Antimicrobial, Antioxidant, Anti-Acetylcholinesterase, Antidiabetic, and Pharmacokinetic Properties of Carum carvi L. and Coriandrum sativum L. Essential Oils Alone and in Combination
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of C. carvi and C. sativum EOs
No | Compounds Identified | RI a | RI b | (%) C. carvi | (%) C. sativum | Identification |
---|---|---|---|---|---|---|
1 | α-thujene | 921 | 927 | 0.34 | tr | RI,MS |
2 | α-pinene | 932 | 935 | 0.62 | 4.44 | RI,MS,CS |
3 | Camphene | 946 | 950 | - | 0.40 | RI,MS |
4 | Sabinene | 969 | 974 | - | 0.21 | RI,MS |
5 | β-pinene | 979 | 981 | 18.77 | 0.66 | RI,MS |
6 | Myrcene | 992 | 991 | 1.00 | 0.56 | RI,MS |
7 | Octanal | 1004 | 1002 | - | tr | RI,MS |
8 | α-phellendrene | 1002 | 1006 | 0.22 | - | RI,MS |
9 | δ-3-carene | 1011 | 1011 | 0.06 | - | RI,MS |
10 | α-terpinene | 1014 | 1018 | 0.16 | tr | RI,MS,CS |
11 | p-cymene | 1027 | 1026 | 17.16 | 1.74 | RI,MS |
12 | Limonene | 1032 | 1034 | 0.42 | 1.23 | RI,MS |
13 | γ-terpinene | 10,599 | 1064 | 31.03 | 5.35 | RI,MS,CS |
14 | Cis-linalool oxide | 1072 | 1076 | - | 0.5 | RI,MS |
15 | Octanol | 1070 | 1085 | - | 0.30 | RI,MS |
16 | Linalool | 1095 | 1089 | tr | 76.41 | RI,MS,CS |
17 | Cis-sabinene hydrate | 1098 | 1099 | 0.25 | - | RI,MS |
18 | Trans-allo-ocimene | 1128 | 1141 | tr | - | RI,MS |
19 | Camphor | 1146 | 1151 | - | 2.20 | RI,MS |
20 | Citronellal | 1148 | 1153 | - | 0.49 | RI,MS |
21 | p-mentha-1,5-dien-8-ol | 1166 | 1158 | tr | - | RI,MS |
22 | Trans-pinocarveol | 1145 | 1161 | 0.19 | - | RI,MS |
23 | Borneol | 1169 | 1179 | 0.18 | 0.23 | RI,MS |
24 | Terpinen-4-ol | 1177 | 1193 | - | 0.23 | RI,MS |
25 | α-terpeniol | 1195 | 1204 | - | .026 | RI,MS |
26 | Cryptone | 1193 | 1195 | 0.41 | - | RI,MS |
27 | Myrtenal | 1196 | 1204 | tr | - | RI,MS |
28 | Decanal | 1205 | 1227 | 0.12 | - | RI,MS |
29 | Citronellol | 1230 | 1243 | - | 0.58 | RI,MS |
30 | Carvone | 1242 | 1247 | 12.20 | - | RI,MS |
31 | Cuminaldehyde | 1247 | 1254 | - | 0.90 | RI,MS |
32 | Geraniole | 1265 | 1261 | - | 0.15 | RI,MS,CS |
33 | 1-phenylbutanol | - | 1289 | 3.29 | - | RI,MS |
34 | Decanol | 1277 | 1287 | - | 0.10 | RI,MS |
35 | Safrole | 1285 | 1293 | - | 0.27 | RI,MS |
36 | Bornyl acetate | 1292 | 1298 | 12.84 | - | RI,MS,CS |
37 | (E)-anethole | 1282 | 1302 | tr | - | RI,MS |
38 | Undecanal | 1308 | 1305 | - | tr | RI,MS |
39 | δ-elemene | 1334 | 1330 | tr | - | RI,MS |
40 | α-terpenyl acetate | 1346 | 1350 | - | 0.14 | RI,MS |
41 | Geranyl acetate | 1379 | 1382 | 0.14 | 1.81 | RI,MS |
42 | α-copaene | 1385 | 1383 | 0.15 | - | RI,MS |
43 | Trans-caryophyllene | 1417 | 1425 | 0.10 | - | RI,MS |
44 | γ-selinene | - | 1437 | tr | - | RI,MS |
Total identification | 99.10 | 99.46 |
2.2. Antioxidant Activity Evaluation
2.3. Antimicrobial Activity Evaluation
2.4. Enzymes Inhibitory Activity Evaluation
2.4.1. Cholinesterase Inhibition
2.4.2. Antidiabetic Inhibition
2.5. Pharmacokinetics Profiling of the Major Identified Components from C. carvi and C. sativum EOs
3. Materials and Methods
3.1. Plant Material and Extraction of EOs
3.2. Essential Oils Analysis
3.2.1. Gas Chromatography (GC)
3.2.2. Gas Chromatography-Mass Spectrometry (GC-MS)
3.3. Antioxidant Activity
3.3.1. Scavenging Ability on DPPH Radical
3.3.2. Superoxide Anion Radical-Scavenging Activity
3.3.3. Reducing Power
3.3.4. Chelating Effect on Ferrous Ions
3.3.5. β-Carotene-Linoleic Acid Model System (β-CLAMS)
3.4. Antimicrobial Activity
3.4.1. Microorganisms
3.4.2. Disc-Diffusion Assay
3.4.3. Micro-Well Determination of MIC, MBC and MFC
3.5. Enzyme Inhibition Assays
3.5.1. Anti-Acetylcholinesterase Inhibitory Assay
3.5.2. α-Glucosidase Inhibitory Assay
3.6. Pharmacokinetics Study
