Boswellic Acids Show In Vitro Activity against Leishmania donovani
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.A.; Biavatti, M.W.; Brun, R.; da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.G.; et al. The Potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases-part II. Curr. Med. Chem. 2012, 19, 2176–2228. [Google Scholar] [CrossRef] [PubMed]
- Greve, H.L.; Kaiser, M.; Brun, R.; Schmidt, T.J. Terpenoids from the oleo-gum-resin of boswellia serrata and their antiplasmodial effects in vitro. Planta Med. 2017, 83, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Greve, H.L.; Kaiser, M.; Schmidt, T.J. Investigation of antiplasmodial effects of terpenoid compounds isolated from myrrh. Planta Med. 2020, 86, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Mehan, S.; Kalra, S.; Khanna, D. Boswellia serrata-frankincense (A Jesus Gifted Herb); An updated pharmacological profile. Pharmacologia 2013, 4, 457–463. [Google Scholar] [CrossRef] [Green Version]
- Eskandari, E.G.; Setorki, M.; Doudi, M. Medicinal plants with antileishmanial properties: A review study. Pharm. Biomed. Res. 2020, 6, 1–16. [Google Scholar] [CrossRef]
- Parvizi, M.M.; Zare, F.; Handjani, F.; Nimrouzi, M.; Zarshenas, M.M. Overview of herbal and traditional remedies in the treatment of cutaneous leishmaniasis based on Traditional Persian Medicine. Dermatol. Ther. 2020, 33, e13566. [Google Scholar] [CrossRef] [PubMed]
- Monzote, L.; Herrera, I.; Satyal, P.; Setzer, W.N. In-vitro evaluation of 52 commercially-available essential oils against Leishmania amazonensis. Molecules 2019, 24, 1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, T.J.; Kaiser, M.; Brun, R. Complete structural assignment of serratol, a cembrane-type diterpene from Boswellia serrata, and evaluation of its antiprotozoal activity. Planta Med. 2011, 77, 849–850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okba, M.M.; Sabry, O.M.; Matheeussen, A.; Abdel-Sattar, E. In vitro antiprotozoal activity of some medicinal plants against sleeping sickness, Chagas disease and leishmaniasis. Future Med. Chem. 2018, 10, 2607–2617. [Google Scholar] [CrossRef] [PubMed]
- Montesino, N.L.; Kaiser, M.; Brun, R.; Schmidt, T.J. Search for antiprotozoal activity in herbal medicinal preparations; new natural leads against neglected tropical diseases. Molecules 2015, 20, 14118–14138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, P.; Basu, M.K. Leishmania phagolysosome: Drug trafficking and protein sorting across the compartment. Crit. Rev. Microbiol. 1997, 23, 253–268. [Google Scholar] [CrossRef] [PubMed]
- Burchmore, R.J.S.; Barrett, M.P. Life in vacuoles–nutrient acquisition by Leishmania amastigotes. Int. J. Parasitol. 2001, 31, 1311–1320. [Google Scholar] [CrossRef]
- Berry, S.L.; Hameed, H.; Thomason, A.; Maciej-Hulme, M.L.; Abou-Akkada, S.S.; Horrocks, P.; Price, H.P. Development of NanoLuc-PEST expressing Leishmania mexicana as a new drug discovery tool for axenic- and intramacrophage-based assays. PLoS Negl. Trop. Dis. 2018, 12, e0006639. [Google Scholar] [CrossRef] [PubMed]
