Ca+ Ions Solvated in Helium Clusters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Potential Energy Surface
2.3. Calculations of Cluster Energies and Structures
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BH | Basin-Hopping |
DMC | Diffusion Monte Carlo |
HND | Helium nanodroplet |
ILJ | Improved Lennard-Jones |
PES | Potential energy surface |
PIMC | Path integral Monte Carlo |
References
- Johnson, W.W.; Glaberson, W.I. Positive impurity ions in He II. Phys. Rev. Lett. 1972, 29, 214–217. [Google Scholar] [CrossRef]
- Atkins, K.R. Ions in Liquid Helium. Phys. Rev. 1959, 116, 1339–1343. [Google Scholar] [CrossRef]
- Cole, M.W.; Bachman, R.A. Structure of positive impurity ions in liquid helium. Phys. Rev. B 1977, 15, 1388–1394. [Google Scholar] [CrossRef]
- Foerste, M.; Guenther, H.; Riediger, O.; Wiebe, J.; zu Putlitz, G. Ions and atoms in superfluid helium (4He). Z. Phys. B Cond. Matt. 1997, 104, 317–322. [Google Scholar] [CrossRef]
- Paolini, S.; Ancilotto, F.; Toigo, F. Ground-state path integral Monte Carlo simulations of positive ions in 4He clusters: Bubbles or snowballs? J. Chem. Phys. 2007, 126, 124317. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, S.L.; Mateo, D.; Aleksanyan, T.; Eloranta, J. Theoretical modeling of ion mobility in superfluid 4He. Phys. Rev. B 2012, 86, 144522. [Google Scholar] [CrossRef] [Green Version]
- Jalbout, A.F.; Solimannejad, M. Density functional theory analysis of CaRgn+ complexes: (Rg=He, Ne, Ar; n=1–4). J. Mol. Struct. Theochem. 2003, 640, 21–23. [Google Scholar] [CrossRef]
- Czuchaj, E.; Rebentrost, F.; Stoll, H.; Preuss, H. Pseudopotential calculations for the potential energies of Ca+-He and Ca+-Ne★. Chem. Phys. 1996, 207, 51–62. [Google Scholar] [CrossRef]
- Grebenev, S.; Toennies, J.P.; Vilesov, A.F. Superfluidity Within a Small Helium-4 Cluster: The Microscopic Andronikashvili Experiment. Science 1998, 279, 2083–2086. [Google Scholar] [CrossRef]
- González-Lezana, T.; Echt, O.; Gatchell, M.; Bartolomei, M.; Campos-Martínez, J.; Scheier, P. Solvation of ions in helium. Int. Rev. Phys. Chem. 2020, 39, 465–516. [Google Scholar] [CrossRef]
- Toennies, J.P.; Vilesov, A.F. Superfluid Helium Droplets: A Uniquely Cold Nanomatrix for Molecules and Molecular Complexes. Angew. Chem. Int. Ed. 2004, 43, 2622–2648. [Google Scholar] [CrossRef]
- Müller, S.; Mudrich, M.; Stienkemeier, F. Alkali-helium snowball complexes formed on helium nanodroplets. J. Chem. Phys. 2009, 131, 044319. [Google Scholar] [CrossRef] [Green Version]
- Theisen, M.; Lackner, F.; Ernst, W.E. Forming Rb+ snowballs in the center of He nanodroplets. Phys. Chem. Chem. Phys. 2010, 12, 14833. [Google Scholar] [CrossRef] [PubMed]
- Theisen, M.; Lackner, F.; Krois, G.; Ernst, W.E. Ionization Thresholds of Alkali Metal Atoms on Helium Droplets. J. Phys. Chem. Lett. 2011, 2, 2778–2782. [Google Scholar] [CrossRef]
- An der Lan, L.; Bartl, P.; Leidlmair, C.; Jochum, R.; Denifl, S.; Echt, O.; Scheier, P. Solvation of Na+, K+, and Their Dimers in Helium. Chem. Eur. J. 2012, 18, 4411–4418. [Google Scholar] [CrossRef] [Green Version]
