Comparative Protective Effect of Nigella sativa Oil and Vitis vinifera Seed Oil in an Experimental Model of Isoproterenol-Induced Acute Myocardial Ischemia in Rats
Abstract
:1. Introduction
2. Results
2.1. NSO and GSO Characterization
2.1.1. NSO and GSO Physicochemical Properties
2.1.2. NSO and GSO Phytochemicals Characterization
2.2. NSO and GSO Extracts Characterization
2.3. The Effect of NSO and GSO on Electrocardiogram Parameters
2.4. The Effect of NSO and GSO on Biochemical Parameters
2.5. The Effect of NSO and GSO on Cardiac Enzyme Activity
2.6. The Effect of NSO and GSO on Inflammatory Markers
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Oil Physicochemical Characterization
4.2.1. Refractive Index
4.2.2. Iodine Index
4.2.3. Free Acidity
4.2.4. Peroxide Values
4.3. Oil Phytochemical Characterization
4.3.1. FTIR Analysis
4.3.2. ITEX–GC-MS Analysis
4.4. Oil Extraction
4.5. Oil Extract Characterization
4.5.1. Total Polyphenol Content
4.5.2. Antioxidant Activity
4.5.3. HPLC-MS Analysis
4.6. Animals
4.7. Experimental Protocol of acute Myocardial Infarction
- Group 1 (Control group)—saline solution 0.4 mL/100 g;
- Group 2 (ISO)—saline solution 0.4 mL/100 g;
- Group 3 (NSO)—Nigella sativa seed oil 0.4 mL/100 g;
- Group 4 (GSO)—Grape seed oil 0.4 mL/100 g.
4.8. Electrocardiography
4.9. Biologic Evaluation
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Sample Availability
References
- Mann, D.; Zipes, D.; Libby, P.; Bonow, R. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine; Elsevier: Philadelphia, PA, USA, 2015. [Google Scholar]
- Frangogiannis, N.G.; Smith, C.W.; Entman, M.L. The inflammatory response in myocardial infarction. Cardiovasc. Res. 2002, 53, 31–47. [Google Scholar] [CrossRef]
- Boarescu, P.M.; Boarescu, I.; Bocșan, I.C.; Pop, R.M.; Gheban, D.; Bulboacă, A.E.; Dogaru, G.; Bulboaca, S.D. Experimental model of acute myocardial infarction for evaluation of prevention and rehabilitation strategies in cardiovascular diseases—A pilot study. Balneo Res. J. 2019, 10, 288–293. [Google Scholar] [CrossRef]
- Yousefi, K.; Fathiazad, F.; Soraya, H.; Rameshrad, M.; Maleki-Dizaji, N.; Garjani, A. Marrubium vulgare L. methanolic extract inhibits inflammatory response and prevents cardiomyocyte fibrosis in isoproterenol-induced acute myocardial infarction in rats. Bioimpacts 2014, 4, 21–27. [Google Scholar] [CrossRef]
- Williamson, E.M.; Liu, X.; Izzo, A.A. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br. J. Pharmacol. 2020, 177, 1227–1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [Green Version]
- Pop, R.M.; Sabin, O.; Suciu, Ș.; Vesa, S.C.; Socaci, S.A.; Chedea, V.S.; Bocsan, I.C.; Buzoianu, A.D. Nigella Sativa’s Anti-Inflammatory and Antioxidative Effects in Experimental Inflammation. Antioxidants 2020, 9, 921. [Google Scholar] [CrossRef]
- Pop, R.M.; Bocsan, I.C.; Buzoianu, A.D.; Chedea, V.S.; Socaci, S.A.; Pecoraro, M.; Popolo, A. Evaluation of the Antioxidant Activity of Nigella sativa L. and Allium ursinum Extracts in a Cellular Model of Doxorubicin-Induced Cardiotoxicity. Molecules 2020, 25, 5259. [Google Scholar] [CrossRef]
