Effects and Economic Sustainability of Biochar Application on Corn Production in a Mediterranean Climate
Abstract
:1. Introduction
2. Results
2.1. Biochar Composition
2.2. Soil Analysis
2.3. Harvest Data
2.3.1. Cob Morphological Data
2.3.2. Fresh Cob Production Data
2.3.3. Dried Cob Production Data
3. Discussion
Profitability of Biochar Application
4. Materials and Methods
4.1. Biochar
4.2. Field Experiments
4.3. Soil Analysis
4.4. Biochar Analysis
4.5. Statistical Analysis
4.6. Economic Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Czajczyńska, D.; Anguilano, L.; Ghazal, H.; Krzyżyńska, R.; Reynolds, A.J.; Spencer, N.; Jouhara, H. Potential of pyrolysis processes in the waste management sector. Therm. Sci. Eng. Prog. 2017, 3, 171–197. [Google Scholar] [CrossRef]
- Bridgwater, A.V.; Peacocke, G.V.C. Fast pyrolysis processes for biomass. Renew. Sustain. Energy Rev. 2000, 4, 1–73. [Google Scholar] [CrossRef]
- Aguirre, J.L.; Baena, J.; Martín, M.T.; Nozal, L.; González, S.; Manjón, J.L.; Peinado, M. Composition, Ageing and Herbicidal Properties of Biomass Pyrolysis. Energies 2020, 23, 2418. [Google Scholar] [CrossRef]
- Aguirre, J.L.; Baena, J.; Martín, M.T.; González, S.; Manjón, J.L.; Peinado, M. Herbicidal effects of wood vinegar on nitrophilous plant communities. Food Energy Secur. 2020, 9, e253. [Google Scholar] [CrossRef]
- Ahadiyat, Y.R.; Hadi, S.N.; Herliana, O. Application of wood vinegar coconut shell and NPK fertilizer to maintain sustainable agriculture of upland rice production. J. Degrad. Min. Lands Manag. 2018, 5, 1245–1250. [Google Scholar] [CrossRef] [Green Version]
- Mungkunkamchao, T.; Kesmala, T.; Pimratch, S.; Toomsan, B.; Jothityangkoon, D. Wood vinegar and fermented bioextracts: Natural products to enhance growth and yield of tomato (Solanum lycopersicum L.). Sci. Hortic. 2013, 154, 66–72. [Google Scholar] [CrossRef]
- Zhu, K.; Gu, S.; Liu, J.; Luo, T.; Khan, Z.; Zhang, K.; Hu, L. Wood Vinegar as a Complex Growth Regulator Promotes the Growth, Yield, and Quality of Rapeseed. Agronomy 2021, 11, 510. [Google Scholar] [CrossRef]
- Luo, X.; Wang, Z.; Meki, K.; Wang, X.; Liu, B.; Zheng, H.; You, X.; Li, F. Effect of co-application of wood vinegar and biochar on seed germination and seedling growth. J. Soils Sediments 2019, 19, 3934–3944. [Google Scholar] [CrossRef]
- Ye, X.; Lei, X.; Wang, C.; Li, Q.; Yuan, W.; Li, Z. Study on Selective Pyrolysis of Biomass for Production of Upgraded Bio-Oil. In Proceedings of the E3S Web Conference, Shanghai, China, 16–18 August 2019. [Google Scholar]
- Ren, Y.; Zhang, L.; Duan, W.; Han, Z.; Guo, J.; Heydenrych, M.D.; Zhang, A.; Nie, K.; Tan, T.; Liu, L. Performance of bitumen coating sheet using biomass pyrolysis oil. J. Air Waste Manag. Assoc. 2020, 70, 219–227. [Google Scholar] [CrossRef]
- Guo, M.; Uchimiya, S.M.; He, Z. Agricultural and Environmental Applications of Biochar: Advances and Barriers; Soil Science Society of America, Inc.: Madison, WI, USA, 2015; pp. 495–504. [Google Scholar] [CrossRef] [Green Version]
- Yazhini, G.; Abishek, R.; Ilakiya, T.; Shanmugapriya, S.; Piriya, R.S. Beneficial Effects of Biochar on Agriculture and Environments. Int. Res. J. Pure Appl. Chem. 2020, 74–88. [Google Scholar] [CrossRef]
- Hossain, M.K.; Strezov, V.; Yin Chan, K.; Nelson, P.F. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum). Chemosphere 2010. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K.H.M. Biochar for crop production: Potential benefits and risks. J. Soils Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Baiamonte, G.; De Pasquale, C.; Marsala, V.; Cimò, G.; Alonzo, G.; Crescimanno, G.; Conte, P. Structure alteration of a sandy-clay soil by biochar amendments. J. Soils Sediments 2015, 15, 816–824. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Laghari, M.; Naidu, R.; Xiao, B.; Hu, Z.; Mirjat, M.S.; Hu, M.; Kandhro, M.N.; Chen, Z.; Guo, D.; Jogi, Q.; et al. Recent developments in biochar as an effective tool for agricultural soil management: A review. J. Sci. Food Agric. 2016, 96, 4840–4849. [Google Scholar] [CrossRef]