- Rastogi, M.; Leidlmair, C.; An der Lan, L.; Ortiz de Zárate, J.; Pérez de Tudela, R.; Bartolomei, M.; Hernández, M.I.; Campos-Martínez, J.; González-Lezana, T.; Hernández-Rojas, J.; Bretón, J.; Scheier, P.; Gatchell, M. Lithium ions solvated in helium. Phys. Chem. Chem. Phys. 2018, 20, 25569–25576. [Google Scholar] [CrossRef] [Green Version]
- Pérez de Tudela, R.; Martini, P.; Goulart, M.; Scheier, P.; Pirani, F.; Hernández-Rojas, J.; Bretón, J.; Ortiz de Zárate, J.; Bartolomei, M.; González-Lezana, T.; Hernández, M.I.; Campos-Martínez, J.; Villarreal, P. A combined experimental and theoretical investigation of Cs+ ions solvated in HeN clusters. J. Chem. Phys. 2019, 150, 154304. [Google Scholar] [CrossRef] [PubMed]
- Rossi, M.; Verona, M.; Galli, D.E.; Reatto, L. Alkali and alkali-earth ions in 4He systems. Phys. Rev. B 2004, 69, 212510. [Google Scholar] [CrossRef]
- Galli, D.E.; Ceperley, D.M.; Reatto, L. Path integral Monte Carlo study of 4He clusters doped with alkali and alkali-earth ions. J. Phys. Chem. A 2011, 115, 7300–7309. [Google Scholar] [CrossRef]
- Mateo, D.; Leal, A.; Hernando, A.; Barranco, M.; Pi, M.; Cargnoni, F.; Mella, M.; Zhang, X.; Drabbels, M. Communication: Nucleation of quantized vortex rings in 4He nanodroplets. J. Chem. Phys. 2014, 140, 131101. [Google Scholar] [CrossRef] [Green Version]
- Ancilotto, F.; Barranco, M.; Coppens, F.; Eloranta, J.; Halberstadt, N.; Hernando, A.; Mateo, D.; Pi, M. Density functional theory of doped superfluid liquid helium and nanodroplets. Int. Rev. Phys. Chem. 2017, 36, 621–707. [Google Scholar] [CrossRef]
- Leal, A.; Mateo, D.; Hernando, A.; Pi, M.; Barranco, M.; Ponti, A.; Cargnoni, F.; Drabbels, M. Picosecond solvation dynamics of alkali cations in superfluid 4He nanodroplets. Phys. Rev. B 2014, 90, 224518. [Google Scholar] [CrossRef] [Green Version]
- Döppner, T.; Diederich, T.; Göde, S.; Przystawik, A.; Tiggesbäumker, J.; Meiwes-Broer, K.H. Ion induced snowballs as a diagnostic tool to investigate the caging of metal clusters in large helium droplets. J. Chem. Phys. 2007, 126, 244513. [Google Scholar] [CrossRef]
- Ortiz de Zárate, J.; Bartolomei, M.; González-Lezana, T.; Campos-Martínez, J.; Hernández, M.I.; Pérez de Tudela, R.; Hernández-Rojas, J.; Bretón, J.; Pirani, F.; Kranabetter, L.; et al. Snowball formation for Cs+ solvation in molecular hydrogen and deuterium. Phys. Chem. Chem. Phys. 2019, 21, 15662–15668. [Google Scholar] [CrossRef] [Green Version]
- Gomez, L.F.; Loginov, E.; Sliter, R.; Vilesov, A.F. Sizes of large He droplets. J. Chem. Phys. 2011, 135, 154201. [Google Scholar] [CrossRef] [PubMed]
- Schöbel, H.; Bartl, P.; Leidlmair, C.; Denifl, S.; Echt, O.; Märk, T.D.; Scheier, P. High-resolution mass spectrometric study of pure helium droplets, and droplets doped with krypton. Eur. Phys. J. D 2011, 63, 209–214. [Google Scholar] [CrossRef]
- Stienkemeier, F.; Meier, F.; Lutz, H.O. Alkaline earth metals (Ca, Sr) attached to liquid helium droplets: Inside or out? J. Chem. Phys. 1997, 107, 10816. [Google Scholar] [CrossRef]
- Hernando, A.; Mayol, R.; Pi, M.; Barranco, M.; Ancilotto, F.; Bünermann, O.; Stienkemeier, F. The Structure and Energetics of 3He and 4He Nanodroplets Doped with Alkaline Earth Atoms. J. Phys. Chem. A 2007, 111, 7303–7308. [Google Scholar] [CrossRef] [Green Version]