- Gholamnezhad, Z.; Havakhah, S.; Boskabady, M.H. Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. J. Ethnopharmacol. 2016, 90, 372–386. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, L.; Fedeli, D.; Nasuti, C.; Maggi, F.; Papa, F.; Wabitsch, M.; De Caterina, R.; Gabbianelli, R. Antioxidant and Anti-Inflammatory Properties of Nigella sativa Oil in Human Pre-Adipocytes. Antioxidants 2019, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Garavalia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds. Biol. Chem. Actions Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Puiggròs, F.; Llópiz, N.; Ardévol, A.; Bladé, C.; Arola, L.; Salvadó, M.J. Grape seed procyanidins prevent oxidative injury by modulating the expression of antioxidant enzyme systems. J. Agric. Food Chem. 2005, 53, 6080–6086. [Google Scholar] [CrossRef]
- Cheng, C.K.; Luo, J.; Lau, C.W.; Chen, Z.; Tian, X.Y.; Huang, Y. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br. J. Pharmacol. 2020, 177, 1258–1277. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, N.K.; Yazid, M.; Manap, A.; Tan, C.P.; Muhialdin, B.J.; Alhelli, A.M.; Shobirin, A.; Hussin, M. The Effects of Different Extraction Methods on Antioxidant Properties, Chemical Composition, and Thermal Behavior of Black Seed (Nigella sativa L.) Oil. Evid. Based Complement. Altern. Med. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.; Gong, H.; Li, H.; Zhang, Y.; Lan, T.; Chen, Z. Characterization of Chinese Grape Seed Oil by Physicochemical Properties, Fatty Acid Composition, Triacylglycrol Profiles, and Sterols and Squalene Composition. Int. J. Food Eng. 2019, 15, 15. [Google Scholar] [CrossRef]
- Rohman, A.; Wibowo, D.; Lukitaningsih, E.; Salleh Rosman, A. Use of Fourier Transform Infrared Spectroscopy in Combination with Partial Least Square for Authentication of Black Seed Oil. Int. J. Food Prop. 2015, 18, 775–784. [Google Scholar] [CrossRef] [Green Version]
- Rohman, A.; Ariani, R. Authentication of nigella sativa seed oil in binary and ternary mixtures with corn oil and soybean oil using FTIR spectroscopy coupled with partial least square. Sci. World J. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Safar, M.; Bertrand, D.; Robert, P.; Devaux, M.F.; Genot, C. Characterization of edible oils, butters and margarines by Fourier transform infrared spectroscopy with attenuated total reflectance. J. Am. Oil Chem. Soc. 1994, 71, 371–377. [Google Scholar] [CrossRef]
- Heneczkowski, M.; Kopacz, M.; Nowak, D.; Kuźniar, A. Infrared spectrum analysis of some flavonoids. Acta Pol. Pharm. Drug Res. 2001, 58, 415–420. [Google Scholar]
- Abbas, O.; Compère, G.; Larondelle, Y.; Pompeu, D.; Rogez, H.; Baeten, V. Phenolic compound explorer: A mid-infrared spectroscopy database. Vib. Spectrosc. 2017, 92, 111–118. [Google Scholar] [CrossRef]
- Ricci, A.; Olejar, K.J.; Parpinello, G.P.; Kilmartin, P.A.; Versari, A. Application of Fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Appl. Spectrosc. Rev. 2015, 50, 407–442. [Google Scholar] [CrossRef]
- Laghi, L.; Parpinello, G.P.; Del Rio, D.; Calani, L.; Mattioli, A.U.; Versari, A. Fingerprint of enological tannins by multiple techniques approach. Food Chem. 2010, 121, 783–788. [Google Scholar] [CrossRef]
- Singh, S.; Das, S.S.; Singh, G.; Schuff, C.; De Lampasona, M.P.; Catalán, C.A.N. Composition, in vitro antioxidant and antimicrobial activities of essential oil and oleoresins obtained from black cumin seeds (Nigella sativa L.). Biomed Res. Int. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bettaieb, I.; Bourgou, S.; Wannes, W.A.; Hamrouni, I.; Limam, F.; Marzouk, B. Essential oils, phenolics, and antioxidant activities of different parts of cumin (Cuminum cyminum L.). J. Agric. Food Chem. 2010, 58, 10410–10418. [Google Scholar] [CrossRef] [PubMed]