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Elshafie, H.S.; Camele, I. An Overview of the Biological Effects of Some Mediterranean Essential Oils on Human Health. Biomed. Res. Int. 2017, 2017, 9268468. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.Y.; Xu, J.; Yang, Y.Y.; Shao, Y.Z.; Zhou, F.; Wang, J.L. Toxicity and Synergistic Effect of Elsholtzia ciliata Essential Oil and Its Main Components against the Adult and Larval Stages of Tribolium castaneum. Foods 2020, 9, 345. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, M.; Ricci, A.; Serio, A.; Chaves-López, C.; Mazzarrino, G.; D’Amato, S.; Lo Sterzo, C.; Paparella, A. Characterization of Essential Oils Obtained from Abruzzo Autochthonous Plants: Antioxidant and Antimicrobial Activities Assessment for Food Application. Foods 2018, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwiatkowski, P.; Mnichowska-Polanowska, M.; Pruss, A.; Masiuk, H.; Dzięcioł, M.; Giedrys-Kalemba, S.; Sienkiewicz, M. The effect of fennel essential oil in combination with antibiotics on Staphylococcus aureus strains isolated from carriers. Burns 2017, 43, 1544–1551. [Google Scholar] [CrossRef] [PubMed]
- Alminderej, F.; Bakari, S.; Almundarij, T.I.; Snoussi, M.; Aouadi, K.; Kadri, A. Antioxidant Activities of a New Chemotype of Piper cubeba L. Fruit Essential Oil (Methyleugenol/Eugenol): In Silico Molecular Docking and ADMET Studies. Plants 2020, 9, 1534. [Google Scholar] [CrossRef] [PubMed]
- Abrahamse, H.; George, S. Redox Potential of Antioxidants in Cancer Progression and Prevention. Antioxidants 2020, 9, 1156. [Google Scholar] [CrossRef]
- Alfei, S.; Marengo, B.; Zuccari, G. Oxidative Stress, Antioxidant Capabilities, and Bioavailability: Ellagic Acid or Urolithins? Antioxidants 2020, 9, 707. [Google Scholar] [CrossRef] [PubMed]
- Alminderej, F.; Bakari, S.; Almundarij, T.I.; Snoussi, M.; Aouadi, K.; Kadri, A. Antimicrobial and Wound Healing Potential of a New Chemotype from Piper cubeba L. Essential Oil and In Silico Study on S. aureus tyrosyl-tRNA Synthetase Protein. Plants 2021, 10, 205. [Google Scholar] [CrossRef]
- Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.A.L.; Chong, C.M.; Chong, C.W.; Abushelaibi, A.; Lim, S.H.E.; Lai, K.S. Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef] [Green Version]
- Taiwo, M.O.; Adebayo, O.S. Plant Essential Oil: An Alternative to Emerging Multidrug Resistant Pathogens. J. Microbiol. Exp. 2017, 5, 00163. [Google Scholar] [CrossRef] [Green Version]
- Spisni, E.; Petrocelli, G.; Imbesi, V.; Spigarelli, R.; Azzinnari, D.; Sarti, M.D.; Campieri, M.; Valerii, M.C. Antioxidant, Anti-Inflammatory, and Microbial-Modulating Activities of Essential Oils: Implications in Colonic Pathophysiology. Int. J. Mol. Sci. 2020, 21, 4152. [Google Scholar] [CrossRef]
- Sahib, N.G.; Anwar, F.; Gilani, A.H.; Hamid, A.A.; Saari, N. Coriander (Coriandrum sativum L.): A Potential Source of High-Value Components for Functional Foods and Nutraceuticals—A Review. Phytother. Res. 2013, 27, 1439–1456. [Google Scholar] [CrossRef] [Green Version]
- Sayed-Ahmed, B.; Talou, T.; Saad, Z.; Hijazi, A.; Merah, O. The Apiaceae: Ethnomedicinal Family as source for industrial uses. Ind. Crop. Prod. 2017, 109, 661–671. [Google Scholar] [CrossRef] [Green Version]
- Momin, A.H.; Acharya, S.S.; Gajjar, A.V. Coriandrum sativum-review of advances in phytopharmacology. Int. J. Pharma. Sci. Res. 2012, 3, 1233. [Google Scholar]
- Al-Snaf, A.E. A review on chemical constituents and pharmacological activities of Coriandrum sativum. IOSR J. Pharm. 2016, 6, 17–42. [Google Scholar] [CrossRef]
- Keshavarz, A.; Minaiyan, M.; Ghannadi, A.; Mahzouni, P. Effects of Carum carvi L. (Caraway) extract and essential oil on TNBS-induced colitis in rats. Res. Pharm. Sci. 2013, 8, 1–8. [Google Scholar]
- Kabiri, M.; Kamalinejad, M.; Sohrabvand, F.; Bioos, S.; Babaeian, M. Management of breast milk oversupply in traditional Persian medicine. J. Evid. Based Complement Altern. Med. 2017, 22, 1044–1050. [Google Scholar] [CrossRef]
- Miraj, S.; Kiani, S. Pharmacological activities of Carum carvi L. Der Pharm. Lett. 2016, 8, 135–138. [Google Scholar]
- Rasooli, I.; Allameh, A. Chapter 32—Caraway (Carum carvi L.) essential oils. In Essential Oils in Food Preservation, Flavor and Safety; Preedy, V.R., Ed.; Academic Press: San Diego, CA, USA, 2016; pp. 287–293. [Google Scholar]
- Malhotra, S. (Ed.) Caraway: Handbook of Herbs and Spices; Elsevier: Amsterdam, The Netherlands, 2006; Volume 3, pp. 270–298. [Google Scholar]
