functional Block Copolymer Through Living Radical Polymerization and Its Nanocomposite with BaTiO3 for Dielectric Material. J. Nanosci. Nanotechnol. 2009, 9. [Google Scholar] [CrossRef]
- Woo, J.H.; Park, M.; Lee, S.-S.; Hong, S.C. Preparation of Functional Polystyrene Copolymers Through Nitroxide Mediated Polymerization and Their Applications as Surface Modifiers for BaTiO3 Nanoparticles. J. Nanosci. Nanotechnol. 2009, 9, 1872–1880. [Google Scholar] [CrossRef] [PubMed]
- Mai, T.B.; Tran, T.N.; Rafiqul Islam, M.; Park, J.M.; Lim, K.T. Covalent functionalization of silica nanoparticles with poly(N-isopropylacrylamide) employing thiol-ene chemistry and activator regenerated by electron transfer ATRP protocol. J. Mater. Sci. 2014, 49, 1519–1526. [Google Scholar] [CrossRef]
- Han, M.S.; Zhang, X.Y.; Li, L.; Peng, C.; Bao, L.; Ou, E.C.; Xiong, Y.Q.; Xu, W.J. Dual-switchable surfaces between hydrophobic and superhydrophobic fabricated by the combination of click chemistry and RAFT. Express Polym. Lett. 2014, 8, 528–542. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Wang, B.; Shan, J. Preparation of Thermosensitive Hollow Imprinted Microspheres via Combining Distillation Precipitation Polymerization and Thiol-ene Click Chemistry. Chinese J. Chem. 2015, 33, 225–234. [Google Scholar] [CrossRef]
- Li, G.L.; Xu, L.Q.; Tang, X.; Neoh, K.G.; Kang, E.T. Hairy Hollow Microspheres of Fluorescent Shell and Temperature-Responsive Brushes via Combined Distillation-Precipitation Polymerization and Thiol−ene Click Chemistry. Macromolecules 2010, 43, 5797–5803. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, S.; Zhu, T.; Oh, J.K.; Li, P. Soft-nanocoupling between silica and gold nanoparticles based on block copolymer. React. Funct. Polym. 2017, 110, 30–37. [Google Scholar] [CrossRef]
- Lee, S.; Jang, M.; Yang, H. Optimized Grafting Density of End-Functionalized Polymers to Polar Dielectric Surfaces for Solution-Processed Organic Field-Effect Transistors. ACS Appl. Mater. Interfaces 2014, 6, 20444–20451. [Google Scholar] [CrossRef] [PubMed]
- Maliakal, A.; Katz, H.; Cotts, P.M.; Subramoney, S.; Mirau, P. Inorganic Oxide Core, Polymer Shell Nanocomposite as a High K Gate Dielectric for Flexible Electronics Applications. J. Am. Chem. Soc. 2005, 127, 14655–14662. [Google Scholar] [CrossRef]
- Hailu, S.T.; Samant, S.; Grabowski, C.; Durstock, M.; Karim, A.; Raghavan, D. Synthesis of highly dispersed, block copolymer-grafted TiO2 nanoparticles within neat block copolymer films. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 468–478. [Google Scholar] [CrossRef]
- Hailu, S.T.; Samant, S.; Grabowski, C.; Durstock, M.; Karim, A.; Raghavan, D. Dielectric Study of PMMA-b-PS -g-TiO2/PS-PMMA BCP Nanocomposite Films. Unpublished data.
