The Biological Activity of Monarda didyma L. Essential Oil and Its Effect as a Diet Supplement in Mice and Broiler Chicken
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material and Extraction of Essential Oils
3.3. GC-FID and GC-MS Analysis
3.4. In Vitro Activity of Essential Oil
3.4.1. Cell Culture
3.4.2. Bacterial Strains
3.4.3. Culture Methods
3.4.4. Measurement of Anti-Inflammatory Activity
3.4.5. Evaluation of Antioxidant Activity Using Cell-Based Assays
3.4.6. Evaluation of Antioxidant Activity Using ORAC
3.4.7. Evaluation of Antibacterial Activity
3.5. Experimental Design in Mice
3.6. Experimental Design for Broilers
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feighner, S.D.; Dashkevicz, M.P. Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholyltaurine hydrolase activity. Appl. Environ. Microbiol. 1987, 53, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Graham, J.P.; Boland, J.J.; Silbergeld, E. Growth promoting antibiotics in food animal production: An economic analysis. Public Health Rep. 2007, 122, 79–87. [Google Scholar] [CrossRef]
- Dibner, J.J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.K. Antibiotic growth-promoters in food animals. Pharma Times 2010, 42, 17–21. [Google Scholar]
- Weber, E.M.; Luther, H.G.; Reynolds, W.M. Antibiotics as animal-growth stimulants. Bull. World Health Organ. 1952, 6, 149–161. [Google Scholar] [PubMed]
- Diarra, M.S.; Malouin, F. Antibiotics in Canadian poultry productions and anticipated alternatives. Front. Microbiol. 2014, 5, 282. [Google Scholar] [CrossRef] [Green Version]
- Nakatani, N. Phenolic antioxidants from herbs and spices. BioFactors 2000, 13, 141–146. [Google Scholar] [CrossRef]
- Craig, W.J. Health-promoting properties of common herbs. Am. J. Clin. Nutr. 1999, 70, 491S–499S. [Google Scholar] [CrossRef]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Diaz-Sanchez, S.; D’Souza, D.; Biswas, D.; Hanning, I. Botanical alternatives to antibiotics for use in organic poultry production. Poult. Sci. 2015, 94, 1419–1430. [Google Scholar] [CrossRef]
- William, P.; Losa, R. The use of essential oils and their compounds in poultry nutrition. World Poult. 2001, 17, 14–15. [Google Scholar]
- Lee, K.-W. Essential oils in broiler nutrition. Int. J. Poult. Sci. 2002, 3, 738–752. [Google Scholar]
- Brenes, A.; Roura, E. Essential oils in poultry nutrition: Main effects and modes of action. Anim. Feed Sci. Technol. 2010, 158, 1–14. [Google Scholar] [CrossRef]
- Hashemi, S.R.; Davoodi, H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet. Res. Commun. 2011, 35, 169–180. [Google Scholar] [CrossRef]
- Khattak, F.; Ronchi, A.; Castelli, P.; Sparks, N. Effects of natural blend of essential oil on growth performance, blood biochemistry, cecal morphology, and carcass quality of broiler chickens. Poult. Sci. 2014, 93, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.Y.; Yan, F.; Keen, C.A.; Waldroup, P.W. Evaluation of microencapsulated essential oils and organic acids in diets for broiler chickens. Int. J. Poult. Sci. 2005, 4, 612–619. [Google Scholar]
- Hernández, F.; Madrid, J.; García, V.; Orengo, J.; Megías, M.D. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 2004, 83, 169–174. [Google Scholar] [CrossRef]
- Cross, D.E.; McDevitt, R.M.; Hillman, K.; Acamovic, T. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. Br. Poult. Sci. 2007, 48, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Denli, M.; Okan, F.; Uluocak, A.N. Effect of dietary supplementation of herb essential oils on the growth performance, carcass and intestinal characteristics of quail (Coturnix coturnix japonica). S. Afr. J. Anim. Sci. 2004, 34, 174–179. [Google Scholar]
- Hamel, P.B.; Chiltoskey, M.U. Cherokee Plants and Their Uses—A 400 Year History; Sylva, N.C., Ed.; Herald Publishing Co.: Tecumseh, MI, USA, 1975; 72p. [Google Scholar]
- Fraternale, D.; Giamperi, L.; Bucchini, A.; Ricci, D.; Epifano, F.; Burini, G.; Curini, M. Chemical composition, antifungal and in vitro antioxidant properties of Monarda didyma L. essential oil. J. Essent. Oil Res. 2006, 18, 581–585. [Google Scholar] [CrossRef]
