Rigid Nanoporous Urea-Based Covalent Triazine Frameworks for C2/C1 and CO2/CH4 Gas Separation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Urea-CTFs
2.2. Gas Storage and Separation
Material | Temp. (K) | C2H2 Uptake (mmol/g) | C2H2/CH4 Selectivity (273 K) | C2H2 Adsorption Enthalpy (kJ/mol) | CO2 Uptake (mmol/g) | CO2/CH4 Selectivity (273 K) | CO2 Adsorption Enthalpy | Ref. |
---|---|---|---|---|---|---|---|---|
UTSA-50 | 296 | 3.80 | 68 | 39.4 | 2.63 | 5 | 27.8 | [4] |
Zn4(OH)2(1,2,4-btc)2 | 295 | 2.22 | 14.7 | 28.2 | 1.72 | 4.5 | 20.2 | [5] |
ZJU-60a | 296 | 6.33 | - | 17.6 | 2.99 | 5–5.6 | 15.2 | [6] |
Hexene-CTF_400_1 | 298 | 2.28 | 12.8 | 47 | 2.66 | 8 | 32 | [37] |
ZJU-61a | 298 | 5.88 | 115.3 | 23.98 | - | - | - | [42] |
HOF-BTB | 295 | 2.87 | 7.8 | 24.3 | - | - | - | [43] |
UTSA-36a | 295 | 2.45 Ξ | 16.1 | 29.0 | - | - | - | [44] |
Activated carbon | 303 | - | - | - | 3.45 | 2.5 (303 K) | 24.2 | [45] |
Urea-CTF_400_5 | 298 | 2.80 | 20.25 | 35.51 | 1.8 | 10.49 | 30.05 | This work |
Urea-CTF_500_5 | 298 | 2.57 | 18.96 | 27.78 | 1.5 | 10.47 | 48.57 | This work |
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Rojnuckarin, A.; Floudas, C.A.; Rabitz, H.; Yetter, R.A. Methane Conversion to Ethylene and Acetylene: Optimal Control with Chlorine, Oxygen, and Heat Flux. Ind. Eng. Chem. Res. 1996, 35, 683–696. [Google Scholar] [CrossRef]
- Bachman, J.; Kapelewski, M.; Gonzalez, M.; Reed, D.; Jaramillo, D.; Jiang, H.; Oktawiec, J.; Bloch, E.; Herm, Z.; Mason, J.; et al. Hydrocarbon Separations in Metal-Organic Frameworks; Abstracts of Papers American Chemical Society; American Chemical Society: Washington, DC, USA, 2019; Volume 257. [Google Scholar]
- Maqsood, K.; Mullick, A.; Ali, A.; Kargupta, K.; Ganguly, S. Cryogenic carbon dioxide separation from natural gas: A review based on conventional and novel emerging technologies. Rev. Chem. Eng. 2014, 30, 453–477. [Google Scholar] [CrossRef]
- Xu, H.; He, Y.B.; Zhang, Z.J.; Xiang, S.C.; Cai, J.F.; Cui, Y.J.; Yang, Y.; Qian, G.D.; Chen, B.L. A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature. J. Mater. Chem. A 2013, 1, 77–81. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Xiang, S.C.; Rao, X.T.; Zheng, Q.A.; Fronczek, F.R.; Qian, G.D.; Chen, B.L. A rod packing microporous metal-organic framework with open metal sites for selective guest sorption and sensing of nitrobenzene. Chem. Commun. 2010, 46, 7205–7207. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.; Zhang, Q.; Cai, J.F.; Yang, Y.; Cui, Y.J.; He, Y.B.; Wu, C.D.; Krishna, R.; Chen, B.; Qian, G.D. A new metal-organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments. J. Mater. Chem. A 2014, 2, 2628–2633. [Google Scholar] [CrossRef] [Green Version]
- Leus, K.; Bogaerts, T.; De Decker, J.; Depauw, H.; Hendrickx, K.; Vrielinck, H.; Van Speybroeck, V.; Van Der Voort, P. Sys-tematic study of the chemical and hydrothermal stability of selected “stable” Metal Organic Frameworks. Microporous Mesoporous Mater. 2016, 226, 110–116. [Google Scholar] [CrossRef]
- Liu, M.; Guo, L.; Jin, S.; Tan, B. Covalent triazine frameworks: Synthesis and applications. J. Mater. Chem. A 2019, 7, 5153–5172. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Jena, H.S.; Leus, K.; Van Der Voort, P. Covalent triazine frameworks—A sustainable perspective. Green Chem. 2020, 22, 1038–1071. [Google Scholar] [CrossRef]