- Mahboubi, M. Caraway as Important Medicinal Plants in Management of Diseases. Nat. Prod. Bioprospect. 2019, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Meena, A.; Brijendra, S.; Yadav, A.; Uttam, S.; Ramanjeet, K.; Ayushy, S.; Vertika, G.; Bhavana, P. Review on medicinal properties and bioactive constituents of herbal spices commonly used in India. J. Pharm. Res. 2010, 3, 866–868. [Google Scholar]
- Lemhadri, A.; Hajji, L.; Michel, J.B.; Eddouks, M. Cholesterol and triglycerides lowering activities of caraway fruits in normal and streptozotocin diabetic rats. J. Ethnopharmacol. 2006, 106, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Mseddi, K.; Alimi, F.; Noumi, E.; Veettil, V.N.; Deshpande, S.; Adnan, M.; Hamdi, A.; Elkahoui, S.; Alghamdi, A.; Kadri, A.; et al. Thymus musilii Velen. as a promising source of potent bioactive compounds with its pharmacological properties: In vitro and in silico analysis. Arab. J. Chem. 2020, 13, 6782–6801. [Google Scholar] [CrossRef]
- Gad-Elkareem, M.A.M.; Abdelgadir, E.H.; Badawy, O.M.; Kadri, A. Potential antidiabetic effect of ethanolic and aqueous-ethanolic extractsof Ricinus communis leaves on streptozotocin-induced diabetes in rats. Peer J. 2019, 7, e6441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Mefteh, F.; Daoud, A.; Bouket, A.C.; Thissera, B.; Kadri, Y.; Cherif-Silini, H.; Eshelli, M.; Alenezi, F.N.; Vallat, A.; Oszako, T.; et al. Date Palm Trees Root-Derived Endophytes as Fungal Cell Factories for Diverse Bioactive Metabolites. Int. J. Mol. Sci. 2018, 19, 1986. [Google Scholar] [CrossRef] [Green Version]
- Hajlaoui, H.; Mighri, H.; Aouni, M.; Gharsallah, N.; Kadri, A. Chemical composition and in vitro evaluation of antioxidant. antimicrobial. cytotoxicity and anti-acetylcholinesterase properties of Tunisian Origanum majorana L. essential oil. Microb. Pathog. 2016, 95, 86–94. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Arraouadi, S.; Mighri, H.; Chaaibia, M.; Gharsallah, N.; Ros, G.; Nieto, G.; Kadri, A. Phytochemical Constituents and Antioxidant Activity of Oudneya Africana L. Leaves Extracts: Evaluation Effects on Fatty Acids and Proteins Oxidation of Beef Burger during Refrigerated Storage. Antioxidants 2019, 8, 442. [Google Scholar] [CrossRef] [Green Version]
- Snoussi, M.; Noumi, E.; Hajlaoui, H.; Usai, D.; Sechi, L.; Zanetti, S.; Bakhrouf, A. High potential of adhesion to abiotic and biotic materials in fish aquaculture facility by Vibrio alginolyticus strains. J. Appl. Microbiol. 2009, 106, 1591–1599. [Google Scholar] [CrossRef]
- Znati, M.; Jabrane, A.; Hajlaoui, H.; Harzallah-Skhiri, F.; Bouajila, J.; Casanova, J.; Ben Jannet, H. Chemical Composition and in vitro Evaluation of Antimicrobial and Anti-acetylcholinesterase Properties of the Flower Oil of Ferula lutea. Nat. Prod. Commun. 2012, 7, 947–950. [Google Scholar] [CrossRef] [Green Version]
- Bakari, S.; Hajlaoui, H.; Daoud, A.; Mighri, H.; Ross-Garcia, J.M.; Gharsallah, N.; Kadri, A. Phytochemicals, antioxidant and antimicrobial potentials and LC-MS analysis of hydroalcoholic extracts of leaves and flowers of Erodium glaucophyllum collected from Tunisian Sahara. Food Sci. Technol. 2018, 38, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Akrout, A.; Hajlaoui, H.; Mighri, H.; Najjaa, H.; Jani, H.E.; Zaidi, S.; Neffati, M. Chemical and Biological Characteristics of Essential Oil of Rosmarinus officinalis Cultivated in Djerba. J. Essent. Oil-Bear. Plants 2013, 13, 398–411. [Google Scholar] [CrossRef]
- Bnina, E.B.; Hajlaoui, H.; Chaieb, I.; Said, M.B.; Jannet, H.B.; Daami-Remadi, M. Chemical composition, antimicrobial and insecticidal activities of the tunisian Citrus aurantium essential oils. Czech J. Food Sci. 2017, 37, 81–92. [Google Scholar] [CrossRef]
- Khan, R.M.; Ahmad, W.; Ahmad, M.; Hasan, A. Phytochemical and pharmacological properties of Carum carvi. Eur. J. Pharm. Med. Res. 2016, 3, 231–236. [Google Scholar]
- Laribi, B.; Kouki, K.; Mougou, A.; Marzouk, B. Current awareness in flavour and fragrance. J. Sci. Food Agric. 2010, 90, 391–396. [Google Scholar] [CrossRef]
- Jiang, Z.-T.; Sun, M.-L.; Li, R.; Wang, Y. Essential oil Composition of Chinese Caraway (Carum carvi L.). J. Essent. Oil Bear. Plants 2011, 14, 379–382. [Google Scholar] [CrossRef]