- Ben Arfa, A.; Combes, S.; Preziosi-Belloy, L.; Gontard, N.; Chalier, P. Antimicrobial activity of carvacrol related to its chemical structure. Lett. Appl. Microbiol. 2006, 43, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Mancini, E.; Senatore, F.; Del Monte, D.; De Martino, L.; Grulova, D.; Scognamiglio, M.; Snoussi, M.; De Feo, V. Studies on chemical composition, antimicrobial and antioxidant activities of five Thymus vulgaris L. essential oils. Molecules 2015, 20, 12016–12028. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertas, O.N.; Güler, T.; Çiftçi, M.; Dalkilic, B.; Simsek, Ü.G. The effect of an essential oil mix derived from oregano, clove and anise on broiler performance. Int. J. Poult. Sci. 2005, 4, 879–884. [Google Scholar]
- Danzeisen, J.L.; Kim, H.B.; Isaacson, R.E.; Tu, Z.J.; Johnson, T.J. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS ONE 2011, 6, e27949. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Ricci, D.; Epifano, F.; Fraternale, D. The essential oil of Monarda didyma L. (Lamiaceae) exerts phytotoxic activity in vitro against various weed seeds. Molecules 2017, 22, 222. [Google Scholar] [CrossRef] [Green Version]
- Scora, R.W. Study of the essential leaf oils of the genus Monarda (Labiatae). Am. J. Bot. 1967, 54, 446–452. [Google Scholar] [CrossRef]
- Carron, C.A.; Jaunin, L.; Grogg, A.F. La monarde fistuleuse, source naturelle de geraniol, d’acide rosmarinique et de flavonoides. Rev. Suisse Vitic. Arboric. Hortic. 2007, 39, 229–235. [Google Scholar]
- Dorman, H.J.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Saini, R.; Davis, S.; Dudley-Cash, W. Oregano essential oil reduces necrotic enteritis in broilers. In Proceedings of the Fifty-Second Western Poultry Disease Conference, Sacramento, CA, USA, 8–11 March 2003; pp. 95–98. [Google Scholar]
- Sivropoulou, A.; Papanikolaou, E.; Nikolapu, C.; Kokkini, S.; Lanaras, T.; Arsenakis, M. Antimicrobial and cytotoxic activities of Origanum essential oils. J. Agric. Food Chem. 1996, 44, 1202–1205. [Google Scholar] [CrossRef]
- Rota, M.C.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Ji, K.L.; Gan, X.Q.; Xu, Y.K.; Li, X.F.; Guo, J.; Dahab, M.M.; Zhang, P. Protective effect of the essential oil of Zanthoxylum myriacanthum var. pubescens against dextran sulfate sodium-induced intestinal inflammation in mice. Phytomedicine 2016, 23, 883–890. [Google Scholar] [CrossRef]
- Platel, K.; Srinivasan, K. Studies on the influence of dietary spices on food transit time in experimental rats. Nutr. Res. 2001, 21, 1309–1314. [Google Scholar] [CrossRef]
- Yang, X.; Xin, H.; Yang, C.; Yang, X. Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens. Anim. Nutr. 2018, 4, 388–393. [Google Scholar] [CrossRef]
- Hashemipour, H.; Kermanshahi, H.; Golian, A.; Khaksar, V. Effects of carboxy methyl cellulose and thymol + carvacrol on performance, digesta viscosity and some blood metabolites of broilers. J. Anim. Physiol. Anim. Nutr. 2013, 98, 672–679. [Google Scholar] [CrossRef]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaatz, G.W.; Seo, S.M.; Brien, L.O.; Foster, T.J.; Wahiduzzaman, M. Evidence for the existence of a multidrug efflux transporter distinct from NorA in Staphylococcus aureus. Antimicrob. Agents Chemother. 2000, 44, 1404–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legault, J.; Girard-Lalancette, K.; Grenon, C.; Dussault, C.; Pichette, A. Antioxidant activity, inhibition of nitric oxide overproduction, and in vitro antiproliferative effect of maple sap and syrup from Acer saccharum. J. Med. Food 2010, 13, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Girard-Lalancette, K.; Pichette, A.; Legault, J. Sensitive cell-based assay using DCFH oxidation for the determination of pro- and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices. Food Chem. 2009, 115, 720–726. [Google Scholar] [CrossRef]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Côté, H.; Boucher, M.A.; Pichette, A.; Roger, B.; Legault, J. New antibacterial hydrophobic assay reveals Abies balsamea oleoresin activity against Staphylococcus aureus and MRSA. J. Ethnopharmacol. 2016, 194, 684–689. [Google Scholar] [CrossRef] [PubMed]