- Kuhn, P.; Antonietti, M.; Thomas, A. Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis. Angew. Chem. Int. Ed. 2008, 47, 3450–3453. [Google Scholar] [CrossRef] [PubMed]
- Sakaushi, K.; Antonietti, M. Carbon- and Nitrogen-Based Organic Frameworks. Acc. Chem. Res. 2015, 48, 1591–1600. [Google Scholar] [CrossRef] [Green Version]
- Katekomol, P.; Roeser, J.; Bojdys, M.; Weber, J.; Thomas, A. Covalent Triazine Frameworks Prepared from 1,3,5-Tricyanobenzene. Chem. Mater. 2013, 25, 1542–1548. [Google Scholar] [CrossRef]
- Tahir, N.; Krishnaraj, C.; Leus, K.; Van Der Voort, P. Development of Covalent Triazine Frameworks as Heterogeneous Catalytic Supports. Polymers 2019, 11, 1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhunia, A.; Vasylyeva, V.; Janiak, C. From a supramolecular tetranitrile to a porous covalent triazine-based framework with high gas uptake capacities. Chem. Commun. 2013, 49, 3961–3963. [Google Scholar] [CrossRef]
- Xu, F.; Yang, S.H.; Jiang, G.S.; Ye, Q.; Wei, B.Q.; Wang, H.Q. Fluorinated, Sulfur-Rich, Covalent Triazine Frameworks for Enhanced Confinement of Polysulfides in Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2017, 9, 37731–37738. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.B.; Leus, K.; Jena, H.S.; Krishnaraj, C.; Zhao, S.N.; Depauw, H.; Tahir, N.; Liu, Y.Y.; Van der Voort, P. A fluo-rine-containing hydrophobic covalent triazine framework with excellent selective CO2 capture performance. J. Mater. Chem. A 2018, 6, 6370–6375. [Google Scholar] [CrossRef]
- Jena, H.S.; Krishnaraj, C.; Wang, G.; Leus, K.; Schmidt, J.; Chaoui, N.; Van Der Voort, P. Acetylacetone Covalent Triazine Framework: An Efficient Carbon Capture and Storage Material and a Highly Stable Heterogeneous Catalyst. Chem. Mater. 2018, 30, 4102–4111. [Google Scholar] [CrossRef]
- Park, K.; Gunasekar, G.H.; Prakash, N.; Jung, K.-D.; Yoon, S. A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate. ChemSusChem 2015, 8, 3410–3413. [Google Scholar] [CrossRef] [PubMed]
- Buyukcakir, O.; Je, S.H.; Talapaneni, S.N.; Kim, D.; Coskun, A. Charged Covalent Triazine Frameworks for CO2 Capture and Conversion. ACS Appl. Mater. Interfaces 2017, 9, 7209–7216. [Google Scholar] [CrossRef]
- Ma, H.; Ren, H.; Meng, S.; Sun, F.; Zhu, G. Novel Porphyrinic Porous Organic Frameworks for High Performance Separation of Small Hydrocarbons. Sci. Rep. 2013, 3, srep02611. [Google Scholar] [CrossRef]
- Gunasekar, G.H.; Park, K.; Ganesan, V.; Lee, K.; Kim, N.K.; Jung, K.D.; Yoon, S. A Covalent Triazine Framework, Functionalized with Ir/N-Heterocyclic Carbene Sites, for the Efficient Hydrogenation of CO2 to Formate. Chem. Mater. 2017, 29, 6740–6748. [Google Scholar] [CrossRef]
- Jena, H.S.; Krishnaraj, C.; Parwaiz, S.; Lecoeuvre, F.; Schmidt, J.; Pradhan, D.; Van Der Voort, P. Illustrating the Role of Quaternary-N of BINOL Covalent Triazine-Based Frameworks in Oxygen Reduction and Hydrogen Evolution Reactions. ACS Appl. Mater. Interfaces 2020, 12, 44689–44699. [Google Scholar] [CrossRef]