- Bünermann, O.; Dvorak, M.; Stienkemeier, F.; Hernando, A.; Mayol, R.; Pi, M.; Barranco, M.; Ancilotto, F. Calcium atoms attached to mixed helium droplets: A probe for the 3He-4He interface. Phys. Rev. B 2009, 79, 214511. [Google Scholar] [CrossRef]
- Stark, C.; Kresin, V.V. Critical sizes for the submersion of alkali clusters into liquid helium. Phys. Rev. B 2010, 81, 085401. [Google Scholar] [CrossRef] [Green Version]
- An der Lan, L.; Bartl, P.; Leidlmair, C.; Schöbel, H.; Jochum, R.; Denifl, S.; Märk, T.D.; Ellis, A.M.; Scheier, P. The submersion of sodium clusters in helium nanodroplets: Identification of the surface → interior transition. J. Chem. Phys. 2011, 135, 044309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An der Lan, L.; Bartl, P.; Leidlmair, C.; Schöbel, H.; Denifl, S.; Märk, T.D.; Ellis, A.M.; Scheier, P. Submersion of potassium clusters in helium nanodroplets. Phys. Rev. B 2012, 85, 115414. [Google Scholar] [CrossRef] [Green Version]
- Ellis, A.M.; Yang, S. Model for the charge-transfer probability in helium nanodroplets following electron-impact ionization. Phys. Rev. A 2007, 76, 032714. [Google Scholar] [CrossRef] [Green Version]
- Halberstadt, N.; Janda, K.C. The resonant charge hopping rate in positively charged helium clusters. Chem. Phys. Lett. 1998, 282, 409–412. [Google Scholar] [CrossRef]
- Kramida, A.; Yu, R.; Reader, J.; NIST ASD Team. NIST Atomic Spectra Database (ver. 5.7.1); National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. Available online: https://physics.nist.gov/asd (accessed on 11 March 2020).
- Heinebrodt, M.; Frank, S.; Malinowski, N.; Tast, F.; Billas, I.M.L.; Martin, T.P. Fission of multiply charged alkaline earth metal clusters. Z. Phys. D Atoms Mol. Clust. 1997, 40, 334–337. [Google Scholar] [CrossRef]
- Laimer, F.; Kranabetter, L.; Tiefenthaler, L.; Albertini, S.; Zappa, F.; Ellis, A.M.; Gatchell, M.; Scheier, P. Highly Charged Droplets of Superfluid Helium. Phys. Rev. Lett. 2019, 123, 165301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNaught, A.D.; Wilkinson, A. IUPAC. Compendium of Chemical Terminology, 2nd ed.; The “Gold Book”; Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar] [CrossRef]
- Ralser, S.; Postler, J.; Harnisch, M.; Ellis, A.M.; Scheier, P. Extracting Cluster Distributions from Mass Spectra: Isotope Fit. Int. J. Mass Spectrom. 2015, 379, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Aziz, R.A.; Slaman, M.J. An examination of ab initio results for the helium potential energy curve. J. Chem. Phys. 1991, 94, 8047–8053. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H.; Harrison, R.J. Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef] [Green Version]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Werner, H.J.; Knowles, P.J.; Lindh, R.; Manby, F.R.; Schütz, M.; Celani, P.; Korona, T.; Rauhut, G.; Amos, R.D.; Bernhardsson, A.; et al. MOLPRO, Version2012.1, A Package of Ab Initio Programs. 2012. Available online: https://www.molpro.net/ (accessed on 11 June 2021).