- Obata, M.; Yamai, K.; Takahashi, M.; Ueno, S.; Ogura, H.; Egami, Y. Synthesis of an oxygen-permeable block copolymer with catechol groups and its application in polymer-ceramic pressure-sensitive paint. Polymer 2020, 191, 122281. [Google Scholar] [CrossRef]
- Klaysri, R.; Wichaidit, S.; Piticharoenphun, S.; Mekasuwandumrong, O.; Praserthdam, P. Synthesis of TiO2-grafted onto PMMA film via ATRP: Using monomer as a coupling agent and reusability in photocatalytic application. Mater. Res. Bull. 2016, 83, 640–648. [Google Scholar] [CrossRef]
- Yang, K.; Huang, X.; Zhu, M.; Xie, L.; Tanaka, T.; Jiang, P. Combining RAFT Polymerization and Thiol–Ene Click Reaction for Core–Shell Structured Polymer@BaTiO3 Nanodielectrics with High Dielectric Constant, Low Dielectric Loss, and High Energy Storage Capability. ACS Appl. Mater. Interfaces 2014, 6, 1812–1822. [Google Scholar] [CrossRef]
- Bourgeat-Lami, E.; Lang, J. Encapsulation of Inorganic Particles by Dispersion Polymerization in Polar Media. J. Colloid Interface Sci. 1998, 197, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, H.; Li, C.; Zang, L.; Luo, J. In situ synthesis of poly(methyl methacrylate)/SiO 2 hybrid nanocomposites via grafting onto strategy based on UV irradiation in the presence of iron aqueous solution. J. Nanomater. 2012, 2012. [Google Scholar] [CrossRef]
- Landfester, K. Synthesis of colloidal particles in miniemulsions. Annu. Rev. Mater. Res. 2006, 36, 231–279. [Google Scholar] [CrossRef]
- Tang, E.; Dong, S. Preparation of styrene polymer/ZnO nanocomposite latex via miniemulsion polymerization and its antibacterial property. Colloid Polym. Sci. 2009, 287, 1025–1032. [Google Scholar] [CrossRef]
- Morales-Acosta, M.D.; Alvarado-Beltrán, C.G.; Quevedo-López, M.A.; Gnade, B.E.; Mendoza-Galván, A.; Ramírez-Bon, R. Adjustable structural, optical and dielectric characteristics in sol–gel PMMA–SiO2 hybrid films. J. Non. Cryst. Solids 2013, 362, 124–135. [Google Scholar] [CrossRef]
- Alvarado-Beltrán, C.G.; Almaral-Sánchez, J.L.; Mejia, I.; Quevedo-López, M.A.; Ramirez-Bon, R. Sol–Gel PMMA–ZrO 2 Hybrid Layers as Gate Dielectric for Low-Temperature ZnO-Based Thin-Film Transistors. ACS Omega 2017, 2, 6968–6974. [Google Scholar] [CrossRef]
- Morales-Acosta, M.D.; Quevedo-López, M.A.; Ramírez-Bon, R. PMMA–SiO2 hybrid films as gate dielectric for ZnO based thin-film transistors. Mater. Chem. Phys. 2014, 146, 380–388. [Google Scholar] [CrossRef]
- Alvarado-Beltrán, C.G.; Almaral-Sánchez, J.L.; Ramírez-Bon, R. Synthesis and properties of PMMA-ZrO 2 organic-inorganic hybrid films. J. Appl. Polym. Sci. 2015, 132, n. [Google Scholar] [CrossRef]
- Alvarado-Beltrán, C.G.; Almaral-Sánchez, J.L.; Quevedo-López, M.A.; Ramirez-Bon, R. Dielectric Gate Applications of PMMA-TiO2 Hybrid Films in ZnO-Based Thin Film Transistors. Int. J. Electrochem. Sci 2015, 10, 4068–4082. [Google Scholar]
- Sánchez-Ahumada, D.; Verastica-Ward, L.J.; Gálvez-López, M.F.; Castro-Beltrán, A.; Ramirez-Bon, R.; Alvarado-Beltrán, C.G. Low-temperature synthesis and physical characteristics of PS TiO2 hybrid films for transparent dielectric gate applications. Polymer 2019, 172, 170–177. [Google Scholar] [CrossRef]