- Jena, H.S.; Krishnaraj, C.; Schmidt, J.; Leus, K.; Van Hecke, K.; Van Der Voort, P. Effect of Building Block Transformation in Covalent Triazine-Based Frameworks for Enhanced CO2 Uptake and Metal-Free Heterogeneous Catalysis. Chem. Eur. J. 2020, 26, 1548–1557. [Google Scholar] [CrossRef] [Green Version]
- Chan-Thaw, C.E.; Villa, A.; Katekomol, P.; Su, D.S.; Thomas, A.; Prati, L. Covalent Triazine Framework as Catalytic Support for Liquid Phase Reaction. Nano Lett. 2010, 10, 537–541. [Google Scholar] [CrossRef]
- Laemont, A.; Abednatanzi, S.; Derakshandeh, P.G.; Verbruggen, F.; Fiset, E.; Qin, Q.; Van Daele, K.; Meledina, M.; Schmidt, J.; Oschatz, M.; et al. Covalent triazine frame-work/carbon nanotube hybrids enabling selective reduction of CO2 to CO at low overpotential. Green Chem. 2020, 22, 3095–3103. [Google Scholar] [CrossRef]
- Yoshioka, T.; Iwase, K.; Nakanishi, S.; Hashimoto, K.; Kamiya, K. Electrocatalytic Reduction of Nitrate to Nitrous Oxide by a Copper-Modified Covalent Triazine Framework. J. Phys. Chem. C 2016, 120, 15729–15734. [Google Scholar] [CrossRef]
- Kuecken, S.; Acharjya, A.; Zhi, L.; Schwarze, M.; Schomäcker, R.; Thomas, A. Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 5854–5857. [Google Scholar] [CrossRef]
- Schwinghammer, K.; Hug, S.; Mesch, M.B.; Senker, J.; Lotsch, B.V. Phenyl-triazine oligomers for light-driven hydrogen evolution. Energy Environ. Sci. 2015, 8, 3345–3353. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zheng, S.; Liu, X.; Li, P.; Sun, L.; Yang, R.; Wang, S.; Wu, Z.; Bao, X.; Deng, W. Conductive Microporous Covalent Triazine-Based Framework for High-Performance Electrochemical Capacitive Energy Storage. Angew. Chem. Int. Ed. 2018, 57, 7992–7996. [Google Scholar] [CrossRef] [PubMed]
- Rogge, S.M.J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A.I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F.; et al. Metal–organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Diercks, C.S.; Zhu, C.; Hanikel, N.; Pei, X.; Yaghi, O.M. Urea-Linked Covalent Organic Frameworks. J. Am. Chem. Soc. 2018, 140, 16438–16441. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Han, J.; Si, X.; Hu, Y.; Zhu, J.; Sun, X. Effective approach to ureas through organocatalyzed one-pot process. Tetrahedron Lett. 2018, 59, 1614–1618. [Google Scholar] [CrossRef]
- Osadchii, D.Y.; Olivos-Suarez, A.I.; Bavykina, A.V.; Gascon, J. Revisiting Nitrogen Species in Covalent Triazine Frameworks. Langmuir 2017, 33, 14278–14285. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, P.; Forget, A.; Hartmann, J.; Thomas, A.; Antonietti, M. Template-Free Tuning of Nanopores in Carbonaceous Polymers through Ionothermal Synthesis. Adv. Mater. 2009, 21, 897–901. [Google Scholar] [CrossRef]
- Groen, C.J.; Peffer, A.A.L.; Pérez-Ramírez, J. Pore Size Determination in Modified Micro- and Mesoporous Materials. Pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater. 2003, 60, 1–17. [Google Scholar] [CrossRef]
- Lu, Y.; He, J.; Chen, Y.L.; Wang, H.; Zhao, Y.F.; Han, Y.; Ding, Y. Effective Acetylene/Ethylene Separation at Ambient Conditions by a Pigment-Based Covalent-Triazine Framework. Macromol. Rapid Commun. 2018, 39, 1700468. [Google Scholar] [CrossRef] [PubMed]