- Gwari, G.; Bhandari, U.; Andola, H.C.; Lohani, H.; Chauhan, N. Aroma profile of seeds of Carum carvi Linn. cultivated in higher hills of Uttarakhand Himalaya. Indian J. Nat. Prod. Res. 2012, 3, 411–413. [Google Scholar]
- Raal, A.; Arak, E.; Orav, A. The content and composition of the essential oil Found in Carum carvi L. commercial fruits obtained from different countries. J. Essent. Oil Res. 2012, 24, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Laribi, B.; Kouki, K.; Bettaieb, T.; Mougou, A.; Marzouk, B. Essential oils and fatty acids composition of Tunisian, German and Egyptian caraway (Carum carvi L.) seed ecotypes: A comparative study. Ind. Crops Prod. 2013, 41, 312–318. [Google Scholar] [CrossRef]
- Shahwar, M.K.; El-Ghorab, A.H.; Anjum, F.M.; Butt, M.S.; Hussain, S.; Nadeem, M. Characterization of Coriander (Coriandrum sativum L.) Seeds and Leaves: Volatile and Non Volatile Extracts. Int. J. Food. Prop. 2012, 15, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Gil, A.; Fuente, E.B.; Lenardis, A.E.; Pereira, M.L.; Suárez, S.A.; Bandoni, A.; Baren, C.V.; Lira, P.D.L.; Ghersa, C.M. Coriander Essential Oil Composition from Two Genotypes Grown in Different Environmental Conditions. J. Agric. Food Chem. 2002, 50, 2870–2877. [Google Scholar] [CrossRef]
- Smallfield, B.; John, W.; Nigel, B.P.; Kenneth, G.D. Coriander spice oil: Effects of fruit crushing and distillation time on yield and composition. J. Agric. Food Chem. 2001, 49, 118–123. [Google Scholar] [CrossRef]
- Misharina, T.A. Effect of conditions and duration of storage on composition of essential oil from coriander seeds. Prikl. Biokhimiia Mikrobiol. 2001, 37, 726–732. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing: Carol Stream, IL, USA, 2007. [Google Scholar]
- Peana, A.T.; D’Aquila, P.S.; Serra, F.P.G.; Pippia, P.; Moretti, M.D.L. Anti-inflammatory activity of linalool and linalyl acetate constituents of essential oils. Phytomedicine 2002, 9, 721–726. [Google Scholar] [CrossRef]
- Ramalho, T.R.; Oliveira, M.T.; Lima, A.L.; Bezerra-Santos, C.R.; Piuvezam, M.R. Gamma-Terpinene modulates acute inflammatory response in mice. Planta Med. 2015, 81, 1248–1254. [Google Scholar] [CrossRef] [Green Version]
- Salehi, B.; Upadhyay, S.; Orhan, I.E.; Jugran, A.K.; Jayaweera, S.L.D.; Dias, D.A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; et al. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019, 9, 738. [Google Scholar] [CrossRef] [Green Version]
- De Santana, M.F.; Guimarães, A.G.; Chaves, D.O.; Silva, G.C.; Bonjardim, L.R.; Lucca Júnior, W.D.; de Souza Ferro, J.N.; de Oliveira Barreto, E.; dos Santos, F.E.; Soares, M.B.P.; et al. The anti-hyperalgesic and anti-inflammatory profiles of p-cymene: Evidence for the involvement of opioid system and cytokines. Pharm. Biol. 2015, 53, 1583–1590. [Google Scholar] [CrossRef]
- Zhao, M.; Du, J. Anti-inflammatory and protective effects of D-carvone on lipopolysaccharide (LPS)-induced acute lung injury in mice. J. King Saud Univ. Sci. 2020, 32, 1592–1596. [Google Scholar] [CrossRef]
- Samojlik, I.; Lakic, N.; Mimica-Dukić, N.; Daković-Svajcer, K.; Bozin, B. Antioxidant and Hepatoprotective Potential of Essential Oils of Coriander (Coriandrum sativum L.) and Caraway (Carum carvi L.) (Apiaceae). J. Agric. Food Chem. 2010, 11, 8848–8853. [Google Scholar] [CrossRef]
- De Oliveira, T.M.; de Carvalho, R.B.F.; da Costa, I.H.F.; de Oliveira, G.A.L.; de Souza, A.A.; de Lima, S.G.; de Freitas, R.M. Evaluation of p-cymene, a natural antioxidant. Pharm. Biol. 2015, 53, 423–428. [Google Scholar] [CrossRef]
- Foti, M.C.; Ingold, K.U. Mechanism of Inhibition of Lipid Peroxidation by γ-Terpinene, an Unusual and Potentially Useful Hydrocarbon Antioxidant. J. Agric. Food Chem. 2003, 51, 2758–2765. [Google Scholar] [CrossRef] [Green Version]
- Wojtunik, K.A.; Ciesla, L.M.; Waksmundzka-Hajnos, M. Model studies on the antioxidant activity of common terpenoid constituents of essential oils by means of the 2.2-diphenyl-1-picrylhydrazyl method. J. Agric. Food Chem. 2014, 63, 9088–9094. [Google Scholar] [CrossRef]