- Boys, S.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Pirani, F.; Brizi, S.; Roncaratti, L.; Casavecchia, P.; Cappelletti, D.; Vecchiocattivi, F. Beyond the Lennard-Jones Model: A Simple and Accurate Potential Function Probed by High Resolution Scattering Data Useful for Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2008, 10, 5489–5503. [Google Scholar] [CrossRef]
- Tang, K.T.; Toennies, J.P. The van der Waals potentials between all the rare gas atoms from He to Rn. J. Chem. Phys. 2003, 118, 4976–4983. [Google Scholar] [CrossRef]
- Bellert, D.; Breckenridge, W.H. Bonding in Ground-State and Excited-State A+·Rg van der Waals Ions (A = Atom, Rg = Rare-Gas Atom): A Model-Potential Analysis. Chem. Rev. 2002, 102, 1595–1622. [Google Scholar] [CrossRef] [PubMed]
- Wales, D.J.; Doye, J.P.K. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 1997, 101, 5111–5116. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Rojas, J.; Wales, D.J. Global minima for rare gas clusters containing one alkali metal ion. J. Chem. Phys. 2003, 119, 7800–7804. [Google Scholar] [CrossRef]
- Anderson, J.B. A Random–Walk Simulation of the Schrödinger Equation: H3+. J. Chem. Phys. 1975, 63, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Buch, V. Treatment of Rigid Bodies by Diffusion Monte-Carlo. Application to the Para-H2...H2O and Ortho-H2...H2O Clusters. J. Chem. Phys. 1992, 97, 726–729. [Google Scholar] [CrossRef]
- Sandler, P.; Buch, V.; Sadlej, J. Ground and excited states of the complex of CO with water: A diffusion Monte Carlo study. J. Chem. Phys. 1996, 105, 10387–10397. [Google Scholar] [CrossRef]
- Sandler, P.; Buch, V.; (The Hebrew UniVersity, Jerusalem, Israel). Private communication, 1999.
- Rodríguez-Cantano, R.; González-Lezana, T.; Villarreal, P. Path integral Monte Carlo investigations on doped helium clusters. Int. Rev. Phys. Chem. 2016, 35, 37–68. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, P.J.; Ceperley, D.M.; Alder, B.J.; Lester, W.A. Fixed-node quantum Monte Carlo for molecules. J. Chem. Phys. 1982, 77, 5593–5603. [Google Scholar] [CrossRef]
- Umrigar, C.J.; Nightingale, M.P.; Runge, K.J. A diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 1993, 99, 2865–2890. [Google Scholar] [CrossRef]
- Lewerenz, M. Quantum Monte Carlo calculation of argon-HF clusters: Nonadditive forces, isomerization, and HF frequency shifts. J. Chem. Phys. 1996, 104, 1028–1039. [Google Scholar] [CrossRef]
- Hansen, K.; Näher, U. Evaporation and Cluster Abundance Spectra. Phys. Rev. A 1999, 60, 1240–1250. [Google Scholar] [CrossRef]
- Slavíˇek, P.; Lewerenz, M. Snowballs, quantum solvation and coordination: Lead ions inside small helium droplets. Phys. Chem. Chem. Phys. 2010, 12, 1152–1161. [Google Scholar] [CrossRef] [Green Version]
- Acosta-Gutiérrez, S.; Bretón, J.; Hernández-Rojas, J.; Gomez Llorente, J.M. Optimal covering of C60 fullerene by rare gases. J. Chem. Phys. 2012, 137, 074306. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolomei, M.; Martini, P.; Pérez de Tudela, R.; González-Lezana, T.; Hernández, M.I.; Campos-Martínez, J.; Hernández-Rojas, J.; Bretón, J.; Scheier, P. Ca+ Ions Solvated in Helium Clusters. Molecules 2021, 26, 3642. https://doi.org/10.3390/molecules26123642
Bartolomei M, Martini P, Pérez de Tudela R, González-Lezana T, Hernández MI, Campos-Martínez J, Hernández-Rojas J, Bretón J, Scheier P. Ca+ Ions Solvated in Helium Clusters. Molecules. 2021; 26(12):3642. https://doi.org/10.3390/molecules26123642
Chicago/Turabian StyleBartolomei, Massimiliano, Paul Martini, Ricardo Pérez de Tudela, Tomás González-Lezana, Marta I. Hernández, José Campos-Martínez, Javier Hernández-Rojas, José Bretón, and Paul Scheier. 2021. "Ca+ Ions Solvated in Helium Clusters" Molecules 26, no. 12: 3642. https://doi.org/10.3390/molecules26123642
APA StyleBartolomei, M., Martini, P., Pérez de Tudela, R., González-Lezana, T., Hernández, M. I., Campos-Martínez, J., Hernández-Rojas, J., Bretón, J., & Scheier, P. (2021). Ca+ Ions Solvated in Helium Clusters. Molecules, 26(12), 3642. https://doi.org/10.3390/molecules26123642