- Aumeeruddy, M.Z.; Aumeeruddy-Elalfi, Z.; Neetoo, H.; Zengin, G.; Fibrich, B.; Rademan, S.; Van Staden, A.B.; Szuman, K.; Lambrechts, I.A.; Lall, N.; et al. Biological, phytochemical, and physico-chemical properties of two commercial Nigella sativa seed oils: A comparative analysis. Istanb. J. Pharm. 2019, 48, 89–99. [Google Scholar] [CrossRef]
- Rombaut, N.; Savoire, R.; Thomasset, B.; Bélliard, T.; Castello, J.; Van Hecke, É.; Lanoisellé, J.-L. Grape seed oil extraction: Interest of supercritical fluid extraction and gas-assisted mechanical extraction for enhancing polyphenol co-extraction in oil. C. R. Chim. 2014, 17, 284–292. [Google Scholar] [CrossRef]
- Hamza, A.A.; Mohamed, M.G.; Lashin, F.M.; Amin, A. Dandelion prevents liver fibrosis, inflammatory response, and oxidative stress in rats. J. Basic Appl. Zool. 2020, 81, 1–13. [Google Scholar] [CrossRef]
- Ghafoor, K.; Al-Juhaimi, F.Y.; Choi, Y.H. Supercritical Fluid Extraction of Phenolic Compounds and Antioxidants from Grape (Vitis labrusca B.) Seeds. Plant. Foods Hum. Nutr. 2012, 67, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Gad, H.A.; Heiss, A.G.; Wessjohann, L.A. Metabolomics driven analysis of six Nigella species seeds via UPLC-qTOF-MS and GC-MS coupled to chemometrics. Food Chem. 2014, 151, 333–342. [Google Scholar] [CrossRef]
- Chedea, V.S.; Echim, C.; Braicu, C.; Andjelkovic, M.; Verhe, R.; Socaciu, C. Composition in polyphenols and stability of the aqueous grape seed extract from the romanian variety “Merlot Recas”. J. Food Biochem. 2011, 35, 92–108. [Google Scholar] [CrossRef]
- Sapozhnikova, Y. Development of liquid chromatography-tandem mass spectrometry method for analysis of polyphenolic compounds in liquid samples of grape juice, green tea and coffee. Food Chem. 2014, 150, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Chedea, V.S.; Palade, L.M.; Marin, D.E.; Pelmus, R.S.; Habeanu, M.; Rotar, M.C.; Gras, M.A.; Pistol, G.C.; Taranu, I. Intestinal absorption and antioxidant activity of grape pomace polyphenols. Nutrients 2018, 10, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trimech, I.; Weiss, E.K.; Chedea, V.S.; Marin, D.; Detsi, A.; Ioannou, E.; Roussis, V.; Kefalas, P. Evaluation of Anti-oxidant and Acetylcholinesterase Activity and Identification of Polyphenolics of the Invasive Weed Dittrichia viscosa. Phytochem. Anal. 2014, 25, 421–428. [Google Scholar] [CrossRef]
- Upaganlawar, A.; Gandhi, H.; Balaraman, R. Isoproterenol induced myocardial infarction: Protective role of natural products. J. Pharmacol. Toxicol. 2011, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Boarescu, P.-M.; Chirilă, I.; Bulboacă, A.E.; Bocșan, I.C.; Pop, R.M.; Gheban, D.; Bolboacă, S.D. Effects of curcumin nanoparticles in isoproterenol induced myocardial infarction. Oxid. Med. Cell. Longev. 2019, 2019, 7847142. [Google Scholar] [CrossRef]
- Wei, H.; Li, H.; Wan, S.-P.; Zeng, Q.-T.; Cheng, L.-X.; Jiang, L.-L.; Peng, Y.-D. Cardioprotective effects of malvidin against isoproterenol-induced myocardial infarction in rats: A mechanistic study. Med. Sci. Monit. 2017, 23, 2007–2016. [Google Scholar] [CrossRef] [Green Version]