- Zhang, L.; Rana, I.; Shaffer, R.M.; Taioli, E.; Sheppard, L. Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutat. Res. Rev. Mutat. Res. 2019, 781, 186–206. [Google Scholar] [CrossRef] [PubMed]
- Rogovska, N.; Laird, D.A.; Karlen, D.L. Corn and soil response to biochar application and stover harvest. F. Crop. Res. 2016, 187, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Rajkovich, S.; Enders, A.; Hanley, K.; Hyland, C.; Zimmerman, A.R.; Lehmann, J. Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol. Fertil. Soils 2012, 48, 271–284. [Google Scholar] [CrossRef]
- Prakongkep, N.; Gilkes, R.J.; Wisawapipat, W.; Leksungnoen, P.; Suaysom, W.; Hammecker, C. The response of sweet corn to biochar and chemical fertilizer applications for a sandy soil. J. Agric. Crop Res. 2020, 8, 297–304. [Google Scholar] [CrossRef]
- Montagnoli, A.; Baronti, S.; Alberto, D.; Chiatante, D.; Scippa, G.S.; Terzaghi, M. Pioneer and fibrous root seasonal dynamics of Vitis vinifera L. are affected by biochar application to a low fertility soil: A rhizobox approach. Sci. Total Environ. 2021, 751, 141455. [Google Scholar] [CrossRef] [PubMed]
- Baronti, S.; Alberti, G.; Vedove, G.D.; di Gennaro, F.; Fellet, G.; Genesio, L.; Miglietta, F.; Peressotti, A.; Vaccari, F.P. The biochar option to improve plant yields: First results from some field and pot experiments in Italy. Ital. J. Agron. 2010. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Xu, Y.; Liu, G.; Liu, Q.; Zhu, J.; Tu, C.; Amonette, J.E.; Cadisch, G.; Yong, J.W.H.; Hu, S. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant Soil 2013. [Google Scholar] [CrossRef]
- Hamzah, Z.; Shuhaimi, S.N.A. Biochar: Effects on crop growth. In Proceedings of the IOP Conference Series Earth and Environmental Science 215, Yogyakarta, Indonesia, 20–24 August 2017. [Google Scholar]
- Mukhina, I.; Rizhiya, E.; Bankina, T. Biochar effect on nutrients availability to barley. Environ. Res. Eng. Manag. 2020, 76, 43–53. [Google Scholar] [CrossRef]
- Karthik, A.; Duraisamy, V.K.; Prakash, A.H. Influence of different sources of biochar on soil physical and chemical properties in cotton (Gossypium hirsutum L.). J. Pharmacogn. Phytochem. 2019, 8, 2051–2055. [Google Scholar]
- Upadhyay, K.P.; Dhami, N.B.; Sharma, P.N.; Neupane, J.D.; Shrestha, J. Growth and yield responses of potato (Solanum tuberosum L.) to biochar. Agraarteadus 2020, 31, 244–253. [Google Scholar] [CrossRef]
- Güereña, D.; Lehmann, J.; Hanley, K.; Enders, A.; Hyland, C.; Riha, S. Nitrogen dynamics following field application of biochar in a temperate North American maize-based production system. Plant Soil 2013, 365, 239–254. [Google Scholar] [CrossRef]
- Karer, J.; Wimmer, B.; Zehetner, F.; Kloss, S.; Feichtmair, S.; Kitzler, B. Biochar application to temperate soils—Effects on soil fertility and crop yield. Agric. Food Sci. 2013, 22, 390–403. [Google Scholar] [CrossRef] [Green Version]
- Spokas, K.A.; Cantrell, K.B.; Novak, J.M.; Archer, D.W.; Ippolito, J.A.; Collins, H.P.; Boateng, A.A.; Lima, I.M.; Lamb, M.C.; McAloon, A.J.; et al. Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. J. Environ. Qual. 2012. [Google Scholar] [CrossRef]
- Ch’ng, H.Y.; Ahmed, O.H.; Nik, N.M. Biochar and compost influence the phosphorus availability, nutrients uptake, and growth of maize (Zea mays L.) in tropical acid soil. Pakistan J. Agric. Sci. 2014, 51, 797–806. [Google Scholar]
- Borchard, N.; Siemens, J.; Ladd, B.; Möller, A.; Amelung, W. Application of biochars to sandy and silty soil failed to increase maize yield under common agricultural practice. Soil Tillage Res. 2014. [Google Scholar] [CrossRef]