- Vinothkumar, R.; Sudha, P.; Viswanathan, M.; Kabalimoorthy, J.; Balasubramanian, T.; Nalini, N. Modulating effect of d-carvone on 1.2-dimethylhydrazine-induced pre-neoplastic lesions, oxidative stress and biotransforming enzymes, in an experimental model of rat colon carcinogenesis. Cell Prolif. 2013, 46, 705–720. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Znini, M.; Bouklah, M.; Majidi, L.; Kharchouf, S.; Aouniti, A.; Bouyanzer, A.; Hammouti, B.; Costa, J.; Al Deyab, S.S. Chemical composition and inhibitory effect of Mentha spicata essential oil on the corrosion of steel in molar hydrochloric acid. Int. J. Electrochem. Sci. 2011, 6, 691–704. [Google Scholar]
- Yang, S.K.; Yusoff, K.; Thomas, W.; Akseer, R.; Alhosani, M.S.; Abushelaibi, A.; Lai, K.S. Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae. Sci. Rep. 2020, 10, 819. [Google Scholar] [CrossRef]
- Giweli, A.; Džamić, A.M.; Soković, M.; Ristić, M.S.; Marin, P.D. Antimicrobial and Antioxidant Activities of Essential Oils of Satureja thymbra Growing Wild in Libya. Molecules 2012, 17, 4836–4850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Öztürk, M. Anticholinesterase and antioxidant activities of Savoury (Satureja thymbra L.) with identified major terpenes of the essential oil. Food Chem. 2012, 134, 48–54. [Google Scholar] [CrossRef]
- Tundis, R.; Bonesi, M.; Pugliese, A.; Nadjafi, F.; Menichini, F.; Loizzo, M.R. Tyrosinase, acetyl- and butyryl-cholinesterase inhibitory activity of Stachys lavandulifolia Vahl (Lamiaceae) and its major constituents. Rec. Nat. Prod. 2015, 9, 81–93. [Google Scholar]
- Menichini, F.; Tundis, R.; Loizzo, M.R.; Bonesi, M.; Marrelli, M.; Statti, G.A.; Menichini, F.; Conforti, F. Acetylcholinesterase and butyrylcholinesterase inhibition of ethanolic extract and monoterpenes from Pimpinella anisoides V Brig. (Apiaceae). Fitoterapia 2009, 80, 297–300. [Google Scholar] [CrossRef]
- Savelev, S.; Okelloa, E.; Perry, N.S.L.; Wilkinsa, R.M.; Perry, E.K. Synergistic and antagonistic interactions of anticholinesterase terpenoids in Salvia lavandulaefolia essential oil. Pharmacol. Biochem. Behav. 2003, 75, 661–668. [Google Scholar] [CrossRef]
- López, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crop. Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Majouli, K.; Hlila, M.B.; Hamdi, A.; Flamini, G.; Ben Jannet, H.; Kenani, A. Antioxidantactivity and α-glucosidase inhibition by essential oils from Hertia cheirifolia (L.). Ind. Crop. Prod. 2016, 82, 23–28. [Google Scholar] [CrossRef]
- Felhi, S.; Saoudi, M.; Daoud, A.; Hajlaoui, H.; Ncir, M.; Chaabane, R.; El Feki, A.; Gharsallah, N.; Kadri, A. Investigation of phytochemical contents, in vitro antioxidant and antibacterial behavior and in vivo anti-inflammatory potential of Ecballium elaterium methanol fruits extract. Food Sci. Technol. 2017, 37, 558–563. [Google Scholar] [CrossRef] [Green Version]
- Felhi, S.; Hajlaoui, H.; Ncir, M.; Bakari, S.; Ktari, N.; Saoudi, M.; Gharsallah, N.; Kadri, A. Nutritional, phytochemical and antioxidant evaluation and FT-IR analysis of freeze-dried extracts of Ecballium elaterium fruit juice from three localities. Food Sci. Technol. 2016, 36, 646–655. [Google Scholar] [CrossRef] [Green Version]
- Saini, A.; Pandey, A.; Sharma, S.; Suradkar, U.S.; Ambedkar, Y.R.; Meena, P.; Raman, R.; Gurjar, A.S. Assessment of antioxidant activity of rosemary (Rosmarinus officinalis) leaves extract. J. Pharmacogn. Phytochem. 2020, 9, 14–17. [Google Scholar]
- Bakari, S.; Daoud, A.; Felhi, S.; Smaoui, S.; Gharsallah, N.; Kadri, A. Proximate analysis, mineral composition, phytochemical contents, antioxidant and antimicrobial activities and GC-MS investigation of various solvent extracts of Cactus cladode. Food Sci. Technol. 2017, 27, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Kadri, A.; Zarai, Z.; Chobba, I.B.; Gharsallah, N.; Damak, M.; Békir, A. Chemical composition and in vitro antioxidant activities of Thymelaea hirsuta L: Essential oil from Tunisia. Afr. J. Biotechnol. 2011, 10, 2930–2935. [Google Scholar]
- Ballester-Costa, C.; Sendra, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Assessment of Antioxidant and Antibacterial Properties on Meat Homogenates of Essential Oils Obtained from Four Thymus Species Achieved from Organic Growth. Foods 2017, 6, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuddhakul, V.; Bhooponga, P.; Hayeebilana, F.; Subhadhirasakul, S. Inhibitory activity of Thai condiments on pandemic strain of Vibrio parahaemolyticus. Food Microbiol. 2007, 24, 413–418. [Google Scholar] [CrossRef]