- Panda, S.; Kar, A.; Biswas, S. Preventive effect of agnucastoside C against isoproterenol-induced myocardial injury. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Balea, S.S.; Pârvu, A.E.; Pop, N.; Marín, F.Z.; Pârvu, M. Polyphenolic Compounds, Antioxidant, and Cardioprotective Effects of Pomace Extracts from Fetească Neagră Cultivar. Oxid. Med. Cell. Longev. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Soraya, H.; Khorrami, A.; Garjani, A.; MalekiDizaji, N.; Garjani, A. Acute treatment with metformin improves cardiac function following isoproterenol induced myocardial infarction in rats. Pharm. Rep. 2012, 64, 1476–1484. [Google Scholar] [CrossRef]
- Sudha, M.; Rajkumar, D.; Muthiah, R.; College, M.; Nagar, A. Effect of taurine pretreatement on ECG changes in isoproterenol induced myocardial infarction in male albino rats. Sch. J. Appl. Med. Sci. 2016, 4, 1052–1055. [Google Scholar]
- Ojha, S.; Azimullah, S.; Mohanraj, R.; Sharma, C.; Yasin, J.; Arya, D.S.; Adem, A. Thymoquinone Protects against Myocardial Ischemic Injury by Mitigating Oxidative Stress and Inflammation. Evid. Based Complement. Altern. Med. 2015, 2015, 143629. [Google Scholar] [CrossRef] [PubMed]
- Bonnefont-Rousselot, D. Resveratrol and Cardiovascular Diseases. Nutrients 2016, 8, 250. [Google Scholar] [CrossRef]
- Al-Naqeep, G.; Al-Zubairi, A.S.; Ismail, M.; Amom, Z.H.; Esa, N.M. Antiatherogenic Potential of Nigella sativa Seeds and Oil in Diet-Induced Hypercholesterolemia in Rabbits. Evid. Based Complement. Alternat Med. 2011, 2011, 213628. [Google Scholar] [CrossRef] [Green Version]
- Asgary, S.; Sahebkar, A.; Goli-Malekabadi, N. Ameliorative effects of Nigella sativa on dyslipidemia. J. Endocrinol. Investig. 2015, 38, 1039–1046. [Google Scholar] [CrossRef]
- Xiao, J.; Ke, Z.P.; Shi, Y.; Zeng, Q.; Cao, Z. The cardioprotective effect of thymoquinone on ischemia-reperfusion injury in isolated rat heart via regulation of apoptosis and autophagy. J. Cell Biochem. 2018, 119, 7212–7217. [Google Scholar] [CrossRef]
- Badavi, M.; Mehrgerdi, F.Z.; Sarkaki, A.; Naseri, M.K.G.; Dianat, M. Effect of grape seed extract on lead induced hypertension and heart rate in rat. Pak. J. Biol. Sci. 2008, 11, 882–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, R.; Mohan, M.; Kasture, S.; Maxia, A.; Ballero, M. Cardioprotective potential of myricetin in isoproterenol-induced myocardial infarction in Wistar rats. Phytother. Res. 2009, 23, 1361–1366. [Google Scholar] [CrossRef]
- Szentandrássy, N.; Szigeti, G.; Szegedi, C.; Sárközi, S.; Magyar, J.; Bányász, T.; Csernoch, L.; Kovács, L.; Nánási, P.P.; Jóna, I. Effect of thymol on calcium handling in mammalian ventricular myocardium. Life Sci. 2004, 74, 909–921. [Google Scholar] [CrossRef]
- Mokni, M.; Hamlaoui-Guesmi, S.; Amri, M.; Marzouki, L.; Limam, F.; Aouani, E. Grape seed and skin extract protects against acute chemotherapy toxicity induced by doxorubicin in rat heart. Cardiovasc. Toxicol. 2012, 12, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Charradi, K.; Sebai, H.; Elkahoui, S.; Ben Hassine, F.; Limam, F.; Aouani, E. Grape seed extract alleviates high-fat diet-induced obesity and heart dysfunction by preventing cardiac siderosis. Cardiovasc. Toxicol. 2011, 11, 28–37. [Google Scholar] [CrossRef]