- Gaskin, J.W.; Speir, R.A.; Harris, K.; Das, K.C.; Lee, R.D.; Morris, L.A.; Fisher, D.S. Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron. J. 2010, 102, 623–633. [Google Scholar] [CrossRef] [Green Version]
- Baiamonte, G.; Minacapilli, M.; Crescimanno, G. Effects of biochar on irrigation management and water use efficiency for three different crops in a desert sandy soil. Sustainability 2020, 12, 7678. [Google Scholar] [CrossRef]
- Alburquerque, J.A.; Salazar, P.; Barrón, V.; Torrent, J.; Del Campillo, M.D.C.; Gallardo, A.; Villar, R. Enhanced wheat yield by biochar addition under different mineral fertilization levels. Agron. Sustain. Dev. 2013. [Google Scholar] [CrossRef] [Green Version]
- Alburquerque, J.A.; Calero, J.M.; Barrón, V.; Torrent, J.; del Campillo, M.C.; Gallardo, A.; Villar, R. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J. Plant Nutr. Soil Sci. 2014. [Google Scholar] [CrossRef]
- Olmo, M.; Alburquerque, J.A.; Barrón, V.; del Campillo, M.C.; Gallardo, A.; Fuentes, M.; Villar, R. Wheat growth and yield responses to biochar addition under Mediterranean climate conditions. Biol. Fertil. Soils 2014, 50, 1177–1187. [Google Scholar] [CrossRef]
- Jones, D.L.; Rousk, J.; Edwards-Jones, G.; DeLuca, T.H.; Murphy, D.V. Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem. 2012, 45, 113–124. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K.; et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar 2020. [Google Scholar] [CrossRef]
- Butnan, S.; Deenik, J.L.; Toomsan, B.; Antal, M.J.; Vityakon, P. Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 2015, 237, 105–116. [Google Scholar] [CrossRef]
- Guo, M. The 3r principles for applying biochar to improve soil health. Soil Syst. 2020, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Manyà, J.J. Pyrolysis for biochar purposes: A review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 2012, 46, 7939–7954. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Zoghi, Z.; Nazarov, K.; Wirth, S.; Bellingrath-Kimura, S.D. Plant growth response of broad bean (Vicia faba L.) to biochar amendment of loamy sand soil under irrigated and drought conditions. Environ. Sustain. 2020, 3, 319–324. [Google Scholar] [CrossRef]
- Basso, A.S.; Miguez, F.E.; Laird, D.A.; Horton, R.; Westgate, M. Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy 2013. [Google Scholar] [CrossRef] [Green Version]
- Karhu, K.; Mattila, T.; Bergström, I.; Regina, K. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—Results from a short-term pilot field study. Agric. Ecosyst. Environ. 2011, 140, 309–313. [Google Scholar] [CrossRef]
- Yadav, V.; Khare, P.; Deshmukh, Y.; Shanker, K.; Nigam, N.; Karak, T. Performance of biochar derived from Cymbopogon winterianus waste at two temperatures on soil properties and growth of Bacopa monneri. Commun. Soil Sci. Plant Anal. 2018, 49, 2741–2764. [Google Scholar] [CrossRef]
- Prapagdee, S.; Tawinteung, N. Effects of biochar on enhanced nutrient use efficiency of green bean, Vigna radiata L. Environ. Sci. Pollut. Res. 2017, 24, 9460–9467. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and Its Importance on Nutrient Dynamics in Soil and Plant; Springer: Singapore, 2020; Volume 2, ISBN 0123456789. [Google Scholar]
- Filiberto, D.M.; Gaunt, J.L. Practicality of biochar additions to enhance soil and crop productivity. Agriculture 2013, 3, 715–725. [Google Scholar] [CrossRef] [Green Version]
- La Calle, P. La influencia de la humedad en los costes de la recogida del maíz. Agrotecnica 2006, 3, 74–78. [Google Scholar]
- Servicio Agronómico Pioneer de Castilla y Leon ¿Por qué hoy Sigue Siendo Rentable Sembrar Maíz en Castilla y León? Available online: https://www.campocyl.es/category/maiz/por-que-hoy-sigue-siendo-rentable-sembrar-maiz-en-castilla-y-leon/ (accessed on 21 May 2021).