- Bernal, F.A.; Kaiser, M.; Wünsch, B.; Schmidt, T.J. Structure-activity relationships of cinnamate ester analogues as potent antiprotozoal agents. Chem. Med. Chem. 2020, 15, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A.B.; Danton, O.; Kaiser, M.; Khalid, S.; Hamburger, M.; Mäser, P. HPLC-based activity profiling for antiprotozoal compounds in Croton gratissimus and Cuscuta hyalina. Front. Pharmacol. 2020, 11, 1246. [Google Scholar] [CrossRef] [PubMed]
- Huber, W.; Koella, J.C. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop. 1993, 55, 257–261. [Google Scholar] [CrossRef]
Tbr | Tc | Ldon | Pf | L6 | |
---|---|---|---|---|---|
Boswellia serrata | |||||
DCM | 12 | 15 (14; 17) | 4.5 (3.9; 5.1) | 2.6 (2.4; 2.8) | 46 (45; 47) |
EtOH | 11 (9.3; 11) | 23 (20; 26) | 4,7 (4.6; 4.9) | 3.4 (2.9; 3.9) | 54 (54; 54) |
H2O | 45 | 65 | > 100 | > 50 | > 100 |
Boswellia carteri | |||||
DCM | 14 | 12 (9.9; 15) | 3.0 (2.4; 3.8) | 3.4 (2.4; 4.7) | 39 (37; 42) |
EtOH | 15 | 14 (12; 17) | 3.0 (2.4; 3.7) | 3.8 (3.2; 4.4) | 44 (43; 45) |
H2O | 34 | 77 | > 100 | > 50 | > 100 |
Commiphora myrrha | |||||
DCM | 5.2 (5.1; 5.4) | 16 (12; 21) | 6.1 (5.5; 6.7) | 1.0 (1.0; 1.0) | 8 (6; 11) |
EtOH | 13 | 41 | 15 | 1.8 (1.2; 2.6) | 42 (39; 46) |
H2O | 45 | 61 | > 100 | > 50 | > 100 |
Fraction | L. donovani | |
---|---|---|
10 µg/mL | 2 µg/mL | |
Bs-1 | 31 | 0.0 |
Bs-3 | 0.0 | 0.0 |
Bs-4 | 1.0 | 0.0 |
Bs-5 | 79 | 0.0 |
Bs-6 | 76 | 0.0 |
Bs-7 | 21 | 0.0 |
Bs-8 | 21 | 0.0 |
Bs-9 | 85 | 31 |
Bs-10 | 47 | 25 |
Bs-11 | 51 | 27 |
Bs-12 | 42 | 24 |
Bs-13 | 70 | 28 |
Bs-14 | 61 | 25 |
Bs-15 | 81 | 31 |
Bs-16 | 89 | 30 |
Bs-17 | 100 | 41 |
Bs-19 | 100 | 36 |
Bs-20 | 100 | 37 |
No. | Leishmania donovani Axenic Amastigotes | Cytotoxicity against L6 Rat Skeletal Myoblasts | |||
---|---|---|---|---|---|
IC50 (µg/mL) | IC50 (µM) | IC50 (µg/mL) | IC50 (µM) | SI | |
1 | 0.9 (0.51; 1.7) | 1.9 | 43 (42; 45) | 91 | 46 |
2 | 0.45 (0.37; 0.54) | 0.88 | 17 (17; 18) | 33 | 38 |
3 | 2.4 (1.5; 3.7) | 5.3 | 15 (14; 16) | 33 | 6.2 |
4 | 6.1 (3.1; 12) | 12 | 16 (16; 17) | 32 | 2.7 |
5 | n.a. (2.3; >100) | n.a. | 14 (14; 15) | 31 | n.a. |
6 | 3.1 (1.4; 6.9) | 6.2 | 7.2 (6.4; 8.0) | 14 | 2.3 |
PCM a | 0.047 (0.035; 0.064) | 0.12 | n.a. | n.a. | n.a. |
PCP b | n.a. | n.a. | 0.009 (0.007; 0.011) | 0.02 | n.a. |
Intracellular Amastigotes c | Cytotoxicity against Macrophages | ||||
2 | > 10 | n.a. | 20 (20; 20) | 39 | n.a. |
PCM a | 1.9 (2.6; 1.4) | 4.7 | n.a. | n.a. | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greve, H.L.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Boswellic Acids Show In Vitro Activity against Leishmania donovani. Molecules 2021, 26, 3651. https://doi.org/10.3390/molecules26123651
Greve HL, Kaiser M, Mäser P, Schmidt TJ. Boswellic Acids Show In Vitro Activity against Leishmania donovani. Molecules. 2021; 26(12):3651. https://doi.org/10.3390/molecules26123651
Chicago/Turabian StyleGreve, Hippolyt L., Marcel Kaiser, Pascal Mäser, and Thomas J. Schmidt. 2021. "Boswellic Acids Show In Vitro Activity against Leishmania donovani" Molecules 26, no. 12: 3651. https://doi.org/10.3390/molecules26123651
APA StyleGreve, H. L., Kaiser, M., Mäser, P., & Schmidt, T. J. (2021). Boswellic Acids Show In Vitro Activity against Leishmania donovani. Molecules, 26(12), 3651. https://doi.org/10.3390/molecules26123651