- Hajlaoui, H.; Snoussi, M.; Noumi, E.; Zanetti, S.; Ksouri, R.; Bakhrouf, A. Chemical composition, antioxidant and antibacterial activities of the essential oils of five Tunisian aromatic plants. Ital. J. Food Sci. 2010, 3, 323–332. [Google Scholar]
- Snoussi, M.; Hajlaoui, H.; Noumi, E.; Usai, D.; Sechi, L.A.; Zanetti, S.; Bakhrouf, A. In vitro anti-Vibrio spp. activity and chemical composition of some Tunisian aromatic plants. World J. Microbiol. Biotechnol. 2008, 24, 3071–3076. [Google Scholar] [CrossRef]
- Ingkaninan, K.; Temkittawon, P.; Chuenchon, K.; Yuyaem, T.; Thongnoi, W. Screening for acetylcholinesterase inhibito activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol. 2003, 89, 261–264. [Google Scholar] [CrossRef]
- Asghari, B.; Salehi, P.; Sonboli, A.; Ebrahimi, S.N. Flavonoids from Salvia chloroleuca with alpha-amylsae and alpha-glucosidase inhibitory effect. Iran. J. Pharm. Res. 2015, 14, 609. [Google Scholar]
- Kadri, A.; Aouadi, K. In vitro antimicrobial and α-glucosidase inhibitory potential of enantiopure cycloalkylglycine derivatives: Insights into their in silico pharmacokinetic, druglikeness, and medicinal chemistry properties. J. Appl. Pharm. Sci. 2020, 10, 107–115. [Google Scholar]
- Othman, I.M.M.; Gad-Elkareem, M.A.M.; Anouar, E.H.; Aouadi, K.; Kadri, A.; Snoussi, M. Design, synthesis ADMET and molecular docking of new imidazo[4.5-b]pyridine-5-thione derivatives as potential tyrosyl-tRNA synthetase inhibitors. Bioorg. Chem. 2020, 102, 104105. [Google Scholar] [CrossRef]
- Ghannay, S.; Kadri, A.; Aouadi, K. Synthesis, in vitro antimicrobial assessment, and computational investigation of pharmacokinetic and bioactivity properties of novel trifluoromethylated compounds using in silico ADME and toxicity prediction tools. Monatsh. Chem. 2020, 151, 267–280. [Google Scholar] [CrossRef]
DPPH IC50 (μg.mL−1) | Superoxide Anion IC50 (μg.mL−1) | Reducing Power EC50 (μg.mL−1) | Chelating Power EC50 (μg.mL−1) | β-Carotene IC50 (μg.mL−1) | |
---|---|---|---|---|---|
C. sativum | 38.83 ± 0.76 a | 37.00 ± 1.73 a | 24.00 ± 1.53 a | 70.00 ± 0.81 a | 25.70 ± 1.02 a |
C. carvi | 34.00 ± 3.46 b | 28.00 ± 7.00 b | 18.00 ± 1.00 b | 36.33 ± 4.10 b | 19.00 ± 2.16 b |
Mixture | 19.00 ± 1.00 c | 10.33 ± 0.58 c | 11.33 ± 1.53 c | 31.33 ± 0.47 b | 11.16 ± 0.84 c |
BHT | 11.5 ± 0.62 d | 1.60 ± 0.20 d | 23.00 ± 1.00 a | - | 4.60 ± 1.60 d |
EDTA | - | - | - | 32.50 ± 1.32 b | - |
IZ (mm ± SD) | ||||
---|---|---|---|---|
Strains | C. carvi | C. sativum | Mixture (v/v) | Antibiotics |
Gram positive bacteria | Gentamycin | |||
S. epidermidis CIP 106510 | 16.33 ± 0.57 cC | 14.00 ± 1.00 deD | 18.66 ± 0.57 bcdB | 21.33 ± 0.58 fghA |
S. aureus ATCC 25923 | 15.66 ± 0.57 cdC | 11.66 ± 0.57 fD | 18.00 ± 0.00 bcdB | 32.67 ± 0.58 aA |
M. luteus NCIMB 8166 | 25.00 ± 0.00 aB | 21.66 ± 1.15 aC | 25.66 ± 0.57 aB | 27.67 ± 1.53 bA |
E. feacalis ATCC 29212 | 16.33 ± 0.57 cC | 12.33 ± 0.57 fD | 18.33 ± 0.57 bcdB | 26.00 ± 1.00 cA |
B. cereus ATCC 11778 | 18.33 ± 0.57 bC | 16.00 ± 1.00 cD | 20.66 ± 0.57 bcB | 26.00 ± 1.00 cA |
B. cereus ATCC 14579 | 19.00 ± 1.00 bC | 17.33 ± 0.57 bD | 22.33 ± 0.57 abB | 28.00 ± 0.00 bA |
Gram negative bacteria | ||||
E. coli ATCC 35218 | 12.00 ± 1.00 ghC | 13.00 ± 0.00 efC | 14.66 ± 0.57 defB | 22.00 ±1.00 efgA |
L. monocytogenes ATCC19115 | 15.33 ± 0.57 cdC | 12.00 ± 0.00 fD | 18.00 ±0.00 efB | 23.00 ± 0.00 deA |
P. aeruginosa ATCC 27853 | 9.66 ± 1.15 iC | 8.33 ± 0.57 gC | 12.00 ± 1.00 fB | 17.00 ± 1.00 iA |
S. typhimurium LT2 DT104 | 11.00 ± 0.00 hC | 9.33 ± 1.15 gD | 14.33 ± 1.15 defB | 20.33 ± 0.57 hA |
Vibrio strains | Tetracycline | |||
V. parahaemolyticus ATCC17802 | 13.33 ± 0.57 efC | 12.33 ± 0.57 fC | 16.66 ± 0.57 cdeB | 18.33 ± 0.57 iA |
V. alginolyticus ATCC 33787 | 14.66 ± 0.57 deB | 12.00 ± 1.00 fC | 15.66 ± 0.57 defB | 20.67 ± 0.57 ghA |
V. proteolyticus ATCC15338 | 11.00 ± 1.00 hC | 9.66 ± 1.54 gC | 13.00 ± 1.54 efB | 18.00 ± 1.00 iA |
V. furnisii ATCC 35016 | 14.33 ± 0.57 deC | 12.66 ± 0.57 efD | 16.33 ± 0.57 cdefB | 22.67 ± 0.57 defA |