- Al-Asoom, L.I.; Al-Shaikh, B.A.; Bamosa, A.O.; El-Bahai, M.N. Comparison of Nigella sativa- and exercise-induced models of cardiac hypertrophy: Structural and electrophysiological features. Cardiovasc. Toxicol. 2014, 14, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Olas, B.; Wachowicz, B.; Stochmal, A.; Oleszek, W. The polyphenol-rich extract from grape seeds inhibits platelet signaling pathways triggered by both proteolytic and non-proteolytic agonists. Platelets 2012, 23, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Sano, A.; Uchida, R.; Saito, M.; Shioya, N.; Komori, Y.; Tho, Y.; Hashizume, N. Beneficial effects of grape seed extract on malondialdehyde-modified LDL. J. Nutr. Sci. Vitaminol. 2007, 53, 174–182. [Google Scholar] [CrossRef] [Green Version]
- El-Tahir, K.E.H.; Ageel, A.M. Effect of volatile oil of Nigella sativa on the arterial blood pressure and heart rate of the guinea-pig. Saudi Pharm. J. 1994, 2, 163–168. [Google Scholar]
- Kaptoge, S.; Seshasai, S.R.K.; Gao, P.; Freitag, D.F.; Butterworth, A.S.; Borglykke, A.; Di Angelantonio, E.; Gudnason, V.; Rumley, A.; Lowe, G.D.O.; et al. Inflammatory cytokines and risk of coronary heart disease: New prospective study and updated meta-analysis. Eur. Heart J. 2014, 35, 578–589. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, S.; Narayan, S.; Devi, C.S. Mechanism of protective action of mangiferin on suppression of inflammatory response and lysosomal instability in rat model of myocardial infarction. Phytother. Res. 2009, 23, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Deten, A.; Volz, H.C.; Holzl, A.; Briest, W.; Zimmer, H.G. Effect of propranolol on cardiac cytokine expression after myocardial infarction in rats. Mol. Cell Biochem. 2003, 251, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Giribabu, N.; Roslan, J.; Rekha, S.S.; Salleh, N. Methanolic seed extract of Vitis vinifera ameliorates oxidative stress, inflammation and ATPase dysfunction in infarcted and non-infarcted heart of streptozotocin-nicotinamide induced male diabetic rats. Int. J. Cardiol. 2016, 222, 850–865. [Google Scholar] [CrossRef]
- Rivera, K.; Salas-Pérez, F.; Echeverría, G.; Urquiaga, I.; Dicenta, S.; Pérez, D.; De La Cerda, P.; González, L.; Andia, M.E.; Uribe, S.; et al. Red Wine Grape Pomace Attenuates Atherosclerosis and Myocardial Damage and Increases Survival in Association with Improved Plasma Antioxidant Activity in a Murine Model of Lethal Ischemic Heart Disease. Nutrients. 2019, 11, 2135. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Higgins, J.A. Elevation of cardiac troponin I indicates more than myocardial is chemia. Clin. Investig. Med. 2003, 26, 133–147. [Google Scholar]
- Danaei, G.H.; Memar, B.; Ataee, R.; Karami, M. Protective effect of thymoquinone, the main component of Nigella Sativa, against diazinon cardio-toxicity in rats. Drug Chem. Toxicol. 2018, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Hu, Y.; Mishra, A.; Sreeharsha, N.; Moktan, J.B.; Kumar, P.; Wang, L. Protective role of poly(lactic-co-glycolic) acid nanoparticle loaded with resveratrol against isoproterenol-induced myocardial infarction. Biofactors 2020, 46, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Muniz, M.A.P.; Dos Santos, M.N.F.; Da Costa, C.E.F.; Morais, L.; Lamarão, M.L.N.; Ribeiro-Costa, R.M.; Silva-Júnior, J.O.C. Physicochemical characterization, fatty acid composition, and thermal analysis of Bertholletia excelsa HBK oil. Pharmacol. Mag. 2015, 11, 147–151. [Google Scholar] [CrossRef] [Green Version]