- Krishnaraj, C.; Jena, H.S.; Leus, K.; Freeman, H.M.; Benning, L.G.; Van Der Voort, P. An aliphatic hexene-covalent triazine framework for selective acetylene/methane and ethylene/methane separation. J. Mater. Chem. A 2019, 7, 13188–13196. [Google Scholar] [CrossRef]
- Keskin, S.; Van Heest, T.M.; Sholl, D.S. Can Metal-Organic Framework Materials Play a Useful Role in Large-Scale Carbon Dioxide Separations? ChemSusChem 2010, 3, 879–891. [Google Scholar] [CrossRef]
- Yuan, K.; Liu, C.; Zong, L.; Yu, G.; Cheng, S.; Wang, J.; Weng, Z.; Jian, X. Promoting and Tuning Porosity of Flexible Ether-Linked Phthalazinone-Based Covalent Triazine Frameworks Utilizing Substitution Effect for Effective CO2 Capture. ACS Appl. Mater. Interfaces 2017, 9, 13201–13212. [Google Scholar] [CrossRef]
- Park, K.; Lee, K.; Kim, H.; Ganesan, V.; Cho, K.; Jeong, S.K.; Yoon, S. Preparation of covalent triazine frameworks with imidazolium cations embedded in basic sites and their application for CO2 capture. J. Mater. Chem. A 2017, 5, 8576–8582. [Google Scholar] [CrossRef]
- Tao, L.M.; Niu, F.; Liu, J.G.; Wang, T.M.; Wang, Q.H. Troger’s base functionalized covalent triazine frameworks for CO2 capture. RSC Adv. 2016, 6, 94365–94372. [Google Scholar] [CrossRef]
- Duan, X.; Zhang, Q.; Cai, J.; Cui, Y.; Wu, C.; Yang, Y.; Qian, G. A new microporous metal–organic framework with potential for highly selective separation methane from acetylene, ethylene and ethane at room temperature. Microporous Mesoporous Mater. 2014, 190, 32–37. [Google Scholar] [CrossRef]
- Yoon, T.-U.; Bin Baek, S.; Kim, D.; Kim, E.-J.; Lee, W.-G.; Singh, B.K.; Lah, M.S.; Bae, Y.-S.; Kim, K.S. Efficient separation of C2 hydrocarbons in a permanently porous hydrogen-bonded organic framework. Chem. Commun. 2018, 54, 9360–9363. [Google Scholar] [CrossRef] [PubMed]
- Das, M.C.; Xu, H.; Xiang, S.; Zhang, Z.; Arman, H.D.; Qian, G.; Chen, B. A New Approach to Construct a Doubly Interpenetrated Microporous Metal-Organic Framework of Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules. Chem. Eur. J. 2011, 17, 7817–7822. [Google Scholar] [CrossRef] [PubMed]
- Sircar, S.; Golden, T.; Rao, M. Activated carbon for gas separation and storage. Carbon 1996, 34, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnaraj, C.; Jena, H.S.; Lecoeuvre, F.; Leus, K.; Van Der Voort, P. Rigid Nanoporous Urea-Based Covalent Triazine Frameworks for C2/C1 and CO2/CH4 Gas Separation. Molecules 2021, 26, 3670. https://doi.org/10.3390/molecules26123670
Krishnaraj C, Jena HS, Lecoeuvre F, Leus K, Van Der Voort P. Rigid Nanoporous Urea-Based Covalent Triazine Frameworks for C2/C1 and CO2/CH4 Gas Separation. Molecules. 2021; 26(12):3670. https://doi.org/10.3390/molecules26123670
Chicago/Turabian StyleKrishnaraj, Chidharth, Himanshu Sekhar Jena, Florence Lecoeuvre, Karen Leus, and Pascal Van Der Voort. 2021. "Rigid Nanoporous Urea-Based Covalent Triazine Frameworks for C2/C1 and CO2/CH4 Gas Separation" Molecules 26, no. 12: 3670. https://doi.org/10.3390/molecules26123670
APA StyleKrishnaraj, C., Jena, H. S., Lecoeuvre, F., Leus, K., & Van Der Voort, P. (2021). Rigid Nanoporous Urea-Based Covalent Triazine Frameworks for C2/C1 and CO2/CH4 Gas Separation. Molecules, 26(12), 3670. https://doi.org/10.3390/molecules26123670