V. mimicus ATCC 33653 | 12.33 ± 0.57 fgC | 9.66 ± 0.57 gD | 15.33 ± 0.57 defB | 21.00 ± 0.00 ghA |
V. natrigens ATCC 14048 | 13.33 ± 0.57 efC | 12.00 ± 1.00 fD | 11.33 ± 9.81 cdeB | 23.67 ± 0.57 dA |
V. carhiaccae ATCC 35084 | 14.66 ± 1.15 deC | 13.00 ± 1.00 efD | 18.33 ± 0.57 bcdB | 23.33 ± 0.58 deA |
V. fluvialis ATCC 33809 | 14.33 ± 0.57 deC | 14.66 ± 0.57 dC | 18.66 ± 0.57 bcdB | 23.67 ± 0.57 dA |
IZ (mm ± SD) | ||||
---|---|---|---|---|
Strains | C. carvi EO | C. sativum EO | Mixture EO (v/v) | Amphotericin B |
C. albicansATCC 90028 | 15.33 ± 0.57 abB | 12.33 ± 0.57 abC | 18.00 ± 0.00 aA | 18.00 ± 0.00 aA |
C. glabrataATCC 90030 | 14.66 ± 1.15 bB | 13.33 ± 0.57 aB | 17.66 ± 0.57 aA | 16.33 ± 0.57 bA |
C. parapsilosis ATCC22019 | 14.00 ± 1.00 bC | 11.66 ± 0.57 bD | 15.66 ± 1.15 bB | 17.33 ± 0.57 aA |
C. kruseiATCC 6258 | 16.66 ± 1.15 aA | 12.00 ± 0.00 bB | 17.00 ± 1.00 abA | 16.00 ± 0.00 bA |
S. cerevisae | 13.66 ± 0.57 bC | 12.00 ± 1.00 bD | 16.00 ± 0.00 bB | 18.00 ± 0.00 aA |
Microorganisms Tested | C. carvi EO | C. sativum EO | Mixture (v/v) EOs | Antibiotics | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC mg/mL | MBC mg/mL | MBC/MIC (Interpretation) | MIC mg/mL | MBC mg/mL | MBC/MIC (Interpretation) | MIC mg/mL | MBC mg/mL | MBC/MIC (Interpretation) | MIC mg/mL | MBC mg/mL | MBC/MIC | |
S. epidermidis CIP 106510 | 0.117 | 0.469 | 4 (Bactericidal) | 0.469 | 1.875 | 4 (Bactericidal) | 0.029 | 0.117 | 4 (Bactericidal) | 0.009 | 0.039 | 4 |
S. aureus ATCC 25923 | 0.117 | 0.469 | 4 (Bactericidal) | 0.234 | 0.938 | 4 (Bactericidal) | 0.059 | 0.234 | 4 (Bactericidal) | 0.004 | 0.019 | 4 |
M. luteus NCIMB 8166 | 0.059 | 0.234 | 4 (Bactericidal) | 0.234 | 0.938 | 4 (Bactericidal) | 0.015 | 0.059 | 4 (Bactericidal) | 0.004 | 0.019 | 4 |
E. feacalis ATCC 29212 | 0.059 | 0.469 | 8 (Bacteriostatic) | 0.469 | 0.938 | 2 (Bactericidal) | 0.117 | 0.234 | 2 (Bactericidal) | 0.004 | 0.019 | 4 |
B. cereus ATCC 11778 | 0.117 | 0.469 | 4 (Bactericidal) | 0.938 | 1.875 | 2 (Bactericidal) | 0.059 | 0.117 | 2 (Bactericidal) | 0.004 | 0.039 | 8 |
B. cereus ATCC 14579 | 0.117 | 0.469 | 4 (Bactericidal) | 0.938 | 1.875 | 2 (Bactericidal) | 0.059 | 0.234 | 4 (Bactericidal) | 0.004 | 0.039 | 4 |
E. coli ATCC 35218 | 0.469 | 1.875 | 4 (Bactericidal) | 0.938 | 3.750 | 4 (Bactericidal) | 0.117 | 0.469 | 4 (Bactericidal) | 0.009 | 0.039 | 4 |
L. monocytogenes ATCC19115 | 0.469 | 1.875 | 4 (Bactericidal) | 0.938 | 1.875 | 2 (Bactericidal) | 0.059 | 0.234 | 4 (Bactericidal) | 0.019 | 0.078 | 4 |
P. aeruginosa ATCC 27853 | 1.875 | 3.750 | 2 (Bactericidal) | 1.875 | 7.500 | 4 (Bactericidal) | 0.469 | 0.938 | 2 (Bactericidal) | 0.019 | 0.15 | 4 |
S. typhimurium LT2 DT104 | 0.234 | 0.938 | 4 (Bactericidal) | 0.938 | 1.875 | 2 (Bactericidal) | 0.059 | 0.117 | 2 (Bactericidal) | 0.019 | 0.039 | 2 |
V. parahaemolyticus ATCC17802 | 0.938 | 3.750 | 4 (Bactericidal) | 0.234 | 1.875 | 8 (Bacteriostatic) | 0.117 | 0.234 | 2 (Bactericidal) | 0.039 | 0.078 | 2 |
V. alginolyticus ATCC 33787 | 0.234 | 1.875 | 8 (Bacteriostatic) | 1.875 | 7.500 | 4 (Bactericidal) | 0.059 | 0.469 | 8 (Bacteriostatic) | 0.019 | 0.078 | 4 |
V. proteolyticus ATCC15338 | 0.469 | 1.875 | 4 (Bactericidal) | 1.875 | 3.750 | 2 (Bactericidal) | 0.117 | 0.469 | 4 (Bactericidal) | 0.009 | 0.039 | 4 |
V. furnisii ATCC 35016 | 0.469 | 3.750 | 8 (Bacteriostatic) | 1.875 | 7.500 | 4 (Bactericidal) | 0.117 | 0.469 | 4 (Bactericidal) | 0.009 | 0.039 | 4 |
V. mimicus ATCC 33653 | 0.938 | 3.750 | 4 (Bactericidal) | 1.875 | 7.500 | 4 (Bactericidal) | 0.234 | 0.938 | 4 (Bactericidal) | 0.039 | 0.078 | 2 |
V. natrigens ATCC 14048 | 1.875 | 3.750 | 2 (Bactericidal) | 1.875 | 3.750 | 2 (Bactericidal) | 0.469 | 0.938 | 2 (Bactericidal) | 0.019 | 0.039 | 2 |
V. carhiaccae ATCC 35084 | 0.938 | 1.875 | 2 (Bactericidal) | 1.875 | 7.500 | 4 (Bactericidal) | 0.117 | 0.234 | 2 (Bactericidal) | 0.039 | 0.078 | 2 |
V. fluvialis ATCC 33809 | 0.469 | 1.875 | 4 (Bactericidal) | 0.469 | 3.75 | 8 (Bacteriostatic) | 0.117 | 0.469 | 4 (Bactericidal) | 0.019 | 0.039 | 2 |
C. carvi EO | C. sativum EO | Mixture EO (v/v) | Amphotericin B | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Strains | CMI | CMF | CMF/CMI (Interpretation) | CMI | CMF | CMF/CMI (Interpretation) | CMI | CMF | CMF/CMI (Interpretation) | CMI | CMF | CMF/CMI (Interpretation) |