- Kandulna, R.; Choudhary, R.B.; Singh, R.; Purty, B. PMMA–TiO2 based polymeric nanocomposite material for electron transport layer in OLED application. J. Mater. Sci. Mater. Electron. 2018, 29, 5893–5907. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Q.; Chen, F.; Zhao, Y.; Sun, S.; Guo, J.; Yang, Y.; Xu, J. Significantly enhanced energy storage in core–shell structured poly(vinylidene fluoride-co-chlorotrifluoroethylene)/BaTiO3@polyurea nanocomposite films. J. Mater. Sci. 2020, 55, 11296–11309. [Google Scholar] [CrossRef]
- Pang, X.; Zhao, L.; Han, W.; Xin, X.; Lin, Z. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals. Nat. Nanotechnol. 2013, 8, 426–431. [Google Scholar] [CrossRef]
- Müllner, M.; Yuan, J.; Weiss, S.; Walther, A.; Förtsch, M.; Drechsler, M.; Müller, A.H.E. Water-Soluble Organo−Silica Hybrid Nanotubes Templated by Cylindrical Polymer Brushes. J. Am. Chem. Soc. 2010, 132, 16587–16592. [Google Scholar] [CrossRef]
- Zheng, Z.; Daniel, A.; Yu, W.; Weber, B.; Ling, J.; Müller, A.H.E. Rare-Earth Metal Cations Incorporated Silica Hybrid Nanoparticles Templated by Cylindrical Polymer Brushes. Chem. Mater. 2013, 25, 4585–4594. [Google Scholar] [CrossRef]
- Müllner, M.; Lunkenbein, T.; Breu, J.; Caruso, F.; Müller, A.H.E. Template-Directed Synthesis of Silica Nanowires and Nanotubes from Cylindrical Core–Shell Polymer Brushes. Chem. Mater. 2012, 24, 1802–1810. [Google Scholar] [CrossRef]
- Yuan, J.; Lu, Y.; Schacher, F.; Lunkenbein, T.; Weiss, S.; Schmalz, H.; Müller, A.H.E. Template-Directed Synthesis of Hybrid Titania Nanowires within Core−Shell Bishydrophilic Cylindrical Polymer Brushes. Chem. Mater. 2009, 21, 4146–4154. [Google Scholar] [CrossRef]
- Yuan, J.; Schacher, F.; Drechsler, M.; Hanisch, A.; Lu, Y.; Ballauff, M.; Müller, A.H.E. Stimuli-Responsive Organosilica Hybrid Nanowires Decorated with Metal Nanoparticles. Chem. Mater. 2010, 22, 2626–2634. [Google Scholar] [CrossRef]
- Xu, H.; Xu, Y.; Pang, X.; He, Y.; Jung, J.; Xia, H.; Lin, Z. A general route to nanocrystal kebabs periodically assembled on stretched flexible polymer shish. Sci. Adv. 2015, 1, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, M.; Pang, X.; Liu, X.; Jiang, B.; He, Y.; Snaith, H.; Lin, Z. Monodisperse Dual-Functional Upconversion Nanoparticles Enabled Near-Infrared Organolead Halide PeroV·skite Solar Cells. Angew. Chemie Int. Ed. 2016, 55, 4280–4284. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, J.; Zhang, M.; Li, H.; Lin, Z. Polymer-Ligated Nanocrystals Enabled by Nonlinear Block Copolymer Nanoreactors: Synthesis, Properties, and Applications. ACS Nano 2020, 14, 12491–12521. [Google Scholar] [CrossRef]
- Xie, G.; Ding, H.; Daniel, W.F.M.; Wang, Z.; Pietrasik, J.; Sheiko, S.S.; Matyjaszewski, K. Preparation of titania nanoparticles with tunable anisotropy and branched structures from core–shell molecular bottlebrushes. Polymer 2016, 98, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Müllner, M.; Lunkenbein, T.; Schieder, M.; Gröschel, A.H.; Miyajima, N.; Förtsch, M.; Breu, J.; Caruso, F.; Müller, A.H.E. Template-Directed Mild Synthesis of Anatase Hybrid Nanotubes within Cylindrical Core–Shell–Corona Polymer Brushes. Macromolecules 2012, 45, 6981–6988. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, Y.; Walther, A.; Bolisetty, S.; Schumacher, M.; Schmalz, H.; Ballauff, M.; Müller, A.H.E. Water-soluble organo-silica hybrid nanowires. Nat. Mater. 2008, 7, 718–722. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Li, M.; Huang, H.; Xu, H.M.; Hong, R.J.; Shen, H. Multifunctional TiO2 nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells. Optoelectron. Adv. Mater. Rapid Commun. 2010, 4, 1166–1169. [Google Scholar] [CrossRef]
