Coating Cellulosic Material with Ag Nanowires to Fabricate Wearable IR-Reflective Device for Personal Thermal Management: The Role of Coating Method and Loading Level
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structural Characterization
2.2. Thermal Management Characterization
2.3. Water Vapor Permeability
2.4. Electrical Conductivity and Washing Fastness
2.5. Antibacterial Testing
3. Materials and Methods
3.1. Materials
3.2. Silver Nanowires Synthesis
3.3. Preparation of Nanowire Coated Fabric
3.4. Materials Characterization
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Miao, D.; Jiang, S.; Liu, J.; Ning, X.; Shang, S.; Xu, J. Fabrication of copper and titanium coated textiles for sunlight management. J. Mater. Sci. Mater. Electron. 2017, 28, 9852–9858. [Google Scholar] [CrossRef]
- Cai, L.; Song, A.Y.; Wu, P.; Hsu, P.-C.; Peng, Y.; Chen, J.; Liu, C.; Catrysse, P.B.; Liu, Y.; Yang, A.; et al. Warming up human body by nanoporous metallized polyethylene textile. Nat. Commun. 2017, 8, 496. [Google Scholar] [CrossRef] [Green Version]
- Hsu, P.C.; Song, A.Y.; Catrysse, P.B.; Liu, C.; Peng, Y.; Xie, J.; Fan, S.; Cui, Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016, 353, 1019–1023. [Google Scholar] [CrossRef] [Green Version]
- Soumya, S.; Kumar, S.N.; Mohamed, A.P.; Ananthakumar, S. Silanated nano ZnO hybrid embedded PMMA polymer coatings on cotton fabrics for near-IR reflective, antifungal cool-textiles. New J. Chem. 2016, 40, 7210–7221. [Google Scholar] [CrossRef] [Green Version]
- Yue, X.; Zhang, T.; Yang, D.; Qiu, F.; Li, Z.; Wei, G.; Qiao, Y. Ag nanoparticles coated cellulose membrane with high infrared reflection, breathability and antibacterial property for human thermal insulation. J. Colloid Interface Sci. 2019, 535, 363–370. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, J.; Zhang, J.; Hong, Y.; Wan, Y.; Wang, Q.; Gong, M.; Wu, Z.; Guo, C.F. Thermal, Waterproof, Breathable, and Antibacterial Cloth with a Nanoporous Structure. ACS Appl. Mater. Interfaces 2018, 10, 2026–2032. [Google Scholar] [CrossRef] [PubMed]
- Nateghi, M.R.; Shateri-Khalilabad, M. Silver nanowire-functionalized cotton fabric. Carbohydr. Polym. 2015, 117, 160–168. [Google Scholar] [CrossRef]
- Ganta, D.; Chavez, J.; Lopez, A. Disposable Chronoamperometric Sensor Coated with Silver Nanowires for Detecting Levofloxacin. Anal. Lett. 2020, 53, 1992–2001. [Google Scholar] [CrossRef]
- Hsu, P.-C.; Liu, X.; Liu, C.; Xie, X.; Lee, H.R.; Welch, A.J. Personal Thermal Management by Metallic Nanowire-Coated Textile. Nano Lett 2015, 15, 365–371. [Google Scholar] [CrossRef]
- Liang, C.; Ruan, K.; Zhang, Y.; Gu, J. Multifunctional Flexible Electromagnetic Interference Shielding Silver Nanowires/Cellulose Films with Excellent Thermal Management and Joule Heating Performances. ACS Appl. Mater. Interfaces 2020, 12, 18023–18031. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Ma, J.; Jo, S.; Lee, S.; Kim, C.S. Enhancement of Antibacterial Properties of a Silver Nanowire Film via Electron Beam Irradiation. ACS Appl. Bio Mater. 2020, 3, 2117–2124. [Google Scholar] [CrossRef]
- Sataev, M.S.; Koshkarbaeva, S.T.; Tleuova, A.B.; Perni, S.; Aidarova, S.B.; Prokopovich, P. Novel process for coating textile materials with silver to prepare antimicrobial fabrics. Colloids Surf. A Physicochem. Eng. Asp. 2014, 442, 146–151. [Google Scholar] [CrossRef]
- Khattab, T.A.; Rehan, M.; Hamdy, Y.; Shaheen, T.I. Facile Development of Photoluminescent Textile Fabric via Spray Coating of Eu(II)-Doped Strontium Aluminate. Ind. Eng. Chem. Res. 2018, 57, 11483–11492. [Google Scholar] [CrossRef]
- Zenga, Q.; Dinga, C.; Lia, Q.; Yuan, W.; Peng, Y.; Hu, J.; Zhang, L.-Q. Rapid fabrication of robust, washable, self-healing superhydrophobic fabrics with non-iridescent structural color by facile spray coating. RSC Adv. 2017, 7, 8443–8452. [Google Scholar] [CrossRef] [Green Version]