C. albicans ATCC90028 | 0.059 | 0.469 | 8 (Fungistatic) | 0.469 | 1.875 | 4 (Fungicidal) | 0.029 | 0.117 | 4 (Fungicidal) | 0.078 | 0.31 | 4 (Fungicidal) |
C. glabrataATCC 90030 | 0.059 | 0.234 | 4 (Fungicidal) | 0.234 | 0.938 | 4 (Fungicidal) | 0.029 | 0.117 | 4 (Fungicidal) | 0.009 | 0.078 | 9 (Fungistatic) |
C. parapsilosis ATCC22019 | 0.059 | 0.234 | 4 (Fungicidal) | 0.469 | 0.938 | 2 (Fungicidal) | 0.029 | 0.117 | 4 (Fungicidal) | 0.039 | 0.078 | 2 (Fungicidal) |
C. kruseiATCC 6258 | 0.059 | 0.469 | 8 (Fungistatic) | 0.234 | 1.875 | 8 (Fungistatic) | 0.029 | 0.117 | 4 (Fungicidal) | 0.009 | 0.019 | 2 (Fungicidal) |
S. cerevisae | 0.029 | 0.234 | 8 (Fungistatic) | 0.234 | 0.938 | 4 (Fungicidal) | 0.015 | 0.117 | 8 (Fungistatic) | 0.009 | 0.039 | 4 (Fungicidal) |
IC50 (mg/mL) | ||
---|---|---|
Acetylcholinesterase | α-Glucosidase | |
C. sativum EO | 0.68 ± 0.03 c | 6.24 ± 0.86 a |
C. carvi EO | 0.82 ± 0.05 b | 6.83 ± 0.76 a |
Mixture | 0.63 ± 0.02 c | 0.75 ± 0.15 b |
Acarbose | - | 0.73 ± 0.10 b |
Galanthamine | 1.05 ± 0.05 a | - |
γ-Terpinene | β-Pinene | α-Pinene | p-Cymene | Carvone | Linalool | |
---|---|---|---|---|---|---|
Absorption | ||||||
Water solubility | −3.941 | −4.191 | −4.081 | −2.324 | −2.612 | −3.733 |
Caco2 permeability | 1.414 | 1.385 | 1.527 | 1.413 | 1.493 | 1.38 |
Intestinal absorption | 96.219 | 95.525 | 93.544 | 97.702 | 93.163 | 96.041 |
Skin permeability | −1.489 | −1.653 | −1.192 | −2.145 | −1.737 | −1.827 |
P-g substrate | No | No | No | No | No | No |
P-g I/II inhibitor | No | No | No | No | No | No |
Distribution | ||||||
VDss (human) | 0.412 | 0.685 | 0.697 | 0.179 | 0.152 | 0.667 |
Fraction unbound | 0.42 | 0.35 | 0.159 | 0.53 | 0.484 | 0.425 |
BBB permeability | 0.754 | 0.818 | 0.478 | 0.588 | 0.598 | 0.791 |
CNS permeability | −2.049 | −1.857 | −1.397 | −2.478 | −2.339 | −2.201 |
Metabolism | ||||||
CYP2D6 substrate | No | No | No | No | No | No |
CYP3A4 substrate | No | No | No | No | No | No |
CYP1A2 inhibitor | No | No | Yes | No | No | No |
CYP2C19 inhibitor | No | No | No | No | No | No |
CYP2C9 inhibitor | No | No | No | No | No | No |
CYP2D6 inhibitor | No | No | No | No | No | No |
CYP3A4 inhibitor | No | No | No | No | No | No |
Excretion | ||||||
Total Clearance | 0.217 | 0.03 | 0.239 | 0.225 | 0.446 | 0.043 |
Renal OCT2 substrate | No | No | No | No | No | No |
Toxicity | ||||||
AMES toxicity | No | No | No | No | No | No |
hERG I/II inhibitors | No | No | No | No | No | No |
Skin sensitization | No | No | Yes | Yes | No | Yes |
Hepatotoxicity | No | No | No | No | No | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hajlaoui, H.; Arraouadi, S.; Noumi, E.; Aouadi, K.; Adnan, M.; Khan, M.A.; Kadri, A.; Snoussi, M. Antimicrobial, Antioxidant, Anti-Acetylcholinesterase, Antidiabetic, and Pharmacokinetic Properties of Carum carvi L. and Coriandrum sativum L. Essential Oils Alone and in Combination. Molecules 2021, 26, 3625. https://doi.org/10.3390/molecules26123625
Hajlaoui H, Arraouadi S, Noumi E, Aouadi K, Adnan M, Khan MA, Kadri A, Snoussi M. Antimicrobial, Antioxidant, Anti-Acetylcholinesterase, Antidiabetic, and Pharmacokinetic Properties of Carum carvi L. and Coriandrum sativum L. Essential Oils Alone and in Combination. Molecules. 2021; 26(12):3625. https://doi.org/10.3390/molecules26123625
Chicago/Turabian StyleHajlaoui, Hafedh, Soumaya Arraouadi, Emira Noumi, Kaïss Aouadi, Mohd Adnan, Mushtaq Ahmad Khan, Adel Kadri, and Mejdi Snoussi. 2021. "Antimicrobial, Antioxidant, Anti-Acetylcholinesterase, Antidiabetic, and Pharmacokinetic Properties of Carum carvi L. and Coriandrum sativum L. Essential Oils Alone and in Combination" Molecules 26, no. 12: 3625. https://doi.org/10.3390/molecules26123625
APA StyleHajlaoui, H., Arraouadi, S., Noumi, E., Aouadi, K., Adnan, M., Khan, M. A., Kadri, A., & Snoussi, M. (2021). Antimicrobial, Antioxidant, Anti-Acetylcholinesterase, Antidiabetic, and Pharmacokinetic Properties of Carum carvi L. and Coriandrum sativum L. Essential Oils Alone and in Combination. Molecules, 26(12), 3625. https://doi.org/10.3390/molecules26123625