- Budzalek, K.; Ding, H.; Janasz, L.; Wypych-Puszkarz, A.; Cetinkaya, O.; Pietrasik, J.; Kozanecki, M.; Ulanski, J.; Matyjaszewski, K. Star polymer–TiO2 nanohybrids to effectively modify the surface of PMMA dielectric layers for solution processable OFETs. J. Mater. Chem. C 2021, 9, 1269–1278. [Google Scholar] [CrossRef]
- Pang, X.; Zhao, L.; Akinc, M.; Kim, J.K.; Lin, Z. Novel Amphiphilic Multi-Arm, Star-Like Block Copolymers as Unimolecular Micelles. Macromolecules 2011, 44, 3746–3752. [Google Scholar] [CrossRef]
- Guo, H.Z.; Mudryk, Y.; Ahmad, M.I.; Pang, X.C.; Zhao, L.; Akinc, M.; Pecharsky, V.K.; Bowler, N.; Lin, Z.Q.; Tan, X. Structure evolution and dielectric behavior of polystyrene-capped barium titanate nanoparticles. J. Mater. Chem. 2012. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; He, Y.; Jiang, B.; Iocozzia, J.; Zhao, L.; Guo, H.; Liu, J.; Akinc, M.; Bowler, N.; Tan, X.; et al. Block copolymer/ferroelectric nanoparticle nanocomposites. Nanoscale 2013, 5, 8695. [Google Scholar] [CrossRef] [Green Version]
- Bates, C.M.; Bates, F.S. 50th Anniversary Perspective: Block Polymers—Pure Potential. Macromolecules 2017, 50, 3–22. [Google Scholar] [CrossRef]
- Samant, S.P.; Grabowski, C.A.; Kisslinger, K.; Yager, K.G.; Yuan, G.; Satija, S.K.; Durstock, M.F.; Raghavan, D.; Karim, A. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors. ACS Appl. Mater. Interfaces 2016, 8, 7966–7976. [Google Scholar] [CrossRef] [PubMed]
- Samant, S.; Hailu, S.; Singh, M.; Pradhan, N.; Yager, K.; Al-Enizi, A.M.; Raghavan, D.; Karim, A. Alignment frustration in block copolymer films with block copolymer grafted TiO2 nanoparticles under soft-shear cold zone annealing. Polym. Adv. Technol. 2021, 32, 2052–2060. [Google Scholar] [CrossRef]
Grafting Methods | Advantages | Disadvantages |
---|---|---|
Grafting to | A number of coupling reactions and click reaction are available. Well-defined end-functionalized polymers can be obtained from CRPs. Clean approach, less labor intensive [33] | Due to the steric hindrance high grafting density could not be achieved. The approach is limited to polymer grafts with defined end groups. The surface of nanoparticles may have unreacted functionality |
Grafting from | High grafting density, tuning of thickness with molecular weight of growing chain is possible [48] | The stringent reaction conditions have to be maintained. |
Templated | Well-defined size of nanoparticles can be obtained [58] | Scalability is difficult. Not cost effective |
In situ polymerizations | The technique is scalable and similar to conventional free radical polymerization [59] | Difficulty in controlling grafting density and molecular weights. Well defined structures such as block copolymers cannot be synthesized. |
Grafting from Methods | Advantages | Disadvantages |
---|---|---|
ATRP | Control of molecular weights and dispersity. Variation to ATRP technique broaden the applicability of the technique to a range of surface initiated polymer grafting [48] | Small amount of copper persists along with polymer, its removal is difficult and affects the properties of the final product. Not suitable for acidic monomers Difficulty in synthesizing high molecular weight grafts [71] |