- Baranowska-Korczyc, A.; Mackiewicz, E.; Ranoszek-Soliwoda, K. A SnO2 shell for high environmental stability of Ag nanowires applied for thermal management. RSC Adv. 2021, 11, 4174–4185. [Google Scholar] [CrossRef]
- Radetić, M. Functionalization of textile materials with TiO2 nanoparticles. J. Photochem. Photobiol. C Photochem. Rev. 2013, 16, 62–76. [Google Scholar] [CrossRef]
- Gowri, S.; Almeida, L.; Amorim, T.; Carneiro, N.; Souto, A.P.; Esteves, M.F. Polymer nanocomposites for multifunctional finishing of textiles-a review. Text. Res. J. 2010, 80, 1290–1306. [Google Scholar] [CrossRef]
- Shen, G.-H.; Hong, F.C.-N. Ultraviolet Photosensors Fabricated with Ag Nanowires Coated with ZnO. Thin Solid Film. 2014, 570, 363–370. [Google Scholar] [CrossRef]
- Jiu, J.; Araki, T.; Wang, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; Suganuma, K. Facile synthesis of very-long silver nanowires for transparent electrodes. J. Mater. Chem. A 2014, 2, 6326. [Google Scholar] [CrossRef]
- Leung, W.W.F.; Sun, Q. Electrostatic Charged Nanofiber Filter for Filtering Airborne Novel Coronavirus. Sep. Purif. Technol. 2020, 250, 116886. [Google Scholar] [CrossRef]
- Cui, H.-W.; Suganuma, K.; Uchida, H. Highly stretchable, electrically conductive textiles fabricated from silver nanowires and cupro fabrics using a simple dipping-drying method. Nano Res. 2015, 8, 1604–1614. [Google Scholar] [CrossRef]
- Hu, L.; Kim, H.S.; Lee, J.-Y.; Peumans, P.; Cui, Y. Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 2010, 4, 2955–2963. [Google Scholar] [CrossRef]
- Doganay, D.; Coskun, S.; Genlik, S.P.; Unalan, H.E. Silver nanowire decorated heatable textiles. Nanotechnology 2016, 27, 435201. [Google Scholar] [CrossRef]
- Jones, R.S.; Draheim, R.R.; Roldo, M. Silver Nanowires: Synthesis, Antibacterial Activity and Biomedical Applications. Appl. Sci. 2018, 8, 673. [Google Scholar] [CrossRef] [Green Version]
Sample Code | Loading Method | Loaded Material | AgNWs Loading |
---|---|---|---|
AgNWs-DCF1 | Dip | AgNWs + acrylic resin | 0.1 mg/cm2 |
AgNWs-DCF2 | Dip | AgNWs + acrylic resin | 0.3 mg/cm2 |
AgNWs-DCF3 | Dip | AgNWs + acrylic resin | 0.5 mg/cm2 |
AgNWs-SCF1 | Spray | AgNWs + acrylic resin | 0.1 mg/cm2 |
AgNWs-SCF2 | Spray | AgNWs + acrylic resin | 0.3 mg/cm2 |
AgNWs-SCF3 | Spray | AgNWs + acrylic resin | 0.5 mg/cm2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorji, M.; Mazinani, S.; Faramarzi, A.-R.; Ghadimi, S.; Kalaee, M.; Sadeghianmaryan, A.; Wilson, L.D. Coating Cellulosic Material with Ag Nanowires to Fabricate Wearable IR-Reflective Device for Personal Thermal Management: The Role of Coating Method and Loading Level. Molecules 2021, 26, 3570. https://doi.org/10.3390/molecules26123570
Gorji M, Mazinani S, Faramarzi A-R, Ghadimi S, Kalaee M, Sadeghianmaryan A, Wilson LD. Coating Cellulosic Material with Ag Nanowires to Fabricate Wearable IR-Reflective Device for Personal Thermal Management: The Role of Coating Method and Loading Level. Molecules. 2021; 26(12):3570. https://doi.org/10.3390/molecules26123570
Chicago/Turabian StyleGorji, Mohsen, Saeedeh Mazinani, Abdol-Rahim Faramarzi, Saeedeh Ghadimi, Mohammadreza Kalaee, Ali Sadeghianmaryan, and Lee D. Wilson. 2021. "Coating Cellulosic Material with Ag Nanowires to Fabricate Wearable IR-Reflective Device for Personal Thermal Management: The Role of Coating Method and Loading Level" Molecules 26, no. 12: 3570. https://doi.org/10.3390/molecules26123570
APA StyleGorji, M., Mazinani, S., Faramarzi, A. -R., Ghadimi, S., Kalaee, M., Sadeghianmaryan, A., & Wilson, L. D. (2021). Coating Cellulosic Material with Ag Nanowires to Fabricate Wearable IR-Reflective Device for Personal Thermal Management: The Role of Coating Method and Loading Level. Molecules, 26(12), 3570. https://doi.org/10.3390/molecules26123570