- Dokoohaki, H.; Miguez, F.E.; Laird, D.; Dumortier, J. Where should we apply biochar? Environ. Res. Lett. 2019, 14. [Google Scholar] [CrossRef]
- Eiriz, G.; Orodea, L.F.; García, L.; Ramírez, G.; Simarro, J.C. Subdirección General de Análisis, Prospectiva y Coordinación. In Resultados Técnico-Económicos, Estudios de Costes y Rentas de las Explotaciones Agrarias; Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente: Madrid, Spain, 2017; pp. 1–78. [Google Scholar]
- Agroptima Rentabilidad del Maíz: Todas las Claves Para Mejorar Esta Campaña—Blog. Available online: https://www.agroptima.com/es/blog/rentabilidad-del-maiz/ (accessed on 21 May 2021).
- Kauffman, N.; Dumortier, J.; Hayes, D.J.; Brown, R.C.; Laird, D.A. Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass Bioenergy 2014. [Google Scholar] [CrossRef] [Green Version]
- Vermichar. Available online: https://www.vermichar.es/biochar/ (accessed on 21 May 2021).
- Livingchar. Available online: https://www.livingchar.com/producto/biochar-livingchar-600l/ (accessed on 21 May 2021).
- Biochar Supreme. Available online: https://www.biocharsupreme.com/products/bob-s-ag-hort (accessed on 21 May 2021).
B1 | B2 | |
---|---|---|
Dry matter | 98.70% | 81.70% |
Moisture | 1.33% | 18.30% |
pH | 8.6 | 7.9 |
Electrical conductivity (25 °C) | 0.508 dS/m | 7.54 dS/m |
Organic matter (550 °C) | 97.7% | 49.5% |
Organic carbon | 55.90% | 23.50% |
C/N ratio | 233.99 | 33.05 |
Humic acid | 0.9% | 4.9% |
Total humic extract | 20.3% | 8.3% |
Fulvic acid | 19.40% | 3.40% |
Before Planting (n = 8) | Control (n = 4) | B1 (n = 2) | B2 (n = 2) | |
---|---|---|---|---|
pH | 7.8 ± 0.06 | 7. 9 ± 0.04 | 8.01 ± 0.0 | 7.85 ± 0.0 |
Conductivity (µs/cm) | 264 ± 49 * | 293 ± 28 * | 522 ± 12 * | 346 ± 14 * |
Total N (%) | 0.17 ± 0.05 | 0.15 ± 0.02 | 0.15 ± 0.01 | 0.21 ± 0.06 |
K assimilable (mg/kg) | 397 ± 246 | 291 ± 82 | 453 ± 22 | 444 ± 99 |
P assimilable (mg/kg) | 50.8 ± 31.8 | 30.54 ± 6.98 | 38.13 ± 11.7 | 37.47 ± 25.5 |
Organic matter (%) | 3.5 ± 1.01 | 3.25 ± 0.23 | 4.32 ± 0.68 | 5.46 ± 1.39 |
C/N | 12.35 ± 1.1 * | 12.4 ± 0.88 * | 16.68 ± 1.08 * | 15.10 ± 0.22 * |
Sulfate (mg/L) | 8.13 ± 3.4 * | 38.25 ± 6.7 * | 142.5 ± 6.36 * | 53 ± 5.8 * |
Magnesium (mg/L) | 6.43 ± 2.4 * | 9.5 ± 1.9 | 14.5 ± 0.7 * | 10.5 ± 0.7 |
Saturation percentage (%) | 29.1 ± 1.3 * | 29.9 ± 0.5 * | 33.64 ± 1.9 * | 33.4 ± 1.4 * |
Phosphate (mg/L) | 5.55 ± 2.76 | 2.7 ± 0.4 | 2.5 ± 0 | 3.75 ± 1.7 |
Nitrate (mg/L) | 28 ± 2.83 * | 9 ± 2.83 | 23 ± 5.6 * | 4.5 ± 0.71 |
Treatment/Cob | Cob Insertion Height (cm) | Length (mm) | Perimeter (mm) | Diameter (mm) |
---|---|---|---|---|
B1 | 81.88 ± 8.86 * | 217.87 ± 24.66 ** | 155.18 ± 29.31 * | 48.79 ± 6.53 * |
B2 | 80.55 ± 8.84 | 229.89 ± 75.53 ** | 144.88 ± 26.39 | 44.52 ± 4.08 * |