RAFT | Adaptability of RAFT to a range of polymerization conditions high degree of fidelity, ability to work in the presence of oxygen, compatibility with a broad range of functional groups [48] | Because of the presence of sulfur containing moiety RAFT polymers are often colored and have foul odor and the synthesis of RAFT agents involves multiple steps [48] |
NMP | NMP is one of the successfully used SI-CRP techniques for polymer grafting [72] | However, it is not applicable for most of monomers and functional groups [48] It requires high temperatures and longer time due to slow polymerization kinetics. There are difficulties associated with synthesis and stability of nitroxide and alkoxy amine [73] |
Polymer Grafted Filler | Mean Diameter | Polymer Diameter/Graft Density | Active Semiconductor Layer | Molecular Weight | Capacitance (nF/cm2) | Eb (MV/cm) | VT | µFET cm2/(V·s) |
---|---|---|---|---|---|---|---|---|
PS-g-SiO2 (WF) [98] | 300 nm | 113 nm | Pentacene | 135,000 g/mol | 7.5 @ 100 Hz | NA | −38 | 0.094 |
PMMA-g-SiO2 [101] | ~9 nm | ~10 nm | Pentacene | NA | 142 @ 1 MHz | 7 | −1 | ~0.2 |
PMMA-g-SiO2 [70] | 2–3 nm | 10 nm | CuPc | NA | 220 @ 1 MHz | NA | −0.75 | 0.12 |
Polymer-Grafted | Nanomaterial | Anchoring Moiety | Polymerization Conditions | Ref. |
---|---|---|---|---|
PPMA | BaTiO3 | White Light, Photocatalyst5,10-di(1-naphthyl)-5,10-dihydrophenazine DMF, RT | [120] | |
Poly(2- hydroxyl ethyl methacrylate)-b-poly (methyl methacrylate); Sodium polyacrylate-b-poly(2-hydroxyl ethyl methacrylate) | BaTiO3 | CuBr/CuBr2, PMDETA H2O/DMF, 60 °C, 24 h | [127] | |
Poly(1H,1H,2H,2H-perfluorooctyl methacrylate) | BaTiO3 | CuBr, PMDETA, DMF 70 °C, 24 h | [126] | |
PMMA | BaTiO3 | CuBr, PMDETA, DMF 60 °C, 24 h | [119] | |
PMMA Poly(Trifluoroethyl methacrylate) PTFEMA | BaTiO3 | CuBr, PMDETA, DMF 70 °C, 12 h | [121] | |
PMMA | BaTiO3 | BaTiO3@TMPc-Br | CuCl/CuCl2, Me6TREN, 60 °C, 24 h | [124] |
PMMA | BaTiO3 | BaTiO3@APS@HBP-Br | CuBr, PMDETA, 60 °C, 24 h | [125] |
PS/PMMA | BaTiO3 | CuCl2, Me6TREN, Tin(II) ethylhexanoate, Anisol, 110 °C | [27] | |
Poly(lauryl methacrylate) | Al2O3 | CuBr/CuBr2, HMTETA Toluene, 100 °C, 16 h | [128] |
Polymer@filler | Mean Diameter | Shell Thickness (nm) | % Loading | Matrix | Grafting Approach | εr | tan δ | Eb (kV/mm) | Energy Density U (J/cm3) |
---|---|---|---|---|---|---|---|---|---|
PS@BaTiO3 [129] | ~7 nm | NA | 22% v/v | PS | Grafting to | 5.8 | NA | 143 | NA |
PTFMPCS@BaTiO3 [130] | 100 nm | 11 nm | 5 vol% | PVDF-TrFE-CTFE | SI-RAFT | ~58 | NA | 459 | 36.6 @514 kV/mm |
PVDF@BaTiO3 [131] | ~100 nm | NA | 30 vol% | PVDF | Grafting to | 27.9 | 0.08872 | 117.3 | NA |
PS@Al2O3 [132] | 50 nm | 0.13 | 25 wt% | PS | Grafting to | 2.63 | NA | NA | NA |
PS@Al2O3 [132] | 50 nm | 0.13 | 25 wt% | PMMA | Grafting to | 3.19 | NA | NA | NA |
PS@BaTiO3 [131] | ~100 nm | NA | 30 vol% | PVDF | Grafting to | 23.6 | 0.0866 | 107 | NA |
P(VDF-HFP)@BaTiO3 [133] | 100 nm | NA | 50 vol% | NA | Grafting to | 34.8 | 0.128 | 20 MV/m | 0.3 @20 MV/m |
PGMA@BaTiO3 [134] | <100 nm | ~20 nm | NA | PGMA | SI-ATRP | 54 | 0.039 | ~3 MV/m | ~21.51 @3 MV/m |
PHEMA@PMMA @BaTiO3 [127] | 100 nm | 10 nm | 38 vol% | NA | SI-ATRP | NA | ~0.025 | NA | ~0.061 @70 kV/cm |
PANa@PHEMA@BaTiO3 [127] | 100 nm | 10 nm | 21 vol% | NA | SI-ATRP | NA | ~0.022 | NA | ~0.09 @70 kV/cm |