- American Oil Chemists Society. Official Methods and Recommended Practices of the American Oil Chemists Society, 20th ed.; A.O.C.S. Official Method Ce: Rockville, MD, USA, 2016; pp. 1–3172. [Google Scholar]
- Pop, R.M.; Puia, I.C.; Puia, A.; Chedea, V.S.; Leopold, N.; Bocsan, I.C.; Buzoianu, A.D. Characterization of Trametes versicolor: Medicinal Mushroom with Important Health Benefits. Not. Bot. Horti Agrobot. Cluj Napoca 2018, 46, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Dogaru, G.; Bulboaca, A.; Boarescu, P.M.; Ciumarnean, L.; Rus, V.; Sitar-Taut, A.-V.; Munteanu, C.; Bodisz, G.; Stanescu, I. The Effect of Mofettes on Oxidative Stress/Antioxidant Balance in Experimental Myocardial Ischemia. In Vivo 2019, 33, 1911–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konopelski, P.; Ufnal, M. Electrocardiography in rats, a comparison to human. Physiol. Res. 2016, 65, 717–725. [Google Scholar] [CrossRef]
No | Sample | Refractive Index | Iodine Index g I2/100 g Oil | Free Acidity (%) | Peroxide Value O2, mmol·kg−1 |
---|---|---|---|---|---|
1 | NSO | 1.466 | 70 | 1.2 | <10 |
2 | GSO | 1.478 | 67 | 4.4 | <10 |
No | Peak (cm−1) | Peak Intensity | Tentative Assignment | |
---|---|---|---|---|
NSO | GSO | |||
1 | 719 | 0.575 | 0.565 | CH=CH– bending out of plane |
2 | 866 | 0.141 | 0.131 | =CH2 wagging |
3 | 914 | 0.176 | 0.161 | –C–H bending out of plane |
4 | 968 | 0.186 | 0.170 | trans –CH=CH– bending out of plane |
5 | 1028 | 0.217 | 0.209 | –C–O stretch |
6 | 1097 | 0.470 | 0.460 | –C–O stretch |
7 | 1161 | 0.794 | 0.776 | –C–O stretch; –CH2 bending |
8 | 1236 | 0.384 | 0.360 | –C–O stretch |
9 | 1375 | 0.223 | 0.203 | –C–H bending |
10 | 1460 | 0.369 | 0.332 | –CH2 bending |
11 | 1743 | 1 | 1 | C=O stretching |
12 | 2852 | 0.54 | 0.465 | –CH2 asymmetrical stretching |
13 | 2924 | 0.753 | 0.648 | –CH2 symmetrical stretching |
14 | 3008 | 0.154 | 0.151 | (trans =C–H stretch) |
No | Compounds | Retention Time | Concentration % of Total Peak Area | |
---|---|---|---|---|
NSO | GSO | |||
1 | Hexanal | 4.024 | 0.98 | 36.68 |
2 | 1-Butanol, 3-methyl-, acetate | 5.995 | - | 48.55 |
3 | α-Thujene | 7.61 | 42.97 | - |
4 | α-Pinene | 7.853 | 8.25 | 3.16 |
5 | Camphene | 8.435 | 0.06 | - |
6 | Sabinene | 9.258 | 2.38 | - |
7 | β-Pinene | 9.439 | 4.96 | - |
9 | Furan, 2-pentyl- | 9.907 | - | 0.43 |
10 | Hexanoic acid, ethyl ester | 10.234 | - | 8.2 |
12 | α-Terpinene | 10.912 | 0.27 | - |
13 | p-Cymene | 11.227 | 33.71 | - |
14 | d-Limonene | 11.383 | 2.07 | 0.75 |
15 | Eucalyptol | 11.502 | 0.06 | - |
16 | γ-Terpinene | 12.504 | 0.64 | - |
17 | Terpinolene | 13.56 | 0.06 | - |
21 | Octanoic acid, ethyl ester | 17.874 | - | 1.34 |
22 | Thymoquinone | 19.84 | 1.9 | - |
23 | Cuminone | 20.651 | 0.4 | - |
Peak No. | Rt (min) | UV λmax (nm) | [M + H]+ (m/z) | Compound | Concentration μg/mL Oil | |
---|---|---|---|---|---|---|
NSO | GSO | |||||
1 | 12.15 | 275 | 139 | p-Hydroxybenzoic acid | 0.807 | 0.971 |
2 | 12.66 | 260 | 342 | Norargemonine | 1.167 | - |
3 | 12.75 | 280 | 291 | Catechin | - | 0.987 |
4 | 13.61 | 280 | 169 | Vanillic acid | - | 0.799 |
5 | 13.92 | 320 | 181 | Caffeic acid | - | 0.807 |
6 | 16.10 | 321 | 165 | p-Coumaric acid | - | 1.749 |
7 | 16.82 | 322 | 195 | Ferulic acid | - | 1.519 |
8 | 17.40 | 350, 260 | 755 | Kaempferol-rhamnoside-diglucoside | - | 1.118 |