Identified Compounds | Relative Concentration (%) | ||
---|---|---|---|
RI | Name | Identification 1 | |
930 | α-thujene | MS, RI | 1.39 |
938 | α-pinene | MS, RI | 0.43 |
976 | 1-octen-3-ol | MS, RI | 3.07 |
992 | myrcene | MS, RI | 2.33 |
1010 | α-phellandrene | MS, RI | 0.36 |
1016 | δ-3-carene | MS, RI | 0.16 |
1022 | α-terpinene | MS, RI | 2.79 |
1030 | p-cymene | MS, RI | 7.60 |
1034 | limonene | MS, RI | 1.03 |
1064 | γ-terpinene | MS, RI | 16.90 |
1072 | cis-sabinene-hydrate | MS, RI | 0.25 |
1094 | linalool | MS, RI | 0.15 |
1174 | terpinen-4-ol | MS, RI | 0.11 |
1185 | α-terpineol | MS, RI | 0.79 |
1232 | thymol methyl ether | MS, RI | 0.86 |
1248 | carvacrol methyl ether | MS, RI | 4.18 |
1294 | thymol | MS, RI | 6.17 |
1306 | carvacrol | MS, RI | 49.03 |
1435 | β-caryophyllene | MS, RI | 0.89 |
1488 | germacrene D | MS, RI | 0.12 |
1511 | γ-cadinene | MS, RI | 0.23 |
Total | 98.84 |
Compounds | Antibacterial Activity MIC (µg·mL−1) | ||
---|---|---|---|
E. coli | S. aureus | C. perfringens | |
T. vulgaris EO | 109 ± 10 | 111 ± 7 | ND |
M. didyma EO | 87 ± 8 | 47 ± 8 | 35 ± 4 |
Thymol | 110 ± 7 | 130 ± 10 | 55 ± 3 |
Carvacrol | 65 ± 5 | 36 ± 1 | 18 ± 1 |
α-terpinene | ˃200 | ˃200 | ND |
γ-terpinene | ˃200 | ˃200 | ND |
p-cymene | ˃200 | ˃200 | ND |
Limonene | ˃200 | ˃200 | 29 ± 1 |
Myrcene | ˃200 | ˃200 | ND |
Compounds | Antioxidant | Anti-Inflammatory | |
---|---|---|---|
Cell-Based Assay | ORAC | IC50 (µg·mL−1) | |
IC50 (µg·mL−1) | µmol Trolox·mg−1 | ||
T. vulgaris EO | 11 ± 9 | 0.4 ± 0.2 | 64 ± 6 |
M. didyma EO | 4.6 ± 0.3 | 0.52 ± 0.01 | 35 ± 4 |
Thymol | ˃200 | 1.34 ± 0.03 | ˃200 |
Carvacrol | 54 ± 9 | 2.3 ± 0.3 | 22.6 ± 0.2 |
α-terpinene | 3.4 ± 0.2 | 0.17 ± 0.05 | ˃200 |
γ-terpinene | ND | ND | ˃200 |
p-cymene | ˃200 | 0.02 ± 0.01 | 25.5 ± 0.9 |
Limonene | 6.2 ± 0.5 | 0.08 ± 0.02 | 22 ± 7 |
Myrcene | 92 ± 4 | 0.04 ± 0.01 | ˃200 |
Trolox | ND | 9 ± 1 | ND |
Treatments | Body Weight Gain (g) (BW) | Feed Intake (g) (FI) | Feed Efficiency (FI/BW) |
---|---|---|---|
0–80 Days | 0–80 Days | 0–80 Days | |
Control | 5.58 ± 1.01 a | 164.83 ± 1.55 a | 29.55 a |
T. vulgaris 0.2% | 5.56 ± 1.41 b | 154.96 ± 0.87 b | 27.87 b |
T. vulgaris 0.1% | 6.16 ± 1.44 b | 163.39 ± 14.21 c | 26.54 c |
M. didyma 0.2% | 5.78 ± 1.40 c | 145.24 ± 7.81 c | 25.13 c |
M. didyma 0.1% | 5.90 ± 1.17 c | 141.58 ± 2.78 c | 23.98 c |
Treatments | Body Weight Gain (g) (BW) | Feed Intake (g) (FI) | Feed Efficiency (FI/BW) | |||
---|---|---|---|---|---|---|
0–10 Days | 0–36 Days | 0–10 Days | 0–36 Days | 0–10 Days | 0–36 Days | |
Antibiotics suppl. | 269 ± 7 a | 2578 ± 117 a | 384.71 ¥ | 4514.25 ¥ | 1.43 ¥ | 1.75 ¥ |
M. didyma suppl. | 279 ± 8 b | 2652 ± 121 b | 360.36 ¥ | 4455.81 ¥ | 1.29 ¥ | 1.68 ¥ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Côté, H.; Pichette, A.; St-Gelais, A.; Legault, J. The Biological Activity of Monarda didyma L. Essential Oil and Its Effect as a Diet Supplement in Mice and Broiler Chicken. Molecules 2021, 26, 3368. https://doi.org/10.3390/molecules26113368
Côté H, Pichette A, St-Gelais A, Legault J. The Biological Activity of Monarda didyma L. Essential Oil and Its Effect as a Diet Supplement in Mice and Broiler Chicken. Molecules. 2021; 26(11):3368. https://doi.org/10.3390/molecules26113368
Chicago/Turabian StyleCôté, Héloïse, André Pichette, Alexis St-Gelais, and Jean Legault. 2021. "The Biological Activity of Monarda didyma L. Essential Oil and Its Effect as a Diet Supplement in Mice and Broiler Chicken" Molecules 26, no. 11: 3368. https://doi.org/10.3390/molecules26113368
APA StyleCôté, H., Pichette, A., St-Gelais, A., & Legault, J. (2021). The Biological Activity of Monarda didyma L. Essential Oil and Its Effect as a Diet Supplement in Mice and Broiler Chicken. Molecules, 26(11), 3368. https://doi.org/10.3390/molecules26113368