PMMA@ BaTiO3 [27] | 50 nm | NA | 22 vol% | NA | SI-ATRP | 11.4 | NA | 218 | 3 @~220 V/μm |
PTTEMA@BaTiO3 [135] | ~50 nm | 14–15 nm | 20 vol% | PTTEMA | SI-RAFT | ∼20 | <0.02 | ~220 | ~3.4 @210 V/μm |
PMMA@BaTiO3 [119] | 100 nm | 10 nm | 76 wt% | NA | SI-ATRP | 14.6 | 0.0372 | NA | NA |
PMMA@BaTiO3 [121] | ~200 nm | 7 nm | 80 wt% | PVDF | SI-ATRP | ~28.5 | 0.025 @100 kHz | NA | NA |
PTFEMA@BaTiO3 [121] | ~200 nm | 4.5 nm | 80 wt% | PVDF | SI-ATRP | ~35 | 0.022 | NA | NA |
PPFOMA@BaTiO3 [126] | 30–50 nm | 5 nm | 70.70 wt% | NA | SI-ATRP | 7.4 | 0.01 | NA | NA |
PMMA@TiO2 [136] | 50 to 100 nm | 5 nm | 1 vol% | PVDF-HFP | In situ | 10.5 | <0.04 | 560 | 14.2 @500 V/μm |
PS@TiO2 [137] | 40–50 nm | NA | 27 wt% | NA | Grafting to | 6.4 | 0.04 | NA | NA |
PS@TiO2 [129] | 18 nm | NA | 39% v/v | NA | Grafting to | 12.8 | 0.1 | 114 | NA |
PS@TiO2 [138] | 25–30 nm | NA | 36.9 vol% | PS | SI-RAFT | ~65 | ~0.03 | NA | NA |
PS@Al2O3 [139] | 50–200 nm | 0.12 | 30 wt% | iso-Al NPs@PS | Grafting to | 9.50 | 0.01 | 175 | 1.70 |
PEB@Al2O3 [140] | 100 nm | 2–5 nm | 25.0 vol% | PP | Grafting to | 5.7 | NA | 37.5 | NA |
HBP@Al2O3 [141] | 30 nm | NA | 20 wt% | Epoxy | In situ | 5.0 | <0.025 | 32.83 | NA |
PP@Al2O3 [142] | 140 nm | NA | 10.4 vol% | NA | In situ | 10.5 | 0.24 | 120 | 14.4 @120 V/μm |
Grafted Polymer | Nanoparticle | Anchoring CTA | Polymerization Conditions | Ref. |
---|---|---|---|---|
Poly(vinylidene fluoride) | BaTiO3 | TBPPi, DMC 65 °C, 15 h | [169] | |
BaTiO3 | AIBN, THF 80 °C, 15 h | [170] | ||
Poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrenes} (PMPCS) | BaTiO3 | AIBN, THF 80 °C, 6 h | [171] | |
Polystyrene | BaTiO3 | AIBN, DMF 80 °C, 12 h | [172] | |
Poly(2-(2,2′:5′,2″-terthien-5-yl)ethyl methacrylate) (PTTEMA) | BaTiO3 | AIBN, Dioxane 90 °C, 3 h | [173,174] | |
Poly(1H,1H,2H,2H-heptadecafluorodecyl acrylate) (PHFDA) | BaTiO3 | AIBN, DMF 60 °C, 6 h | [175] | |
Polystyrene | BaTiO3 | AIBN, DMF, 80 °C | [176] | |
Poly(stearyl methacrylate) | SiO2 | AIBN, THF, 60 °C | [177,178] | |
Poly(2-hydroxyethyl methacrylate) | SiO2 | AIBN, THF, 70 °C | [164] | |
Poly(acrylic acid) | SiO2 | AIBN, DMF 70 °C, 3 h | [162] | |
Poly(stearyl methacrylate) | SiO2 | AIBN, THF, 60 °C | [177,178] | |
Polystyrene | TiO2 | 110 °C, 96 h | [138] | |
Poly(methyl methacrylate)-b-polystyrene | TiO2 | AIBN, DMF, 90 °C, 6 h | [179] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawade, B.V.; Apata, I.E.; Pradhan, N.; Karim, A.; Raghavan, D. Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications. Molecules 2021, 26, 2942. https://doi.org/10.3390/molecules26102942
Tawade BV, Apata IE, Pradhan N, Karim A, Raghavan D. Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications. Molecules. 2021; 26(10):2942. https://doi.org/10.3390/molecules26102942
Chicago/Turabian StyleTawade, Bhausaheb V., Ikeoluwa E. Apata, Nihar Pradhan, Alamgir Karim, and Dharmaraj Raghavan. 2021. "Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications" Molecules 26, no. 10: 2942. https://doi.org/10.3390/molecules26102942
APA StyleTawade, B. V., Apata, I. E., Pradhan, N., Karim, A., & Raghavan, D. (2021). Recent Advances in the Synthesis of Polymer-Grafted Low-K and High-K Nanoparticles for Dielectric and Electronic Applications. Molecules, 26(10), 2942. https://doi.org/10.3390/molecules26102942