9 | 18.77 | 320 | 517 | Dicaffeoylquinic acid | - | 1.110 |
10 | 20.13 | 320 | 517 | Dicaffeoylquinic acid | - | 0.872 |
11 | 20.51 | 290 | 194 | Thymol derivative | 17.105 | - |
12 | 21.86 | 280 | 867, 291 | Procyanidin trimer possibly C2 (Catechin derivative) | - | 1.413 |
13 | 23.29 | 350, 260 | 755 | K | 2.191 | - |
14 | 23.4 | 280 | 867, 291 | Procyanidin trimer (Catechin derivative) | - | 2.281 |
15 | 23.75 | 280 | 375 | Hydroxymatairesinol | 6.687 | 5.852 |
16 | 24.00 | 280 | 358 | Matairesinol | 10.692 | 4.337 |
17 | 24.21 | 280 | 1099, 1085 | Tanin | 14.656 | 2.748 |
18 | 24.32 | 280 | 375 | Isohydroxymatairesinol | 12.076 | 6.990 |
19 | 24.59 | 280 | 1120 | Tanin (Catechin derivative) | 3.927 | 3.878 |
20 | 24.99 | 290 | 150 | Tymol | 10.561 | - |
21 | 25.51 | 280 | 414 | Tymol derivative | 8.382 | - |
22 | 26.03 | 280 | 1142 | Tanin | 11.364 | - |
23 | 26.18 | 280 | 1040 | Tanin | 7.645 | - |
Group | HR (Beats/min) | RR (ms) | PR | QRS | QT | QTc | R |
---|---|---|---|---|---|---|---|
C | 282 ± 19 | 223 ± 17 | 42 ± 2 | 34 ± 2 | 78 ± 3 | 65 ± 3 | 2.1 ± 0.1 |
C-ISO | 287 ± 19 | 237 ± 16 | 41 ± 2 | 34 ± 4 | 78 ± 4 | 65 ± 3 | 2.1 ± 0.1 |
NSO + ISO | 288 ± 15 | 225 ± 11 | 42 ± 2 | 35 ± 4 | 80 ± 4 | 65 ± 4 | 2.1 ± 0.1 |
GSO + ISO | 283 ± 16 | 230 ± 9 | 42 ± 2 | 35 ± 4 | 78 ± 4 | 64 ± 3 | 2.1 ± 0.1 |
Group | HR (Beats/min) | RR (ms) | PR | QRS | QT | QTc | R |
---|---|---|---|---|---|---|---|
C | 271 ± 18 | 220 ± 16 | 42 ± 2 | 34 ± 2 | 78 ± 3 | 634 ± 4 | 2.1 ± 0.1 |
C-ISO | 329 ± 15 | 186 ± 9 | 45 ± 2 | 53 ± 4 | 104 ± 63 | 94 ± 6 | 0.8 ± 0.1 |
NSO + ISO | 315 ± 6 | 190 ± 4 | 43 ± 2 | 53 ± 4 | 95 ± 4 | 85 ± 3 | 1.1 ± 0.1 |
GSO + ISO | 299 ± 15 | 201 ± 11 | 43 ± 2 | 49 ± 7 | 95 ± 4 | 82 ± 4 | 1.2 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bocsan, I.C.; Pop, R.M.; Sabin, O.; Sarkandy, E.; Boarescu, P.-M.; Roşian, Ş.H.; Leru, P.M.; Chedea, V.S.; Socaci, S.A.; Buzoianu, A.D. Comparative Protective Effect of Nigella sativa Oil and Vitis vinifera Seed Oil in an Experimental Model of Isoproterenol-Induced Acute Myocardial Ischemia in Rats. Molecules 2021, 26, 3221. https://doi.org/10.3390/molecules26113221
Bocsan IC, Pop RM, Sabin O, Sarkandy E, Boarescu P-M, Roşian ŞH, Leru PM, Chedea VS, Socaci SA, Buzoianu AD. Comparative Protective Effect of Nigella sativa Oil and Vitis vinifera Seed Oil in an Experimental Model of Isoproterenol-Induced Acute Myocardial Ischemia in Rats. Molecules. 2021; 26(11):3221. https://doi.org/10.3390/molecules26113221
Chicago/Turabian StyleBocsan, Ioana Corina, Raluca Maria Pop, Octavia Sabin, Elias Sarkandy, Paul-Mihai Boarescu, Ştefan Horia Roşian, Poliana Mihaela Leru, Veronica Sanda Chedea, Sonia Ancuța Socaci, and Anca Dana Buzoianu. 2021. "Comparative Protective Effect of Nigella sativa Oil and Vitis vinifera Seed Oil in an Experimental Model of Isoproterenol-Induced Acute Myocardial Ischemia in Rats" Molecules 26, no. 11: 3221. https://doi.org/10.3390/molecules26113221
APA StyleBocsan, I. C., Pop, R. M., Sabin, O., Sarkandy, E., Boarescu, P. -M., Roşian, Ş. H., Leru, P. M., Chedea, V. S., Socaci, S. A., & Buzoianu, A. D. (2021). Comparative Protective Effect of Nigella sativa Oil and Vitis vinifera Seed Oil in an Experimental Model of Isoproterenol-Induced Acute Myocardial Ischemia in Rats. Molecules, 26(11), 3221. https://doi.org/10.3390/molecules26113221