C1 | 82.81 ± 13.30 | 197.21 ± 27.24 * | 140.33 ± 9.93 | 42.05 ± 6.01 |
C2 | 80.78 ± 11.13 | 176.49 ± 27.24 * | 140.29 ± 18.82 | 43.96 ± 3.38 |
Treatments | Fresh Cob Weight (g/Plant) | Fresh Cob Weight (g/Cob) | Weight of 100 Grains (g) | Fresh Weight Productivity (g/m2) |
---|---|---|---|---|
B1 (68 plants) | 307.28 ± 138.97 ** | 302.2 ± 84.94 ** | 43.64 ± 5.97 ** | 2028.05 ± 542.87 ** |
B2 (52 plants) | 202.85 ± 79.20 | 210 ± 16 | 36.43 ± 4.53 | 1117.63 ± 189.7 * |
C1 (52 plants) | 231.07 ± 135.22 * | 186.5 ± 84.87 | 39.46 ± 4.69 | 1171.39 ± 290.32 |
C2 (57 plants) | 163.28 ± 74.77 * | 187.00 ± 64.0 * | 31.36 ± 5.40 | 923.43 ± 228 |
Treatment | Equation (Cob Weight and Grain Weight) | Dried Grain Production Per Cob (g) | Dried Grain Production Per Plant (g) | Dried Grain Productivity (g/m2) |
---|---|---|---|---|
B1 | Grain weight = −17.05 + 0.82 * Cob weight (R2: 0.99) | 152.97 ± 71.88 ** | 177.83 ± 86.52 ** | 1209.24 ± 364.57 ** |
B2 | Grain weight = −3.39 + 0.79 * Cob weight (R2: 0.99) | 131.69 ± 49.32 * | 136.76 ± 56.62 | 711.14 ± 116.8 * |
C1 | Grain weight = −21.41 + 0.85 * Cob weight (R2: 0.99) | 110.74 ± 60.11 | 138.79 ± 89.98 | 740.32 ± 195.20 |
C2 | Grain weight = −16.35 + 0.82 * Cob weight (R2: 0.99) | 100.05 ± 52.25 | 100.05 ± 52.25 ** | 570.31 ± 162.54 |
Biochar/ha | Cost of a Ton of Dry Corn | Average Production | Improvement/ha | Increasing Input |
---|---|---|---|---|
40 t/ha | €185 | 12 t/ha | 7.44 t | €1376.4/ha |
CO2 Value | Savings in Fertilization | Irrigation Savings | Biochar Cost €190/t | Crop Improvement (Corn Value) | Time to Amortize (without CO2) | Time to Amortize (with CO2) |
---|---|---|---|---|---|---|
€2472/ha | €253 | €200 | €7600 | €1376.4 | 4.15 years | 2.80 year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguirre, J.L.; Martín, M.T.; González, S.; Peinado, M. Effects and Economic Sustainability of Biochar Application on Corn Production in a Mediterranean Climate. Molecules 2021, 26, 3313. https://doi.org/10.3390/molecules26113313
Aguirre JL, Martín MT, González S, Peinado M. Effects and Economic Sustainability of Biochar Application on Corn Production in a Mediterranean Climate. Molecules. 2021; 26(11):3313. https://doi.org/10.3390/molecules26113313
Chicago/Turabian StyleAguirre, Juan Luis, María Teresa Martín, Sergio González, and Manuel Peinado. 2021. "Effects and Economic Sustainability of Biochar Application on Corn Production in a Mediterranean Climate" Molecules 26, no. 11: 3313. https://doi.org/10.3390/molecules26113313
APA StyleAguirre, J. L., Martín, M. T., González, S., & Peinado, M. (2021). Effects and Economic Sustainability of Biochar Application on Corn Production in a Mediterranean Climate. Molecules, 26(11), 3313. https://doi.org/10.3390/molecules26113313